\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 202, pp. 1--18.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/202\hfil Boundary stabilization] {General boundary stabilization result of memory-type thermoelasticity with second sound} \author[F. Boulanouar, S. Drabla \hfil EJDE-2014/202\hfilneg] {Fairouz Boulanouar, Salah Drabla} % in alphabetical order \address{Fairouz Boulanouar \newline Department of Mathematics, Faculty of Sciences, University Farhat Abbas of Setif1, Setif 19000, Algeria} \email{boulanoir\_b@yahoo.com} \address{Salah Drabla \newline Department of Mathematics, Faculty of Sciences, University Farhat Abbas of Setif1, Setif 19000, Algeria} \email{drabla\_s@univ-setif.dz} \thanks{Submitted August 1, 2014. Published September 30, 2014.} \subjclass[2000]{35B37, 35L55, 74D05, 93D15, 93D20} \keywords{Thermoelasticity with second sound; viscoelastic damping; \hfill\break\indent decay; relaxation function; boundary stabilization; convexity} \begin{abstract} In this article we consider an n-dimensional system of visco-ther\-moelasticity with second sound, where a viscoelastic dissipation is acting on a part of the boundary. We prove an explicit general decay rate result without imposing $u_0=0$ as in \cite{Mus}. This allows a larger class of relaxation functions and initial data, hence, generalizes some previous results existing in the literature. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} The Classical Fourier law of heat conduction expresses that the heat flux within a medium is proportional to the local temperature gradient in the system. A well known consequence of this law is that heat perturbations propagates with an infinite speed. Experiments showed that heat conduction in some dielectric crystals at low temperatures is free of this paradox and disturbances, which are almost entirely thermal, propagate in a finite speed. This phenomenon in dielectric crystals is called second sound (see \cite{Coleman}). To overcome this physical paradox, Maxwell \cite{Maxwell}, Cattaneo \cite{Cattenao} adopted a non-classical heat flux Maxwell-Cattaneo law to get rid of this unphysical results. This Maxwell-Cattaneo relation contains an extra inertial term with respect to the Fourier law \[ \tau _0q_{t}+q+\kappa \nabla \theta =0, \] where $q=q(x,t) \in \mathbb{R}^n$ is the heat flux vector, $\tau _0$ is the relaxation time and $\kappa $ is the heat conductivity. The conservation of energy equation introduces the hyperbolic equation, which describes heat propagation with finite speed. Result concerning existence, blow up, and asymptotic behavior of smooth, as well as weak solutions in thermoelasticity with second sound have been established over the past two decades by many mathematicians. Tarabek \cite{Tara} treated problems related to \begin{equation} \begin{gathered} u_{tt}-a(u_x,\theta ,q) u_{xx}+b(u_x,\theta ,q) \theta _x=\alpha _1(u_x,\theta ) qq_x \\ \theta _{t}+g(u_x,\theta ,q) q_x+d(u_x,\theta ,q) u_{tx}=\alpha _2(u_x,\theta ) qq_{t} \\ \tau (u_x,\theta ) q_{t}+q+k(u_x,\theta ) \theta_x=0, \end{gathered} \label{1.1} \end{equation} in both bounded and unbounded situations and established global existence results for small initial data. He also showed that these `` classical'' solutions tend to equilibrium as $t$ tends to infinity; however, no rate of decay has been discussed. In his work, Tarabek used the usual energy argument and exploited some relations from the second law of thermodynamics to overcome the difficulty arising from the lack of Poincar\'{e}'s inequality in the unbounded domains. Racke \cite{RacT} discussed \eqref{1.1} and established exponential decay results for several linear and nonlinear initial boundary value problems. In particular he studied \eqref{1.1}, with $\alpha_1=\alpha _2=0$, and for a rigidly clamped medium with temperature hold constant on the boundary. i.e \[ u(t,0) =u(t,1) =0,\quad \theta (t,0) =\theta (t,1) =\bar{\theta },\quad t\geq 0, \] and showed that, for small enough initial data and classical solutions decay exponentially to the equilibrium state. Messaoudi and Said-Houari \cite{MSE} extended the decay result of\ \cite{RacT} to the case when $\alpha_1\neq 0$, $\alpha _2\neq 0$. For the multi-dimensional case ($n=2, 3$), Racke \cite{RacA} established an existence result for the following $n$-dimensional problem \begin{equation} \begin{gathered} u_{tt}-\mu \Delta u-(\mu +\lambda ) \nabla ( \operatorname{div}u) +\beta \nabla \theta =0 \quad \text{in }\Omega \times ( 0,+\infty ) \\ \theta _{t}+\gamma \operatorname{div}q+\delta \operatorname{div}u_{t}=0 \quad \text{in }\Omega \times (0,+\infty ) \\ \tau q_{t}+q+\kappa \nabla \theta =0 \quad \text{in }\Omega \times ( 0,+\infty ) \\ u(.,0) =u_0,\quad u_{t}(.,0) =u_1,\quad \theta (.,0) =\theta _0,\quad q(.,0) =q_0 \quad \text{in }\Omega \\ u=\theta =0 \quad \text{on }\Gamma \times [ 0,+\infty ) , \end{gathered} \label{1.2} \end{equation} where $\Omega $ is a bounded domain of $\mathbb{R}^n$, with a smooth boundary $\Gamma$, $u=u(x,t)$, $q=q(x,t) \in \mathbb{R}^n$, and $\mu , \lambda , \beta , \gamma ,\delta , \tau , \kappa$, are positive constants, where $\mu , \lambda $ are Lame moduli and $\tau $ is the relaxation time, a small parameter compared to the others. In particular if $\tau =0$, \eqref{1.2} reduces to the system of classical thermoelasticity, in which the heat flux is given by Fourier's law instead of Cattaneo's law. He also proved, under the conditions $rotu=rotq=0$, an exponential decay result for \eqref{1.2}. This result applies automatically to the radially symmetric solution, since it is only a special case. Messaoudi \cite{MLE} considered \eqref{1.2}, in the presence of a source term, and proved a blow up result for solutions with negative initial energy. This result was extended later to certain solutions with positive energy by Messaoudi and Said-Houari \cite{MSB}. In this article, we are concerned with the system \begin{equation} \begin{gathered} u_{tt}-\mu \Delta u-(\mu +\lambda ) \nabla ( \operatorname{div}u) +\beta \nabla \theta =0 \quad \text{in }\Omega \times (0,+\infty ) \\ c\theta _{t}+\kappa \operatorname{div}q+\beta \operatorname{div}u_{t}=0 \quad \text{in }\Omega \times (0,+\infty ) \\ \tau _0q_{t}+q+\kappa \nabla \theta =0 \quad \text{in }\Omega \times (0,+\infty ) \\ u(.,0) =u_0,\quad u_{t}(.,0) =u_1,\quad \theta (.,0) =\theta _0,\quad q(.,0) =q_0 \quad \text{in }\Omega \\ u=0 \quad \text{on }\Gamma _0\times [ 0,+\infty ) \\ u(x,t) =-\int_0^{t}g(t-s)(\mu \frac{\partial u}{ \partial \nu }+(\mu +\lambda ) (\operatorname{div}u) \nu ) (s) ds \quad \text{on }\Gamma _1\times [ 0,+\infty ) \\ \theta =0 \quad \text{on }\Gamma \times [ 0,+\infty ) , \end{gathered} \label{1.3} \end{equation} which models the transverse vibration of a thin elastic body, taking in account the heat conduction given by Cattaneo's law. Here, $\Omega $ is a bounded domain of $\mathbb{R}^n$ $(n\geq 2) $ with a smooth boundary $\Gamma$, such that $ \{ \Gamma _0,\Gamma _1\}$ is a partition of $\Gamma , \nu $ is the outward normal to $\Gamma $, $u=u(x,t) \in \mathbb{R}^n$ is the displacement vector, $\ q=q(x,t) \in \mathbb{R}^n$ is the heat flux vector, $\theta =\theta (x,t)$ is the difference temperature and the relaxation function $g$ is a positive differentiable function. The coefficients $c,\kappa ,\beta ,\mu ,\lambda $, $\tau _0$ are positive constants, where $\mu , \lambda $ are Lame moduli and $\tau _0$ is the relaxation time, a small parameter compared to the others. The boundary condition on $\Gamma _1$ is the nonlocal boundary condition responsible for the memory effect. Messaoudi and Al-Shehri treated system \eqref{1.3} of thermoelasticity with second sound in \cite{MAZ} subject to boundary condition of memory type. If $k$ is the resolvent kernel of $-g'/g(0)$, they showed in \cite{MA} that the energy decays at the same rate as of $(-k') $, while in \cite{MAZ}, when $(-k') $ decays exponentially, the energy decays at a polynomial rate. Recently, Mustafa \cite{Mus} treated system \eqref{1.3} for $k$ satisfying \begin{gather} k(0)>0,\quad \lim_{t\to \infty }k(t)=0,\quad k'(t)\leq 0, \label{k1}\\ k''(t)\geq H(-k'(t)),\quad \forall t>0, \label{k2} \end{gather} where $H$ is a positive function, which is linear or strictly increasing, strictly convex of class $C^2$ on $(0,r]$, $r<1$, and $H(0)=0$ and proved for $u_0=0$ on $\Gamma _1$, an explicit energy decay formula which is not necessarily of exponential or polynomial-type decay. Our aim in this work is to investigate \eqref{1.3} for resolvent kernels satisfying \eqref{k1} and \eqref{k2}, when $u_0\neq 0$ on $\Gamma _1$ is taken into account. The proof is based on the multiplier method and makes use of some estimates of \cite{Mus} with the necessary modification needed to obtain our result. The paper is organized as follows. In section 2, we present some notations and material needed for our work. In section 3, we establish some technical lemmas and state our main theorem, while the proof of our main result will be given in section 4. \section{Notation and transformation} In this section we introduce some notation and prove some lemmas. To establish our result, we shall make the following assumption: \begin{itemize} \item[(A1)] The partition $\Gamma _0$ and $\Gamma _1$ are closed, disjoint, with $\operatorname{meas}(\Gamma _0) >0$ and satisfying \[ \Gamma _1=\{ x\in \Gamma : m(x) .\nu \geq \delta>0\},\quad \Gamma _0=\{ x\in \Gamma : m(x) .\nu \leq 0\} , \] where $m(x) =x-x_0$, for some $x_0\in \mathbb{R}^n$. \end{itemize} Similarly to \cite{MS8, MA, MS10}, applying Volterra's inverse operator, the boundary condition \begin{equation} u(x,t) =-\int_0^{t}g(t-s) \Big(\mu \frac{ \partial u}{\partial \nu }+(\mu +\lambda ) (\operatorname{div}u) \nu \Big) (s) ds,\quad \text{on }\Gamma _1\times [0,+\infty ), \label{2.1} \end{equation} can be transformed into \[ \mu \frac{\partial u}{\partial \nu }+(\mu +\lambda ) ( \operatorname{div}u) \nu =-\frac{1}{g(0) }(u_{t}+k\ast u_{t}) ,\quad \text{on }\Gamma _1\times [ 0,+\infty ), \] where * denotes the convolution product \[ (\varphi \ast \psi )(t)=\int_0^{t}\varphi (t-s)\psi (s)\,ds, \] and $k$ is the resolvent kernel of $(-g'/g(0))$ which satisfies \[ k+\frac{1}{g(0) }(g'\ast k) =-\frac{1}{g(0) }g'. \] Taking $\ \eta =1/g(0)$, we arrive at \begin{equation} \mu \frac{\partial u}{\partial \nu }+(\mu +\lambda ) ( \operatorname{div}u) \nu =-\eta (u_{t}+k(0)u-k(t)u_0+k'\ast u),\quad\text{on } \Gamma _1\times [ 0,+\infty ). \label{2.2} \end{equation} Then, we will use the boundary relation \eqref{2.2} instead of the fourth equation in \eqref{1.3}. Let us define \begin{gather*} (\varphi \circ \psi ) (t) =\int_0^{t}\varphi (t-s)| \psi (t) -\psi (s) | ^2ds, \\ (\varphi \Diamond \psi ) (t) =\int_0^{t}\varphi (t-s)(\psi (t) -\psi (s) ) ds. \end{gather*} By using H\^{o}lder's inequality, we have \begin{equation} | (\varphi \Diamond \psi ) (t) |^2 \leq \Big(\int_0^{t}| \varphi (s)| ds\Big)(| \varphi | \circ \psi ) (t). \label{1.5} \end{equation} \begin{lemma}[\cite{Mag}] If $\varphi, \psi \in C^{1}(\mathbb{R}^{+})$, then \begin{equation} (\varphi \ast \psi ) \psi _{t}=-\frac{1}{2}\varphi (t)| \psi (t)| ^2+\frac{1}{2}\varphi '\circ \psi -\frac{1}{2} \frac{d}{dt}\Big(\varphi \circ \psi -\Big(\int_0^{t}\varphi (s)ds\Big) | \psi (t)| ^2\Big) . \label{1.6} \end{equation} \end{lemma} Let us define \[ V=\{ v\in (H^{1}(\Omega ) ) : v=0\quad \text{on } \Gamma _0\} . \] The well-posedness of system \eqref{1.3} is presented in the following theorem, which can be proved, using the Galerkin method as in \cite{AND,CAVD} and the reference therein. \begin{theorem} Let $k\in W^{2,1}(\mathbb{R}^{+}) \cap W^{1,\infty }(\mathbb{R}^{+})$, $u_0\in ((H^2(\Omega ) )\cap V) ^n$, $\theta _0\in H_0^{1}(\Omega )$, $q_0\in (H^{1}(\Omega ) ) ^n$, and $u_1\in V^n$, with \begin{equation} \frac{\partial u_0}{\partial \nu }+\eta u_0=0\quad \text{on }\Gamma_1. \label{1.7} \end{equation} Then there exists a unique strong solution $u$ of system \eqref{1.3}, such that \begin{gather*} u \in C(\mathbb{R}^{+};(H^2(\Omega ) \cap V) ^n) \cap C^{1}(\mathbb{R}^{+};V^n) , \\ \theta \in C(\mathbb{R}^{+};H_0^{1}(\Omega ) ) \cap C^{1}(\mathbb{R}^{+};L^2(\Omega ) ) , \\ q \in C(\mathbb{R}^{+};(H^{1}(\Omega ) ) ^n) \cap C^{1}(\mathbb{R}^{+};(L^2(\Omega) ) ^n) . \end{gather*} \end{theorem} \section{Decay of solutions} In this section we discuss the asymptotic behavior of the solutions of system \eqref{1.3} when the resolvent kernel $k$ satisfies the assumption \begin{itemize} \item[(B1)] $k:\mathbb{R}^{+}\to \mathbb{R}^{+}$ is a $C^2$ function such that \[ k(0)>0,\quad \lim_{t\to \infty }k(t)=0,\quad k'(t)\leq 0, \] and there exists a positive function $H\in C^{1}(\mathbb{R}^{+})$, with $H(0)=0$, and $H$ is linear or strictly increasing and strictly convex $C^2$ function on $(0,r]$, $r<1$, such that \[ k''(t)\geq H(-k'(t)),\quad \forall t>0. \] \end{itemize} It is a routine procedure to define the first-order energy of system \eqref{1.3} by (see Lemma \ref{lem3.2} below). \begin{equation} \begin{aligned} E_1(t) &= \frac{1}{2}\int_{\Omega }\big[ | u_{t}| ^2+\mu | \nabla u| ^2+(\mu +\lambda ) (\operatorname{div}u) ^2 +c\theta ^2+\tau _0q^2\big] dx \\ &\quad -\frac{\eta }{2}\int_{\Gamma _1}(k'\circ u)(t)d\Gamma _1+ \frac{\eta }{2}\int_{\Gamma _1}k(t) | u|^2d\Gamma _1. \end{aligned} \label{3.3} \end{equation} Now, we differentiate \eqref{1.3}, with respect to $t$, to obtain \begin{equation} \begin{gathered} u_{ttt}-\mu \Delta u_{t}-(\mu +\lambda ) \nabla ( \operatorname{div}u_{t}) +\beta \nabla \theta _{t}=0 \quad \text{in }\Omega \times (0,+\infty ) \\ c\theta _{tt}+\kappa \operatorname{div}q_{t}+\beta \operatorname{div}u_{tt}=0 \quad \text{in }\Omega \times (0,+\infty ) \\ \tau _0q_{tt}+q_{t}+\kappa \nabla \theta _{t}=0 \quad \text{in }\Omega \times (0,+\infty ) \end{gathered} \label{3.4} \end{equation} and the boundary condition \eqref{2.2} to obtain \begin{equation} \mu \frac{\partial u_{t}}{\partial \nu }+(\mu +\lambda ) ( \operatorname{div}u_{t}) \nu =-\eta (u_{tt}+k(0)u_{t}+k'\ast u_{t}) ,\quad\text{on }\Gamma _1\times \mathbb{R}^{+}. \label{3.5} \end{equation} Consequently, similar computations yield the second-order energy of system \eqref{1.3}: \begin{align*} E_2(t) &= \frac{1}{2}\int_{\Omega }\big[ | u_{tt}| ^2+\mu | \nabla u_{t}| ^2+(\mu +\lambda ) (\operatorname{div}u_{t}) ^2 +c\theta _{t}^2+\tau_0q_{t}^2\big] dx \\ &\quad -\frac{\eta }{2}\int_{\Gamma _1}(k'\circ u_{t})(t)d\Gamma _1+ \frac{\eta }{2}\int_{\Gamma _1}k(t) |u_{t}| ^2d\Gamma _1. \end{align*} \begin{theorem}\label{thm3.1} Given $(u_0,u_1,\theta _0,q_0) \in (H^2(\Omega ) \cap V) ^n\times V^n\times H_0^{1}(\Omega ) \times (H^{1}(\Omega )) ^n$, we assume that {\rm(A1)} and {\rm (B1)} hold. Then there exist positive constants $c_1$, $c_2$, $k_1$, $k_2$, $k_3$, $\varepsilon _0$ and $t_1$ such that: (I) In the special case $H(t) =ct^{p}$, where $1\leq p<3/2$, the solution of \eqref{1.3} satisfies \begin{equation} E_1(t) \leq \Big(\frac{c_1+c_2\int_{t_1}^{t}[ k(s) \int_{\Gamma _1}| u_0| ^2d\Gamma _1] ^{2p-1}ds}{t}\Big) ^{\frac{1}{2p-1}}-\frac{\eta }{2}\Big( \int_{\Gamma _1}| u_0| ^2d\Gamma _1\Big) \int_{t}^{\infty }k^2(s) ds \label{solution1} \end{equation} for all $t\geq t_1$. (II) In the general case, the solution of \eqref{1.3} satisfies \begin{equation} \label{solution1b} \begin{aligned} E_1(t) &\leq k_1H_1^{-1}\Big(\frac{k_2+k_3( \int_{\Gamma _1}| u_0| ^2d\Gamma _1) \int_{t_1}^{t}H_0(k(s) ) ds}{t}\Big) \\ &\quad -\frac{\eta }{2}\Big(\int_{\Gamma _1}| u_0| ^2d\Gamma _1\Big) \int_{t}^{\infty }k^2(s) ds\quad \text{for all } t\geq t_1, \end{aligned} \end{equation} where \[ H_1(t) =tH_0'(\varepsilon _0t) ,\quad H_0(t) =H(D(t) ), \] provided that $D$ is a positive $C^{1}$ function, with $D(0) =0$, for which $H_0$ is strictly increasing and strictly convex $C^2$ function on $(0,r]$ and \begin{equation} \int_0^{+\infty }\frac{-k'(s) }{H_0^{-1}(k''(s) ) }ds<+\infty . \label{2.4} \end{equation} \end{theorem} \subsection*{Remarks} \textbf{1.} If $u_0=0$ on $\Gamma _1$, we then obtain the results in Mustafa \cite{Mus}. \textbf{2.} If $\int_0^{\infty }H_0(k(s) )ds<+\infty $, then \eqref{solution1b} reduces to \[ E_1(t) \leq k_1H_1^{-1}(\frac{c}{t}) -\frac{ \eta }{2}\Big(\int_{\Gamma _1}| u_0| ^2d\Gamma _1\Big) \int_{t}^{\infty }k^2(s) ds, \] which clearly shows that $\lim_{t\to \infty}E_1(t) =0$, in this case. \textbf{3.} The usual decay rate estimate, already proved for $k$ satisfying $k''\geq d(-k')^{p}$, $1\leq p<3/2$, is a special case of our result. We will provide a ``simpler'' proof for this special case. \textbf{4.} The condition $k''\geq d(-k')^{p}$, $1\leq p<3/2$ assumes $-k'(t)\leq \omega e^{-dt}$ when $p=1$ and $-k'(t)\leq \omega /t^{\frac{1}{p-1}}$ when $1
1$. Therefore, an explicit rate of decay can be obtained by Theorem \ref{thm3.1}. The function $H_0(t)=H(t^{\alpha })$ has derivative \[ H_0'(t)=\frac{\alpha t^{\alpha -1}[1+\ln (1/t^{\alpha })]}{2[\ln (1/t^{\alpha })]^2}. \] Then, we do some direct calculations and use \eqref{solution1b} to deduce that \begin{align*} E_1(t) &\leq k_1\Big(\frac{k_2+k_3\big(\int_{\Gamma _1}| u_0| ^2d\Gamma _1\big) \int_{t_1}^{t}H_0(k(s) ) ds}{t}\Big) ^{1/(2\alpha )}\\ &\quad -\frac{\eta }{2}\Big(\int_{\Gamma _1}| u_0| ^2d\Gamma _1\Big) \int_{t}^{\infty }k^2( s) ds, \quad \forall t \geq t_1, \end{align*} for any $\alpha >1$, where $H_0(k(s) ) =\frac{(k(s) ) ^{\alpha }}{2\ln (1/(k(s) ) ^{\alpha }) }$. Therefore, taking $\alpha \to 1$, the energy decays at the following rate \begin{equation} \begin{aligned} E_1(t) &\leq k_1\Big(\frac{k_2+k_3(\int_{\Gamma_1}| u_0| ^2d\Gamma _1) \int_{t_1}^{t}H(k(s) ) ds}{t}\Big) ^{1/2}\\ &\quad -\frac{\eta }{2}\Big(\int_{\Gamma _1}| u_0| ^2d\Gamma _1\Big) \int_{t}^{\infty }k^2(s) ds, \quad \forall t \geq t_1. \end{aligned} \label{2.5} \end{equation} If $\int_0^{\infty }H(k(s) ) ds<+\infty $, then equation \eqref{2.5} reduces to \[ E_1(t) \leq \frac{C}{t^{\frac{1}{2}}}-\frac{\eta }{2}\Big( \int_{\Gamma _1}| u_0| ^2d\Gamma _1\Big) \int_{t}^{\infty }k^2(s) ds,\quad \forall t\geq t_1. \] \textbf{5.} The well-known Jensen's inequality will be of essential use in establishing our main result. If $F$ is a convex function on $[ a,b]$, $f:\Omega \to [ a,b] $ and $h$ are integrable functions on $\Omega , h(x) \geq 0$, and $\int_{\Omega }h(x)dx=k>0$, then Jensen's inequality states that \[ F\Big[ \frac{1}{k}\int_{\Omega }f(x) h(x) dx\Big] \leq \frac{1}{k}\int_{\Omega }F[ f(x)] h(x)dx. \] \textbf{6.} As in \cite{Mus} and since $\lim_{t\to \infty }k(t)=0$, $\lim_{t\to +\infty }(-k'(t) )$ cannot be equal to a positive number, and so it is natural to assume that $\lim_{t\to +\infty }(-k'(t) ) =0$, in the same way, we deduce that $\lim_{t\to +\infty }k''(t) =0.$ Hence there is $t_1>0$ large enough such that $k'(t_1)<0$ and \begin{equation} \max \{ k(t) ,-k'(t),k''(t)\} <\min \{ r,H(r) ,H_0(r) \} ,\quad \forall t\geq t_1. \label{2.6} \end{equation} As $k'$ is nondecreasing, $k'(0) <0$ and $k'(t_1) <0$, then $k'(t) <0$ for any $t\in [ 0,t_1] $ and \[ 0<-k'(t_1)\leq -k'(t)\leq -k'(0),\quad \forall t\in [ 0,t_1] . \] Therefore, since $H$ is a positive continuous function, we have \[ a\leq H(-k'(t)) \leq b,\quad \forall t\in [ 0,t_1] , \] for some positive constants $a$ and $b$. Consequently, for all $t\in [0,t_1] $, \[ k''(t) \geq H(-k'(t)) \geq a=\frac{a}{k'(0) }k'(0) \geq \frac{a}{k'(0) }k'(t) \] which gives \begin{equation} k''(t) \geq d(-k'(t)) ,\quad \forall t\in [ 0,t_1] , \label{2.7} \end{equation} for some positive constant $d$. \begin{lemma} \label{lem3.2} Under the assumptions of Theorem \ref{thm3.1}, the energies of the solution of \eqref{1.3} satisfy \begin{gather} \begin{aligned} E_1'(t) &\leq -\int_{\Omega }| q|^2dx-\frac{\eta }{2}\int_{\Gamma _1}| u_{t}| ^2d\Gamma _1+\frac{\eta }{2}k'(t) \int_{\Gamma_1}| u| ^2d\Gamma _1 \\ &\quad -\frac{\eta }{2}\int_{\Gamma _1}(k''\circ u) (t) d\Gamma _1+\frac{\eta }{2}k^2(t) \int_{\Gamma _1}| u_0| ^2d\Gamma _1. \end{aligned} \label{3.7} \\ E_2'(t) \leq -\int_{\Omega }| q_{t}| ^2dx\leq 0. \label{3.8} \end{gather} \end{lemma} \begin{proof} Multiplying \eqref{1.3}$_1$ by $u_{t}$, \eqref{1.3}$_2$ by $\theta $, and \eqref{1.3}$_3$ by $q$ and integrating over $\Omega $, using integration by parts, the boundary conditions \eqref{2.2} and \eqref{1.6}, one can easily find that \begin{align*} E_1'(t) &= -\int_{\Omega }| q|^2dx-\eta \int_{\Gamma _1}| u_{t}| ^2d\Gamma _1+ \frac{\eta }{2}k'(t) \int_{\Gamma _1}|u| ^2d\Gamma _1 \\ &\quad -\frac{\eta }{2}\int_{\Gamma _1}(k''\circ u) (t) d\Gamma _1+\eta \int_{\Gamma _1}k(t) (u_0.u_{t}) d\Gamma _1 \end{align*} Young's inequality then yields \[ \int_{\Gamma _1}k(t) (u_0.u_{t}) d\Gamma _1\leq \frac{1}{2}\int_{\Gamma _1}| u_{t}| ^2d\Gamma _1+\frac{1}{2}k^2(t) \int_{\Gamma _1}| u_0| ^2d\Gamma _1, \] and consequently, we obtain \eqref{3.7} for strong solutions. Estimate \eqref{3.8} is established in a similar way using \eqref{3.4} and \eqref{3.5}. \end{proof} \begin{remark} \label{rmk3.3} \rm If $u_0=0$ on $\Gamma _1$, then $E_1'(t) \leq 0$, hence $E_1(t) \leq E_1(0)$. If $u_0\neq 0$ on $\Gamma _1$, then \begin{equation} E_1(t) \leq E_1(0) +\frac{\eta }{2}\Big( \int_{\Gamma _1}| u_0| ^2d\Gamma _1\Big) \int_0^{t}k^2(s) ds\leq A, \label{4.9} \end{equation} for some $A>0$. \end{remark} \begin{lemma} \label{lem3.4} Under the assumptions {\rm (A1)} and {\rm (B1)}, the solution of \eqref{1.3} satisfies: for any $\epsilon >0$, \begin{equation} \begin{aligned} &\frac{d}{dt}\int_{\Omega }u_{t}.[ M+(n-1) u] dx \\ &\leq -\int_{\Omega }| u_{t}| ^2dx-\mu \int_{\Omega }| \nabla u| ^2dx-\frac{\mu +\lambda }{2}\int_{\Omega }(\operatorname{div}u) ^2dx+C\int_{\Omega }| \nabla \theta | ^2dx \\ &\quad -\frac{\mu \delta }{2}\int_{\Gamma _1}| \nabla u| ^2d\Gamma _1-(\mu +\lambda ) \delta \int_{\Gamma _1}( \operatorname{div}u) ^2d\Gamma _1+C(1+\frac{1}{\epsilon }) \int_{\Gamma _1}| u_{t}| ^2d\Gamma _1 \\ &\quad +Ck^2(t) \int_{\Gamma _1}| u| ^2d\Gamma _1-\frac{C}{\epsilon }\int_{\Gamma _1}(k'\circ u) (t) d\Gamma _1 \\ &\quad +\epsilon \int_{\Gamma _1}| u| ^2d\Gamma _1+C(1+\frac{1}{\epsilon }) k^2(t) \int_{\Gamma _1}| u_0| ^2d\Gamma _1, \end{aligned} \label{4.10} \end{equation} where \[ M=(M_1,M_2,...,M_{n})^{T},\quad \text{such that } M_{i} =2m.\nabla u^{i}, \] and $C$ is a ``generic'' positive constant independent of $\epsilon$. \end{lemma} For a proof of the above lemma, see \cite{MAZ,Mus}. \section{Proof of main results} In this section we prove our main result. \begin{proof}[Proof of Theorem \ref{thm3.1}] Taking $E(t) =E_1(t) +E_2(t) $, we define \begin{equation} L(t) =NE(t) +\int_{\Omega }u_{t}.[ M+(n-1) u] dx. \label{4.21} \end{equation} From \eqref{3.7}, \eqref{3.8}, and \eqref{4.10}, we obtain \begin{align*} L'(t) &\leq -N\int_{\Omega }| q|^2dx-N\int_{\Omega }| q_{t}| ^2dx-\frac{N\eta }{2} \int_{\Gamma _1}| u_{t}| ^2d\Gamma _1-\frac{N}{2} \eta \int_{\Gamma _1}(k''\circ u) (t) d\Gamma _1 \\ &\quad -\int_{\Omega }| u_{t}| ^2dx-\mu \int_{\Omega }| \nabla u| ^2dx-\frac{\mu +\lambda }{2}\int_{\Omega }(\operatorname{div}u) ^2dx \\ &\quad -\frac{\mu \delta }{2}\int_{\Gamma _1}| \nabla u| ^2d\Gamma _1-(\mu +\lambda ) \delta \int_{\Gamma _1}( \operatorname{div}u) ^2d\Gamma _1+C\int_{\Gamma _1}| u_{t}| ^2d\Gamma _1 \\ &\quad +\frac{C}{\epsilon }k^2(t) \int_{\Gamma _1}| u| ^2d\Gamma _1-\frac{C}{\epsilon }\int_{\Gamma _1}( k'\circ u) (t) d\Gamma _1+\epsilon \int_{\Gamma _1}| u| ^2d\Gamma _1+C\int_{\Omega }| \nabla \theta | ^2dx \\ &\quad +C(1+\frac{1}{\epsilon }) k^2(t) \int_{\Gamma _1}| u_0| ^2d\Gamma _1+N\frac{\eta }{2} k^2(t) \int_{\Gamma _1}| u_0| ^2d\Gamma _1. \end{align*} By using \eqref{1.3}$_3$ and \begin{equation} \int_{\Gamma _1}| u| ^2d\Gamma _1 \leq c_0\int_{\Omega }| \nabla u| ^2dx \label{4} \end{equation} and $\int_{\Omega }| \theta | ^2dx\leq c_{p}\int_{\Omega }| \nabla \theta | ^2dx$, for some positive constants $c_0$ and $c_{p}$, we arrive at \begin{equation} \begin{aligned} L'(t) &\leq -(N-C_1) \int_{\Omega}| q| ^2dx-(N-C_1) \int_{\Omega }| q_{t}| ^2dx-\int_{\Omega }|u_{t}| ^2dx\\ &\quad -\int_{\Gamma _1}k(t) |u| ^2d\Gamma _1 -\Big(\mu -\epsilon c_0-\frac{C}{\epsilon }k^2(t) -c_0k(t) \Big) \int_{\Omega }| \nabla u|^2dx \\ &\quad -\frac{\mu +\lambda }{2}\int_{\Omega }(\operatorname{div}u) ^2dx -\big(\frac{N}{2}\eta -C\big) \int_{\Gamma _1}| u_{t}|^2d\Gamma _1 \\ &\quad -C\int_{\Gamma _1}(k'\circ u) (t) d\Gamma _1-\int_{\Omega }| \theta | ^2dx \\ &\quad +\big[ \frac{N}{2}\eta +C(1+\frac{1}{\epsilon }) \big] k^2(t) \int_{\Gamma _1}| u_0|^2d\Gamma _1. \end{aligned} \label{3.22} \end{equation} At this point, we choose our constants carefully. We first, fix $\epsilon $ so small that $\epsilon c_0=\frac{1}{2}\mu $ and pick $N$ large enough so that $L\sim E$, \[ a_1=\frac{N}{2}\eta -C\geq 0\quad \text{and}\quad a_2=N-C_1>0. \] Thus, \eqref{3.22} simplifies to \begin{align*} L'(t) &\leq -\int_{\Omega }| u_{t}| ^2dx-\Big(\frac{\mu }{2}-\frac{C}{\epsilon }k^2(t) -c_0k(t) \Big) \int_{\Omega }| \nabla u|^2dx \\ &\quad -\frac{\mu +\lambda }{2}\int_{\Omega }(\operatorname{div}u) ^2dx -\int_{\Gamma _1}k(t) | u| ^2d\Gamma _1-a_2\int_{\Omega }| q| ^2dx-\int_{\Omega }| \theta | ^2dx \\ &\quad -C\int_{\Gamma _1}(k'\circ u) (t) d\Gamma _1+Ck^2(t) \int_{\Gamma _1}| u_0| ^2d\Gamma _1. \end{align*} Using the fact that $\lim_{t\to +\infty }k(t) =0$, we obtain \begin{equation} L'(t) \leq -mE_1(t) +Ck^2( t) \int_{\Gamma _1}| u_0| ^2d\Gamma _1-c\int_{\Gamma _1}(k'\circ u) (t) d\Gamma _1,\quad \forall t\geq t_1, \label{3.26} \end{equation} for some $t_1$ large enough and some positive constants $m$ and $c$. Now we use \eqref{2.7}, and \eqref{3.7} to conclude that, for any $t\geq t_1$, \begin{equation} \begin{aligned} &-\int_0^{t_1}k'(s)\int_{\Gamma _1}| u( t) -u(t-s) | ^2d\Gamma _1ds \\ &\leq \frac{1}{d}\int_0^{t_1}k''(s) \int_{\Gamma _1}| u(t) -u(t-s) | ^2d\Gamma _1ds \\ &\leq -c[ E_1'(t) -\frac{\eta }{2}k^2( t) \int_{\Gamma _1}| u_0| ^2d\Gamma _1] . \end{aligned} \label{3.9} \end{equation} Next we take $F(t) =L(t) +cE_1(t) $, which is clearly equivalent to $E(t) $, and use \eqref{3.26} and \eqref{3.9}, to obtain: for all $t\geq t_1$ with some new positive constant $C>0$, \begin{equation} F'(t) \leq -mE_1(t) +Ck^2(t) \int_{\Gamma _1}| u_0| ^2d\Gamma _1-c\int_{t_1}^{t}k'(s)\int_{\Gamma _1}| u( t) -u(t-s) | ^2d\Gamma _1ds. \label{3.10} \end{equation} Similarly to \cite{Mus} we consider two cases: \noindent \textbf{(I)} $H(t)=ct^{p}$ and $1\leq p<3/2$: If $ 1
0$,
\begin{align*}
&\Big(\Big[ F(t) +\frac{\eta }{2}\Big(\int_{\Gamma
_1}| u_0| ^2d\Gamma _1\Big) \int_{t}^{\infty }k^2(s) ds\Big] \\
&\times \Big[ E_1(t)+\frac{\eta }{2}(
\int_{\Gamma _1}| u_0| ^2d\Gamma _1)
\int_{t}^{\infty }k^2(s) ds\Big] ^{2p-2}\Big) ' \\
&\leq -m\Big[ E_1(t) +\frac{\eta }{2}\Big(\int_{\Gamma
_1}| u_0| ^2d\Gamma _1\Big) \int_{t}^{\infty
}k^2(s) ds\Big] ^{2p-1}\\
&\quad +2\varepsilon \Big[ E_1\Big(
t\Big) +\frac{\eta }{2}\Big(\int_{\Gamma _1}|
u_0| ^2d\Gamma _1\Big) \int_{t}^{\infty }k^2(s) ds\Big] ^{2p-1} \\
&\quad +C_{\varepsilon }\Big[ -E_1'(t)+\frac{\eta }{2}k^2(
t) \Big(\int_{\Gamma _1}| u_0| ^2d\Gamma_1\Big) \Big] +C[ k(t)
\int_{\Gamma _1}|u_0| ^2d\Gamma _1] ^{2p-1}.
\end{align*}
Consequently, for $2\varepsilon