\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 205, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/205\hfil Uniformly finally bounded solutions] {Uniformly finally bounded solutions to systems of differential equations with variable structure and impulses} \author[K. G. Dishlieva, A. B. Dishliev\hfil EJDE-2014/205\hfilneg] {Katya G. Dishlieva, Angel B. Dishliev } % in alphabetical order \address{Katya G. Dishlieva \newline Faculty of Applied Mathematics and Informatics\\ Technical University of Sofia, Bulgaria} \email{kgd@tu-sofia.bg} \address{Angel B. Dishliev \newline Department of Mathematics\\ University of Chemical Technology and Metallurgy - Sofia, Bulgaria} \email{dishliev@uctm.edu} \thanks{Submitted July 17, 2013. Published October 2, 2014.} \subjclass[2000]{34A37, 65L05} \keywords{ Variable structure; impulses; switching functions; \hfill\break\indent uniformly finally bounded solutions} \begin{abstract} We study nonlinear non-autonomous systems of ordinary differential equations with variable structure and impulses. The consecutive changes on right-hand sides of this system and the impulsive effects on the solution of the corresponding initial problem take place simultaneously at the moment when the solution cancels the switching functions. We find sufficient conditions for the uniform final boundedness of solutions. These results are obtained using a suitable variation of the Lyapunov second method. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} Gurgula and Perestyuk are the first who apply the Lyapunov second method to study the solutions of impulsive equations. In \cite{g2}, they use the ``classical'' continuous Lyapunov functions to study the stability of the ``zero solution'' of such equations. Discontinuous Lyapunov functions were introduced by Bainov and Simeonov \cite{b1}. The solutions qualities of one special class differential equations with variable structure and impulses are studied for the first time in \cite{m1}. The equations, studied in this paper were introduced in \cite{c2,d1}. There are numerous applications of equations with impulsive effects. We will point the articles \cite{a1,a3,b2,d1,d2,n1,n2,m2,p2,s1,s2,w1}. The applications of differential equations with variable structure are mainly in the control theory and engineering practice: \cite{a2,d1,f1,g1,h1,p1}. The main object of this article is to study the following initial problem for nonlinear non-autonomous systems of ordinary differential equations with variable structure and impulses at non-fixed moments: \begin{gather} \frac{dx}{dt}=f_i(t,x),\quad\text{if }\varphi_i\big(x(t)\big)\neq0,\; t_{i-1}0$; \item $B_{\delta}^c(x_0)=\big\{x\in \mathbb{R}^n: \|x-x_0\|\geq\delta\big\}=\mathbb{R}^n\backslash B_{\delta}(x_0)$. \end{itemize} \begin{definition} \label{def1} \rm We say that the solution of system of differential equations with variable structure and impulses \eqref{e1}--\eqref{e3} is: \begin{itemize} \item bounded, if $(\forall t_0\in \mathbb{R}^+)(\forall\alpha=const>0) \big(\exists\beta=\beta(t_0,\alpha)>0\big)$ such that $$ \big(\forall x_0\in B_{\alpha}(x_0)\big) \Rightarrow \big\|x(t;t_0,x_0)\big\|<\beta,\ t\geq t_0; $$ \item uniformly bounded, if $(\forall t_0\in \mathbb{R}^+)(\forall\alpha={\rm const}>0) \big(\exists\beta=\beta(\alpha)>0\big)$ such that $$\big(\forall x_0\in B_{\alpha}(x_0)\big) \Rightarrow\big\|x(t;t_0,x_0)\big\|<\beta,\ t\geq t_0; $$ \item quasi-uniformly finally bounded, if $(\exists\beta=const>0): (\forall\alpha=const>0)\big (\exists T=T(\alpha)>0\big)$ such that $$ \big(\forall x_0\in B_{\alpha}(x_0)\big) \Rightarrow\big\|x(t;t_0,x_0)\big\|<\beta,\ t\geq t_0+T; $$ \item uniformly finally bounded, if the solutions are uniformly bounded and quasi-uniformly finally bounded. \end{itemize} \end{definition} \begin{definition} \label{def2} \rm We say that a sequence of scalar piecewise continuous Lyapunov functions $$ \big\{V_i,\ V_i:\mathbb{R}^+\times \mathbb{R}^n\to\mathbb{R}^+,\; i=1,2,\dots \big\}, $$ corresponds to the system of differential equations with variable structure and impulses \eqref{e1}--\eqref{e3} if: \begin{itemize} \item[(1)] $V_i\in C[\mathbb{R}^+\times \mathbb{R}^n\backslash\Phi_i,\mathbb{R}^+]$, $i=1,2,\dots$; \item[(2)] $V_i(t,0)=0,\ t\in \mathbb{R}^+,\ i=1,2,\dots$; \item[(3)] For every point $(t,x_{\Phi_i})\in \mathbb{R}^+\times\Phi_i$ and for each $i=1,2,\dots $, there exist the limits: \begin{gather*} \lim_{x\to x_{\Phi_i},\Phi_i(x)<0,}V_i(t,x)=V_i(t,x_{\Phi_i}-0)=V_i(t,x_{\Phi_i}),\\ \lim_{x\to x_{\Phi_i},\Phi_i(x)>0,}V_i(t,x)=V_i(t,x_{\Phi_i}+0). \end{gather*} \end{itemize} \end{definition} We note that in general, $$ V_i(t,x_{\Phi_i})=V_i(t,x_{\Phi_i}-0)\neq V_i(t,x_{\Phi_i}+0). $$ \begin{definition} \label{def3}\rm Let $\{V_i:\; i=1,2,\dots \}$ be a sequence of scalar piecewise continuous Lyapunov functions. Then for every point $(t,x)\in \mathbb{R}^+\times \mathbb{R}^n\backslash \Phi_i$ and for each $i=1,2,\dots $, we define the derivative of $V_i$ at point $(t,x)$ with respect to system \eqref{e1}--\eqref{e3}, as follows: $$ \dot{V}_i(t,x)=\dot{V}_{i,\eqref{e1}-\eqref{e3}}(t,x) =\lim_{h\to+0}\frac{1}{h}\big(V_i(t+h,x+hf_i(t,x))-V_i(t,x)\big). $$ \end{definition} \begin{remark} \label{rmk1}\rm It can be shown that for $i=1,2,\dots $ and for every point $(t,x)=\big(t,x(t;t_0,x_0)\big)\in[t_0,\infty)\times(\mathbb{R}^n\backslash \Phi_i)$, it holds \begin{align*} \dot{V}(t,x) &= D_{\eqref{e1}-\eqref{e3}}^+V_i\big(t,x(t;t_0,x_0)\big) \\ &= \limsup_{h\to+0}\frac{1}{h}\Big(V_i\big(t+h,x(t+h;t_0,x_0)\big) -V_i\big(t,x(t;t_0,x_0)\big)\Big). \end{align*} In other words, the derivative of each Lyapunov function $V_i,\ i=1,2,\dots $, at every point $(t,x)=\big(t,x(t;t_0,x_0)\big)$ with respect to the system of differential equations \eqref{e1}--\eqref{e3} coincides with the upper right Dini derivative at the same point with respect to the solution of system under consideration. \end{remark} We shall use the following class of scalar functions $$ K=\big\{a\in C[\mathbb{R}^+,\mathbb{R}^+],\ a\uparrow\uparrow,\ a(0)=0\big\},$$ i.e. $a$ is a strictly monotonically increasing function and $a(0)=0$. We use the following conditions: \begin{itemize} \item[(H1)] The functions $f_i$ belong to $C[\mathbb{R}^+\times \mathbb{R}^n,\mathbb{R}^n]$, $i=1,2,\dots$; \item[(H2)] There exist the constants $C_{f_i}>0$ such that $$ \big(\forall(t,x)\in \mathbb{R}^+\times \mathbb{R}^n\big) \Rightarrow\|f_i(t,x)\|\leq C_{f_i},\ i=1,2,\dots ; $$ \item[(H3)] The functions $\varphi_i$ belong to $C^1[\mathbb{R}^n,\mathbb{R}]$, $i=1,2,\dots$; \item[(H4)] There exist constants $C_{\operatorname{grad}\varphi_i}>0$ such that $$ (\forall x\in \mathbb{R}^n)\Rightarrow\big\|\operatorname{grad}\varphi_i(x)\big\| \leq C_{\operatorname{grad}\varphi_i},\quad i=1,2,\dots ; $$ \item[(H5)] The functions $I_i$ belong to $C[\mathbb{R}^n,\mathbb{R}^n]$, $i=1,2,\dots$; \item[(H6)] There exist the constants $C_{\varphi_{i+1}(Id+I_i)}>0$ such that $$ (\forall x\in \Phi_i)\Rightarrow\big|\varphi_{i+1}\big((Id+I_i)(x)\big)\big| =\big|\varphi_{i+1}\big(x+I_i(x)\big)\big| \geq C_{\varphi_{i+1}(Id+I_i)},\ i=1,2,\dots; $$ \item[(H7)] The next inequalities are valid $$ \varphi_i\big((Id+I_{i-1})(x)\big)\cdot\big\langle \operatorname{grad}\varphi_i(x),f_i(t,x) \big\rangle<0,\quad (t,x)\in \mathbb{R}^+\times \mathbb{R}^n,\; i=1,2,\dots; $$ \item[(H8)] The series $$ \sum_{i=1}^{\infty}\frac{C_{\varphi_i(Id+I_{i-1})}}{C_{\operatorname{grad}\varphi_i}\cdot C_{f_i}} $$ diverges; \item[(H9)] There exist the constants $C_{\langle \operatorname{grad}\varphi_i,f_i\rangle}>0$ such that $$ \big(\forall(t,x)\in \mathbb{R}^+\times \mathbb{R}^n\big)\Rightarrow\big| \big\langle \operatorname{grad}\varphi_i(x),f_i(t,x)\big\rangle\big| \geq C_{\langle \operatorname{grad}\varphi_i,f_i\rangle},\ i=1,2,\dots ; $$ \item[(H10)] For every point $(t_0,x_0)\in \mathbb{R}^+\times \mathbb{R}^n$ and for each $i=1,2,\dots $, the solution of initial problem $$ \frac{dx}{dt}=f_i(t,x),\quad x(t_0)=x_0 $$ exists and it is unique for $t\geq t_0$; \item[(H11)] There exists constant $C_I>0$ such that $$ (\forall x\in \mathbb{R}^n)\Rightarrow\big\|I_i(x)\big\|\leq C_I,\quad i=1,2,\dots . $$ \end{itemize} \section{Preliminary results} \begin{theorem}[\cite{d3}] \label{thm1} Assume conditions {\rm (H1)--(H7)}. Then \begin{itemize} \item[(1)] If the trajectory $\gamma(t_0,x_0)$ of problem \eqref{e1}--\eqref{e4} meets consecutively the switching hypersurfaces $\Phi_i$ and $\Phi_{i+1}$, then the following estimate is valid for the switching moments $t_i$ and $t_{i+1}$: $$ t_{i+1}-t_i\geq\frac{C_{\varphi_{i+1}(Id+I_i)}}{C_{\operatorname{grad}\varphi_{i+1}} C_{f_{i+1}}},\quad i=1,2,\dots ; $$ \item[(2)] If the trajectory $\gamma(t_0,x_0)$ meets all the switching hypersurfaces $\Phi_i$, $i=1,2,\dots $, and condition (H8) is satisfied, then the switching moments increase indefinitely; i.e. $\lim_{i\to\infty}t_i=\infty$ is satisfied. \end{itemize} \end{theorem} \begin{remark} \label{rmk2} \rm If the following inequalities are satisfied \begin{gather*} 00$ such that \begin{itemize} \item[(2.1)] It is satisfied that $$ V_{i+1}\big(t+0,x+I_i(x)\big)=V_{i+1}\big(t,x+I_i(x)\big) \leq V_i(t,x),\; (t,x)\in \mathbb{R}^+\times\big(B_{\rho}^c(0)\cap\Phi_i\big), $$ for $i=1,2,\dots$; \item[(2.2)] It is satisfied that $$ \dot{V_i}(t,x)\leq0,\ (t,x)\in \mathbb{R}^+\times\big(B_{\rho}^c(0) \cap\Phi_i\big),\quad i=1,2,\dots . $$ \end{itemize} \end{itemize} Then function $V(t)=V\big(t,x(t;t_0,x_0)\big)$, defined in \eqref{e5}, is monotonically decreasing in every interval $(t_*,t^*)$, for which: $t_00$ such that \begin{itemize} \item[(2.1)] The functions $a,b\in K$ and constant $\rho>0$ correspond on the upper sequence of Lyapunov functions satisfy \begin{itemize} \item[(2.1.1)] $a(\|x\|)\leq V_i(t,x)\leq b(\|x\|)$, $(t,x)\in \mathbb{R}^+\times B_{\rho}^c(0)$, $i=1,2,\dots$, \item[(2.1.2)] $\lim_{u\to\infty}a(u)=\infty$; \end{itemize} \item[(2.2)] It is satisfied that \begin{align*} V_{i+1}\big(t+0,x+I_i(x)\big) &= V_{i+1}\big(t,x+I_i(x)\big)\\ &\leq V_{i+1}(t,x),\quad(t,x)\in \mathbb{R}^+\times\big(B_{\rho}^c(0) \cap\Phi_i\big),\quad i=1,2,\dots ; \end{align*} \item[(2.3)] It is satisfied that $$ \dot{V}_i(t,x)\leq0,\ (t,x)\in \mathbb{R}^+\times\big(B_{\rho}^c(0) \backslash \Phi_i\big),\quad i=1,2,\dots . $$ \end{itemize} \end{itemize} Then $$ (\forall\alpha=const\geq\rho+C_i>0)(\forall x_0\in B_{\alpha}(0)) \Rightarrow V(t)=V\big(t,x(t;t_0,x_0)\big)<\alpha(\beta),\ t\geq t_0, $$ where $\beta=\beta(\alpha)>a^{-1}\big(b(\alpha+C_I)\big)$. \end{theorem} \begin{proof} Let $\alpha$ be an arbitrary positive constant, satisfying the inequality $\alpha\geq\rho+C_I$. From the definition of constant $\beta$, it follows: $$ \alpha(\beta)>b(a+C_I)>a(\alpha+C_I)\ and\ \beta>\alpha+C_I. $$ Let $(t_0,x_0)\in \mathbb{R}^+\times B_{\alpha}(0)$. Assume that $$ (\exists t^*>t_0):\ V(t^*)=V\big(t^*,x(t^*;t_0,x_0)\big)\geq\alpha(\beta). $$ We will note that, it is possible for point $t^*$ to be a switching moment, i.e. to exist a number $k\in N$ such that $t^*=t_k$. From the assumptions made and the conditions of theorem, we obtain $$ b\big(\big\|x(t^*;t_0,x_0)\big\|\big)\geq V(t^*)\geq\alpha(\beta)>b(\alpha), $$ i.e. $\big\|x(t^*;t_0,x_0)\big\|>\alpha$. From the inequality above and having in mind that the solution of problem is continuous on the left (including the switching points), we conclude that there is a point $t_*$ such that \begin{gather} t_0b(\alpha), $$ from there we have $\big\|x(t_*;t_0,x_0)\big\|>\alpha,$ which contradicts \eqref{e8}. The proof is complete. \end{proof} \section{Main results} The main objective of this section is finding sufficient conditions for the uniform final boundedness of the solutions of system \eqref{e1}--\eqref{e3}. The conditions are obtained by using the sequences of peacewise continuous scalar Lyapunov functions. \begin{theorem} \label{thm6} Assume that {\rm (H1)--(H11)} and conditions (2.1) and (2.2) of Theorem \ref{thm5} are satisfied. Also assume that $$ \dot{V}_i(t,x)\leq -c(\|x\|),\quad (t,x)\in \mathbb{R}^+\times\big(B_{\rho}^c(0)\backslash\Phi_i\big),\; i=1,2,\dots , $$ where the function $c\in K$. Then the solutions of system of differential equations with variable structure and impulses \eqref{e1}--\eqref{e3} are uniformly finally bounded. \end{theorem} \begin{proof} According to Theorem \ref{thm5}, the solution of system \eqref{e1}--\eqref{e4} is uniformly bounded. More precisely, let: \begin{gather} \alpha\geq\rho; \label{e10}\\ \beta=\beta(\alpha)>\max\big\{\alpha+C_I,a^{-1}\big(b(\alpha)\big)\big\}; \label{e11}\\ (t_0,x_0)\in \mathbb{R}^+\times B_{\alpha}(0). \label{e12} \end{gather} Then \begin{equation} \big\|x(t;t_0,x_0)\big\|<\beta,\quad t\geq t_0. \label{e13} \end{equation} The statement, formulated above will be valid if we replace the inequalities \eqref{e10} and \eqref{e11} with \begin{gather} \alpha\geq\rho+C_I; \label{e14}\\ \beta=\beta(\alpha)>a^{-1}\big(b(\alpha+C_I)\big). \label{e15} \end{gather} Indeed, inequality \eqref{e10} obviously follows from \eqref{e14}. Using \eqref{e15}, we obtain \begin{gather} \beta>a^{-1}\big(b(\alpha+C_I)\big)>a^{-1}\big(b(\alpha)\big); \label{e16}\\ a(\beta)>b(\alpha+C_I)>a(\alpha+C_I)\Leftrightarrow\beta>\alpha+C_I. \label{e17} \end{gather} From these two inequalities, we obtain \eqref{e11}. Finally, by \eqref{e12}, \eqref{e14} and \eqref{e15} follows \eqref{e13}. Let $B=\rho+C_I$. We shall show that \begin{align*} &(\forall\alpha=const>\rho+C_I)\big(\exists T=T(\alpha)>0\big): \big(\forall x_0\in B_{\alpha}(0)\big) \\ &\Rightarrow\|x(t;t_0,x_0)\|<\beta,\ t\geq t_0+T, \end{align*} whence, it follows that the solutions of the system are quasi-uniformly finally bounded. There is $\beta>B$ and therefore $a(\beta)>a(B)$. Let $\nu$ be a natural number such that $$ \nu-1\leq\frac{a(\beta)-a(B)}{a(B)}<\nu. $$ Denote $$ \theta_k=t_0+k\frac{a(B)}{c(\rho)},\quad k=0,1,\dots ,\nu. $$ We will show that regardless of the the choice of initial point $x_0\in B_{\alpha}(0)$, the next estimates are valid: \begin{equation} \label{e18} V(t)=V\big(t,x(t;t_0,x_0)\big)<(\nu+1-k)a(B),\quad t\geq\theta_k,\; k=0,1,\dots ,\nu. \end{equation} We shall prove the statement by induction. For $k=0$, i.e. for $t\geq \theta_0=t_0$, using Theorem \ref{thm5} we have $$ V(t)=V\big(t,x(t;t_0,x_0)\big)