\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{mathrsfs} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 212, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/212\hfil Existence and exponential decay] {Existence and exponential decay of solutions for transmission problems with delay} \author[A. Benseghir \hfil EJDE-2014/212\hfilneg] {Aissa Benseghir} % in alphabetical order \address{Aissa Benseghir \newline Universit\'e Ferhat Abbas de S\'etif, Algeria} \email{aissa5919@yahoo.fr} \thanks{Submitted July 14, 2014. Published October 14, 2014.} \subjclass[2000]{35B37, 35L55, 74D05, 93D15, 93D20} \keywords{Wave equation; transmission problem; delay term; \hfill\break\indent exponential stability} \begin{abstract} In this article we consider a transmission problem in a bounded domain with a delay term in the first equation. Under suitable assumptions on the weight of the damping and the weight of the delay, we prove the existence and the uniqueness of the solution using the semigroup theory. Also we show the exponential stability of the solution by introducing a suitable Lyaponov functional. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this article, we consider the transmission problem with a delay term, \begin{equation} \label{Main_system_Trasmission} \begin{gathered} u_{tt}(x,t) -au_{xx}(x,t) +\mu _1u_{t}( x,t) +\mu _2u_{t}(x,t-\tau ) =0, \quad (x,t) \in \Omega \times (0,+\infty ), \\ v_{tt}(x,t) -bv_{xx}(x,t) =0, \quad (x,t)\in (L_1,L_2)\times (0,+\infty ), \end{gathered} \end{equation} where $00$ is the delay. System \eqref{Main_system_Trasmission} is subjected to the following boundary and transmission conditions: \begin{equation} \label{Boundary_Condition} \begin{gathered} u(0,t) =u(L_3,t) =0, \\ u(L_{i},t) =v(L_{i},t) , \quad i=1,2 \\ au_{x}(L_{i},t) =bv_{x}(L_{i},t), \quad i=1,2 \end{gathered} \end{equation} and the initial conditions: \begin{equation} \label{Initial_Conditions} \begin{gathered} u(x,0) =u_{0}(x),\quad u_{t}(x,0) =u_1(x) , \quad x\in \Omega, \\ u(x,t-\tau ) =f_{0}(x,t-\tau ) , \quad x\in \Omega,\;t\in [ 0,\tau ], \\ v(x,0) =v_{0}(x) ,\quad v_{t}(x,0) =v_1(x) , \quad x\in ] L_1,L_2[. \end{gathered} \end{equation} For $\mu_2=0$, system \eqref{Main_system_Trasmission}-\eqref{Initial_Conditions} has been investigated in \cite{BstRapo_2007}; for $\Omega=[0,L_1]$, the authors showed the well-posedness and exponential stability of the total energy. Mu\~noz Rivera and Oquendo \cite{RO00} studied the wave propagations over materials consisting of elastic and viscoelastic components; that is, \begin{equation} \begin{gathered} \rho _1u_{tt}-\alpha _1u_{xx}=0, \quad x\in ] 0,L_{0}[ ,\; t>0, \\ \rho _2v_{tt}-\alpha _2v_{xx}+\int_{0}^{t}g( t-s) v_{xx}(s) ds=0, \quad x\in ] L_{0},L[ ,\; t>0, \end{gathered} \label{Rivera_Oquendo} \end{equation} with the boundary and initial conditions: \begin{equation} \begin{gathered} u(0,t) =v(L,t), \quad u(L_{0},t) =v(L_{0},t) , \quad t>0, \\ \alpha _1u_{x}(L_{0},t) =\alpha _2v_{x}(L_{0},t) -\int_{0}^{t}g(t-s) v_{x}(s) ds, \quad t>0, \\ u(x,0) =u_{0}(x) ,\quad u_{t}(x,0)=u_1(x) , \quad x\in [0,L_0], \\ v(x,0) =v_{0}(x) ,\quad v_{t}(x,0)=v_1(x) , \quad x\in [L_0,L], \end{gathered} \label{Boundary_Rivera_Oquendo} \end{equation} where $\rho _1$ and $\rho _2$ are densities of the materials and $\alpha _1,\alpha _2$ are elastic coefficients and $g$ is positive exponential decaying function. They showed that the dissipation produced by the viscoelastic part is strong enough to produce an exponential decay of the solution, no matter how small is its size. Ma and Oquendo \cite{MaOquen_2006} considered transmission problem involving two Euler-Bernoulli equations modeling the vibrations of a composite beam. By using just one boundary damping term in the boundary, they showed the global existence and decay property of the solution. Marzocchi et al \cite{MRN021} investigated a 1-D semi-linear transmission problem in classical thermoelasticity and showed that a combination of the first, second and third energies of the solution decays exponentially to zero, no matter how small the damping subdomain is. A similar result has sheen shown by Messaoudi and Said-Houari \cite{MS09}, where a transmission problem in thermoelasticity of type III has been investigated. See also Marzocchi et al \cite{MRN022} for a multidimensional linear thermoelastic transmission problem. For $\mu_2>0$, problem \eqref{Main_system_Trasmission} has a delay term in the internal feedback. This delay term may destabilize system \eqref{Main_system_Trasmission}-\eqref{Initial_Conditions} that is exponentially stable in the absence of delays \cite{BstRapo_2007}. The effect of the delay in the stability of hyperbolic systems has been investigated by many people. See for instance \cite{Dat91,DLP86}. In \cite{NP06} the authors examined a system of wave equations with a linear boundary damping term with a delay: \begin{equation} \begin{gathered} u_{tt}-\Delta u=0, \quad x\in \Omega ,\; t>0 \\ u(x,t)=0, \quad x\in \Gamma _{0},\ t>0 \\ \frac{\partial u}{\partial \nu }(x,t)=\mu_1u_{t}(x,t)+ \mu_2u_{t}(x,t-\tau ) \quad x\in \Gamma _1,\ t>0 \\ u(x,0)=u_{0}(x), \quad x\in \Omega, \\ u_{t}(x,0)=u_1(x) \quad x\in \Omega, \\ u_{t}(x,t-\tau)=g_{0}(x,t-\tau) \quad x\in \Omega,\; \tau\in(0,1) \end{gathered} \label{delay_1} \end{equation} and under the assumption \begin{equation} \mu _2<\mu _1 \label{coeff} \end{equation} they proved that the solution is exponentially stable. On the contrary, if \eqref{coeff} does not hold, they found a sequence of delays for which the corresponding solution of \eqref{delay_1} will be unstable. We also recall the result by Xu et al \cite{XYL06}, where the authors proved the same result as in \cite{NP06} for the one space dimension by adopting the spectral analysis approach. The aim of this article is to study the well-posedness and asymptotic stability of system \eqref{Main_system_Trasmission}-\eqref{Initial_Conditions} provided that \eqref{coeff} is satisfied. The paper is organized as follows. The well-posedness of the problem is analyzed in Section \ref{Section_2} using the semigroup theory. In Section \ref{Section_3}, we prove the exponential decay of the energy when time goes to infinity. \section{Well-posedness of the problem}\label{Section_2} In this section, we prove the existence and the uniqueness of a local solution of system \eqref{Main_system_Trasmission}-\eqref{Initial_Conditions} by using the semi-group theory. So let us introduce the following new variable \cite{NP06} \begin{equation}\label{Change_Variables} y(x,\rho ,t)=u_{t}(x,t-\tau \rho ). \end{equation} Then, we obtain \begin{equation}\label{Third_Equation} \tau y_{t}(x,\rho ,t)+y_{\rho }(x,\rho ,t)=0,\quad \text{in }\Omega \times (0,1)\times (0,+\infty ). \end{equation} Therefore, problem \eqref{Main_system_Trasmission} is equivalent to \begin{equation}\label{Main_system_2} \begin{gathered} u_{tt}(x,t) -au_{xx}(x,t) +\mu _1u_t(x,t) +\mu _2y( x,1,t) =0, \quad (x,t)\in \Omega \times ] 0,+\infty [ \\ v_{tt}(x,t) -bv_{xx}(x,t) =0, \quad (x,t) \in ] L_1,L_2[ \times ] 0,+\infty [ \\ \tau y_{t}(x,\rho ,t)+y_{\rho }(x,\rho ,t)=0,\quad \text{in }\Omega \times (0,1)\times (0,+\infty ) \end{gathered} \end{equation} which together with \eqref{Initial_Conditions} can be rewritten as \begin{equation}\label{First_Order_system} \begin{gathered} U'=\mathscr{A}U, \\ U(0)=(u_{0},v_{0},u_1,v_1,f_{0}(.,-.\tau ))^{\text{T}}, \end{gathered} \end{equation} where the operator $\mathscr{A}$ is defined by \begin{equation} \mathscr{A}\begin{pmatrix} u \\ v \\ \varphi \\ \psi \\ y \end{pmatrix} =\begin{pmatrix} \varphi \\ \psi \\ au_{xx}-\mu _1\varphi-\mu _2y(.,1) \\ bv_{xx} \\ -\frac{1}{\tau }y_{\rho } \end{pmatrix} \label{e2.5} \end{equation} with the domain \begin{equation*} D(\mathscr{A})=\big\{ (u,v,\varphi ,\psi ,y)^{\text{T}}\in \mathscr{H}; y(.,0)=\varphi \text{ on }\Omega \big\} , \end{equation*} where \[ \mathscr{H}=\big\{\big(H^{2}(\Omega )\times H^2(L_1,L_2)\big)\cap X_\ast\big\} \times H^{1}(\Omega )\times H^{1}(L_1,L_2)\times L^{2}(0,1,H^{1}(\Omega )). \] Here the space $X_\ast$ is defined by \begin{align*} X_\ast=\Big\{& (u,v)\in H^1(\Omega)\cap H^{1}(L_1,L_2): u(0,t)=u(L_3,t)=0,\\ & u(L_{i},t) =v(L_{i},t),\; au_{x}(L_{i},t) =bv_{x}( L_{i},t),\; i=1,2 \Big\}. \end{align*} Now the energy space is defined by \begin{equation*} \mathscr{K}= X_\ast \times L^{2}(\Omega )\times L^{2}(L_1,L_2)\times L^{2}((\Omega )\times (0,1)). \end{equation*} Let \[ U=(u,v,\varphi ,\psi ,y)^{\text{T}},\quad \bar{U}=(\bar{u},\bar{v},\bar{ \varphi },\bar{\psi },\bar{y})^{\text{T}}. \] Then, for a positive constant $\zeta $ satisfying \begin{equation}\label{zeta} \tau\mu_2\leq \zeta\leq \tau(2\mu_1-\mu_2), \end{equation} we define the inner product in $\mathscr{K}$ as follows: \[ (U,\bar{U})_{\mathscr{K}} =\int_{\Omega }\{\varphi \bar{\varphi }+au_{x} \bar{u}_{x}\}\,dx+\int_{L_1}^{L_2}\{\psi \bar{\psi }+bv_{x} \bar{v_{x}}\}\,dx+\zeta \int_{\Omega }\int_{0}^{1}y(x,\rho )\bar{y} (x,\rho )\,d\rho\,dx\,. \] The existence and uniqueness result is stated as follows. \begin{theorem}\label{Theorem_1} For any $U_{0}\in \mathscr{K}$ there exists a unique solution $U\in C([0,+\infty [ ,\mathscr{K})$ of problem \eqref{First_Order_system}. Moreover, if $U_{0}\in D(\mathscr{A})$, then \[ U\in C([0,+\infty [ ,D(\mathscr{A}))\cap C^{1}([0,+\infty [ ,\mathscr{K}). \] \end{theorem} \begin{proof} To prove the result stated in Theorem \ref{Theorem_1}, we use the semigroup theory, that is, we show that the operator $\mathscr{A}$ generates a $C_{0}$-semigroup in $\mathscr{K}$. In this step, we concern ourselves to prove that the operator $\mathscr{A}$ is dissipative. Indeed, for $U=(u,v,\varphi ,\psi ,y)^{\text{T}}\in D(\mathscr{A})$, where $\varphi (L_2)=\psi (L_2)$ and $\zeta $ is a positive constant, we have \begin{equation} \label{Scalar_Product} \begin{aligned} (\mathscr{A}U,U)_{\mathscr{K}} &= a\int_{\Omega }u_{xx}\varphi \,dx+b\int_{L_1}^{L_2}v_{xx}\psi \,dx-\mu _1\int_{\Omega }\varphi^2 \,dx \\ &\quad -\mu _2\int_{\Omega }y(.,1)\varphi \,dx-\frac{\zeta }{\tau }\int_{\Omega }\int_{0}^{1}y(x,\rho )y_{\rho }(x,\rho )\,d\rho\,dx\\ &\quad +a\int_\Omega u_x\varphi_x\,dx+b\int_{L_1}^{L_2}v_x\psi_x\,dx\,. \end{aligned} \end{equation} Looking now at the last term of the right-hand side of \eqref{Scalar_Product}, we have \begin{equation} \label{y_identity} \begin{aligned} \zeta \int_{\Omega }\int_{0}^{1}y(x,\rho )y_{\rho }(x,\rho )\,d\rho\,dx &= \zeta \ \int_{\Omega }\frac{1}{2}\frac{\partial }{\partial \rho } y^{2}(x,\rho )\,d\rho\,dx \\ &= \frac{\zeta }{2}\ \int_{\Omega }(y^{2}(x,1)-y^{2}(x,0))\,dx. \end{aligned} \end{equation} Integrating by parts in \eqref{Scalar_Product}, keeping in mind the fact that $y(x,0,t)=\varphi(x,t)$ and using \eqref{y_identity}, we have from \eqref{Scalar_Product} \begin{equation} \label{Product_1} \begin{aligned} (\mathscr{A}U,U)_{\mathscr{K}} &= a[u_x\varphi]_{\partial\Omega} +b[v_x\psi]_{L_1}^{L_2} -\big(\mu _1-\frac{\zeta}{2\tau}\big)\int_{\Omega }\varphi^2 \,dx\\ &\quad -\mu _2\int_{\Omega }y(.,1)\varphi \,dx -\frac{\zeta }{2\tau }\int_{\Omega}y^{2}(x,1)\,dx. \end{aligned} \end{equation} Using Young's inequality, \eqref{Boundary_Condition}, and the equality $\varphi (L_2)=\psi (L_2)$, from \eqref{Product_1}, we obtain \begin{equation} \label{Product_2} \big(\mathscr{A}U,U\big)_{\mathscr{K}} \leq-\big(\mu _1-\frac{\zeta}{2\tau}-\frac{\mu_2}{2}\big) \int_{\Omega }\varphi^2 \,dx-\big(\frac{\zeta }{2\tau }-\frac{\mu_2}{2}\big) \int_{\Omega }y^{2}(x,1)\,dx. \end{equation} Consequently, using \eqref{zeta}, we deduce that $(\mathscr{A}U,U)_{\mathscr{K}}\leq 0$. Thus, the operator $\mathscr{A}$ is dissipative. Now to show that the operator $\mathscr{A}$ is maximal monotone, it is sufficient to show that the operator $\lambda I-\mathscr{A}$ is surjective for a fixed $\lambda >0$. Indeed, given $ (f_1,g_1,f_2,g_2,h)^{\text{T}}\in \mathscr{K}$, we seek $U=(u, v,\varphi ,\psi,y)^{\text{T}}\in D(\mathscr{A})$ solution of \begin{equation}\label{Equation_system} \begin{pmatrix} \lambda u-\varphi \\ \lambda v-\psi \\ \lambda \varphi -au_{xx}+\mu _1y(.,0)+\mu _2y(.,1) \\ \lambda \psi -bv_{xx} \\ \lambda y+\frac{1}{\tau }y_{\rho } \end{pmatrix} = \begin{pmatrix} f_1 \\ g_1 \\ f_2 \\ g_2 \\ h \end{pmatrix} \end{equation} suppose we have find $(u,v)$ with the appropriate regularity, then \begin{equation} \label{u_v_solution} \begin{gathered} \varphi = \lambda u-f_1 \\ \psi = \lambda v-g_1 . \end{gathered} \end{equation} It is clear that $\varphi \in H^{1}(\Omega )$ and $\psi \in H^{1}(L_1,L_2)$, furthermore, by \eqref{Equation_system}, we can find $y$ as $y(x,0)=\varphi (x)$, $x\in \Omega $, using the approach as in Nicaise and Pignotti \cite{NP06}, we obtain, by using the equation in \eqref{Equation_system} \[ y(x,\rho )=\varphi (x)e^{-\lambda \rho \tau }+\tau e^{-\lambda \rho \tau }\int_{0}^{\rho }h(x,\sigma )e^{\lambda \sigma \tau }d\sigma\,. \] From \eqref{u_v_solution}, we obtain \[ y(x,\rho )=\lambda u(x)e^{-\lambda \rho \tau }-f_1(x)e^{-\lambda \rho \tau }+\tau e^{-\lambda \rho \tau }\int_{0}^{\rho }h(x,\sigma )e^{\lambda \sigma \tau }d\sigma\,. \] By using \eqref{Equation_system} and \eqref{u_v_solution}, the functions $u,v$ satisfy the following equations: \begin{equation} \label{u_v_equation_2} \begin{gathered} \lambda ^{2}u-au_{xx}+\mu _1y(.,0)+\mu _2y(.,1) = f_2+\lambda f_1 \\ \lambda ^{2}v-bv_{xx} = g_2+\lambda g_1\,. \end{gathered} \end{equation} Since \begin{align*} y(x,1) &= \varphi (x)e^{-\lambda \tau } +\tau e^{-\lambda \tau}\int_{0}^{1}h(x,\sigma )e^{\lambda \tau }d\sigma \\ &= \lambda ue^{-\lambda \tau }+y_{0}(x), \end{align*} for $x\in \Omega $, we have \begin{equation} y_{0}(x)=-f_1(x)+\tau e^{-\lambda \tau }\int_{0}^{1}h(x,\sigma )e^{\lambda \tau }d\sigma \label{e2.14} \end{equation} The problem \eqref{u_v_equation_2} can be reformulated as \begin{equation} \label{Lax_Milgram_form} \begin{gathered} \begin{aligned} &\int_{\Omega }(\lambda ^{2}u-au_{xx}+\mu _1\lambda u++\mu _2\lambda ue^{-\lambda \tau })\omega _1\,dx \\ &= \int_{\Omega }(f_2+\lambda f_1-\mu _2\lambda y_{0}(x))\omega _1\,dx, \end{aligned} \\ \int_{L_1}^{L_2}(\lambda ^{2}v-bv_{xx})\omega _2\,dx = \int_{L_1}^{L_2}(g_2+\lambda g_1)\omega _2\,dx, \end{gathered} \end{equation} for any $(\omega_1,\omega_2)\in X_\ast$. Integrating the first equation in \eqref{Lax_Milgram_form} by parts, we obtain \begin{equation}\label{Lax_Milgram_2} \begin{aligned} &\int_{\Omega }(\lambda ^{2}u-au_{xx}+\mu _1u +\mu _2\lambda ue^{-\lambda \tau })\omega _1\,dx \\ &= \int_{\Omega }\lambda ^{2}u\omega _1\,dx -a\int_{\Omega }u_{xx}\omega_1\,dx +\mu _1\int_{\Omega }\lambda u\,dx +\mu _2\int_{\Omega }\lambda ue^{-\lambda \tau }\omega _1\,dx \\ &= \int_{\Omega }\lambda ^{2}u\omega _1\,dx +a\int_{\Omega }u_{x}(\omega _1)_{x}\,dx -[au_{x}\omega _1]_{\partial\Omega }\\ &\quad +\mu _1\int_{\Omega }\lambda u\,dx +\mu _2\int_{\Omega }\lambda ue^{-\lambda \tau }\omega _1\,dx \\ &= \int_{\Omega }(\lambda ^{2}+\mu _1\lambda +\mu _2\lambda e^{-\lambda \tau })u\omega _1\,dx+a\int_{\Omega }u_{x}(\omega _1)_{x}\,dx -[au_{x}\omega _1]_{\partial\Omega }\,. \end{aligned} \end{equation} Integrating the second equation in \eqref{Lax_Milgram_form} by parts, we obtain \begin{equation} \label{Lax_Milgram_3} \int_{L_1}^{L_2}(\lambda ^{2}v-bv_{xx})\omega_2\,dx =\int_{L_1}^{L_2}\lambda ^{2}v \omega_2\,dx +b\int_{L_1}^{L_2}v_{x}(\omega _2)_{x}\,dx-[bv_{x}\omega_2]_{L_1}^{L_2}\,. \end{equation} Using \eqref{Lax_Milgram_2} and \eqref{Lax_Milgram_3}, the problem \eqref{Lax_Milgram_form} is equivalent to the problem \begin{equation}\label{Lax_Milgram_4} \Phi ((u,v),(\omega _1,\omega _2))=l(\omega _1,\omega _2) \end{equation} where the bilinear form $\Phi :{(X_\ast\times X_\ast)}\to\mathbb{R}$ and the linear form $l: {X_\ast}\to \mathbb{R}$ are defined by \begin{align*} \Phi ((u,v),(\omega _1,\omega _2)) &= \int_{\Omega }(\lambda ^{2}+\mu _1\lambda +\mu _2\lambda e^{-\lambda \tau })u\omega _1\,dx+a\int_{\Omega}u_{x}(\omega _1)_{x}\,dx -[au_{x}\omega _1]_{\partial\Omega } \\ &\quad +\int_{L_1}^{L_2}\lambda ^{2}v\ \omega _2\,dx+b\int_{L_1}^{L_2}v_{x}(\omega _2)_{x}\,dx-[bv_{x}\omega_2]_{L_1}^{L_2} \end{align*} and \[ l(\omega _1,\omega _2) = \int_{\Omega }(f_2+\lambda f_1-\mu _2\lambda y_{0}(x))\omega _1\,dx+\int_{L_1}^{L_2}(g_2+ \lambda g_1)\omega _2\,dx\,. \] Using the properties of the space $X_\ast$, it is clear that $\Phi $ is continuous and coercive, and $l$ is continuous. So applying the Lax-Milgram theorem, we deduce that for all $(\omega _1,\omega _2)\in X_\ast$, problem \eqref{Lax_Milgram_4} admits a unique solution $(u,v)\in X_\ast$. It follows from \eqref{Lax_Milgram_2} and \eqref{Lax_Milgram_3} that $(u,v)\in \{\big(H^{2}(\Omega )\times H^2(L_1,L_2)\big)\cap X_\ast\}$. Therefore, the operator $\lambda I-\mathscr{A}$ is dissipative for any $\lambda >0$. Then the result in Theorem \ref{Theorem_1} follows from the Hille-Yoshida theorem. \end{proof} \section{Exponential decay of solutions} \label{Section_3} In this section we study the asymptotic behavior of the system \eqref{Main_system_Trasmission}-\eqref{Initial_Conditions}. For any regular solution of \eqref{Main_system_Trasmission}-\eqref{Initial_Conditions}, we define the energy as \begin{gather} \label{Energy_E_1} E_1(t)=\frac{1}{2}\int_{\Omega }u_{t}^{2}(x,t)\,dx+\frac{a}{2}\int_{\Omega }u_{x}^{2}(x,t)\,dx, \\ \label{Energy_E_2} E_2(t)=\ \frac{1}{2}\int_{L_1}^{L_2}v_{t}^{2}(x,t)\,dx+\frac{b}{2} \int_{L_1}^{L_2}v_{x}^{2}(x,t)\,dx\,. \end{gather} The total energy is defined as \begin{equation} \label{Total_Energy} E(t)=E_1(t)+E_2(t) +\frac{\zeta}{2}\int_{\Omega}\int_{0}^{1}y^2(x, \rho,t)\,d\rho\,dx \end{equation} where $\zeta $ is the positive constant defined by \eqref{zeta}. Our decay result reads as follows. \begin{theorem}\label{Theorem_2} Let $(u,v)$ be the solution of \eqref{Main_system_Trasmission}-\eqref{Initial_Conditions}. Assume that $\mu_2>\mu_1$ and \begin{equation} \label{Assumption_L_1_L_2} \frac{a}{b}<\frac{L_3+L_1-L_2}{2(L_2-L_1)}. \end{equation} Then there exist two positive constants $C$ and $d$, such that \begin{equation} \label{Energy_Exponential} E(t)\leq Ce^{-d t},\quad \forall t\geq 0. \end{equation} \end{theorem} \begin{remark}\label{Remark_Conditions} \rm Assumption \eqref{Assumption_L_1_L_2} gives the relationship between the boundary regions and the transmission permitted. It can be also seen as a restriction on the wave speeds of the two equations and the damped part of the domain. It is known that for Timoshenko systems \cite{Souf99} and Bresse systems \cite{ARA10} that the wave speeds always control the decay rate of the solution. It is an interesting open question to show the behavior of the solution if \eqref{Assumption_L_1_L_2} is not satisfied. \end{remark} For the proof of Theorem \ref{Theorem_2} we use the following lemmas. \begin{lemma}\label{Lemma_Decay} Let $(u,v,y)$ be the solution of \eqref{Main_system_2}, \eqref{Initial_Conditions}. Assume that $\mu _1\geq \mu _2$. Then we have the inequality \begin{equation} \label{dE_dt} \frac{dE(t)}{dt}\leq \big(-\mu_1+\frac{\mu_2}{2}+\frac{\zeta }{2\tau } \big)\int_{\Omega }y^{2}(x,0,t)\,dx+\big(\frac{\mu _2}{2}-\frac{\zeta }{ 2\tau }\big)\int_{\Omega }y^{2}(x,1,t)\,dx. \end{equation} \end{lemma} \begin{proof} From \eqref{Total_Energy} we have \begin{equation} \label{dE_1_dt} \frac{dE_1(t)}{dt}=\int_{\Omega }u_{tt}(x,t)u_{t}(x,t)\,dx+a\int_{\Omega }u_{xt}(x,t)u_{x}(x,t)\,dx\,. \end{equation} Using system \eqref{Main_system_2}, and integrating by parts, we obtain \begin{equation} \label{dE_1_dt_1} \frac{dE_1(t)}{dt} = a[u_xu_t]_{\partial\Omega}-\mu _1\int_{\Omega }u_{t}^2(x,t)-\mu _2\int_{\Omega }u_{t}(x,t)y(x,1,t) )\,dx\,. \end{equation} On the other hand, \begin{equation} \label{dE_2} \frac{dE_2(t)}{dt}=b[v_{x}v_{t}]_{L_1}^{L_2}. \end{equation} Using the fact that \begin{equation} \label{rho_term} \begin{aligned} \frac{d}{dt}\frac{\zeta}{2}\int_{\Omega}\int_{0}^{1}y^2(x,\rho,t)\,d\rho\,dx &= \zeta\int_{\Omega}\int_{0}^{1}y(x,\rho,t)y_t(x,\rho,t)\,d\rho\,dx \\ &=-\frac{\zeta}{\tau}\int_{\Omega}\int_0^1y_{\rho}(x,\rho,t)y(x,\rho,t)d \rho \,dx \\ &=-\frac{\zeta}{2\tau}\int_{\Omega}\int_0^1\frac{d}{d\rho} y^2(x,\rho,t)\,d\rho\,dx \\ &=-\frac{\zeta}{2\tau}\int_{\Omega}(y^2(x,1,t)-y^2(x,0,t))\,dx\,, \end{aligned} \end{equation} collecting \eqref{dE_1_dt_1}, \eqref{dE_2}, \eqref{rho_term}, using \eqref{Boundary_Condition} and applying Young's inequality, we show that \eqref{dE_dt} holds. The proof is complete. \end{proof} Following \cite{ANP10}, we define the functional \begin{equation*} I(t)=\int_{\Omega }\int_{t-\tau }^{t}e^{s-t}u_{t}^{2}(x,s)\,ds\,dx\,, \end{equation*} and state the following lemma. \begin{lemma}\label{Lemma_I} Let $(u,v)$ be the solution of \eqref{Main_system_Trasmission}-\eqref{Initial_Conditions}. Then \begin{equation} \label{dI_dt_1} \frac{dI(t)}{dt}\leq \int_{\Omega }u_{t}^{2}(x,t)\,dx-e^{-\tau }\int_{\Omega }u_{t}^{2}(x,t-\tau )\,dx-e^{-\tau }\int_{\Omega }\int_{t-\tau }^{t}u_{t}^{2}(x,s)\,ds\,dx. \end{equation} \end{lemma} The proof of the above Lemma is straightforward, so we omit it. Now, we define the functional $\mathscr{D}(t)$ as follows \begin{equation} \label{Functional_D} \mathscr{D}(t)=\int_\Omega uu_t\,dx+\frac{\mu_1}{2}\int_\Omega u^2\,dx+\int_{L_1}^{L_2} vv_t \,dx. \end{equation} Then, we have the following estimate. \begin{lemma}\label{Lemma_D} The functional $\mathscr{D}(t)$ satisfies \begin{equation} \label{D_dt_estimate} \begin{aligned} \frac{d}{dt}\mathscr{D}(t) &\leq -(a-\epsilon_0c_0^2)\int_\Omega u_x^2\,dx-b\int_{L_1}^{L_2} v_x^2\,dx \\ &\quad +\int_\Omega u_t^2\,dx+\int_{L_1}^{L_2} v_t ^2\,dx +C(\epsilon_0)\int_{\Omega }y^{2}(x,1,t )\,dx \end{aligned} \end{equation} \end{lemma} \begin{proof} Taking the derivative of $\mathscr{D}(t)$ with respect to $t$ and using \eqref{Main_system_Trasmission}, we find that \begin{equation} \label{dD_dt_1} \begin{aligned} \frac{d}{dt}\mathscr{D}(t) &= \int_\Omega u_t^2\,dx+\int_{L_1}^{L_2} v_t ^2\,dx-a\int_\Omega u_x^2\,dx-b\int_{L_1}^{L_2} v_x^2\,dx \\ &\quad -\mu_2\int_{\Omega }u(x,t)y(x,1,t)\,dx+[au_xu]_{\partial\Omega}+ [bv_xv]_{L_1}^{L_2}. \end{aligned} \end{equation} Applying young's inequality and using the boundary conditions \eqref{Boundary_Condition}, we have \begin{equation} \begin{aligned}{} [au_xu]_{\partial\Omega}+[bv_xv]_{L_1}^{L_2} &= au_x(L_1,t)u(L_1,t)-au_x(L_2,t)u(L_2,t) \\ &\quad +bv_x(L_2,t)v(L_2,t)-bv_x(L_1,t)v(L_1,t)=0. \end{aligned} \end{equation} On the other hand, we have by Poincar\'e's inequality and Young's inequality, \begin{equation} \mu_2\int_{\Omega }u(x,t)y(x,1,t)\,dx\leq \epsilon_0c^2_0\int_\Omega u_x^2\,dx+C(\epsilon_0)\int_{\Omega }y^{2}(x,1,t )\,dx \end{equation} where $\epsilon_0$ is a positive constants and $c_0$ is the Poinca\'e's constant. Consequently, plugging the above estimates into \eqref{dD_dt_1}, we find \eqref{D_dt_estimate}. \end{proof} Now, inspired by \cite{MRN021}, we introduce the functional \begin{equation} \label{q_function} q(x) =\begin{cases} x-\frac{L_1}{2}, & x\in [ 0,L_1], \\ x-\frac{L_2+L_3}{2}, & x\in [L_2,L_3], \\ \frac{L_2-L_3-L_1}{2(L_2-L_1) }(x-L_1) + \frac{L_1}{2}, & x\in [ L_1,L_2] \end{cases} \end{equation} Next, we define the functionals \[ \mathscr{F} _1(t)=-\int_{\Omega }q(x)u_{x}u_{t}\,dx,\quad \mathscr{F} _2(t)=-\int_{L_1}^{L_2}q(x)v_{x}v_{t}\,dx. \] Then, we have the following estimates. \begin{lemma}\label{Lemma_J_1_J_2} For any $\epsilon_2>0$, we have the estimates: \begin{equation} \label{J_1_estimate} \begin{aligned} \frac{d}{dt}\mathscr{F}_1(t) &\leq C(\epsilon_2)\int_{\Omega }u_{t}^2\,dx +\big(\frac{a}{2}+\epsilon_2\big)\int_{\Omega }u_{x}^2\,dx+C(\epsilon_2)\int_{\Omega }y^2(x,1,t)\,dx \\ &\quad -\frac{a}{4}[(L_3-L_2)u_x^2(L_2,t)+L_1u_x^2(L_1,t)] \end{aligned} \end{equation} and \begin{equation} \label{J_2_estimate} \begin{aligned} \frac{d}{dt}\mathscr{F}_2(t) &\leq \frac{L_2-L_3-L_1}{4( _2-L_1) }(\int_{L_1 }^{L_2}v_{t}^2\,dx+\int_{L_1 }^{L_2}bv_{x}^2\,dx) \\ &\quad +\frac{b}{4}\big((L_3-L_2)v_x^2(L_2,t)+L_1v_x^2(L_1,t)\big). \end{aligned} \end{equation} \end{lemma} \begin{proof} Taking the derivative of $\mathscr{F}_1(t)$ with respect to $t$ and using \eqref{Main_system_Trasmission}, we obtain \begin{equation} \label{dF_1_dt_1} \begin{aligned} &\frac{d}{dt}\mathscr{F}_1(t)\\ &= -\int_{\Omega }q(x)u_{tx}u_{t}\,dx-\int_{\Omega}q(x)u_{x}u_{tt}\,dx \\ &= -\int_{\Omega }q(x)u_{tx}u_{t}\,dx -\int_{\Omega }q(x)u_{x}(au_{xx}(x,t) -\mu _1u_t(x,t) -\mu _2y(x,1,t))\,dx. \end{aligned} \end{equation} Integrating by parts, \begin{equation} \label{First_term} \int_{\Omega }q(x)u_{tx}u_{t}\,dx=-\frac{1}{2}\int_{\Omega }q'(x)u_{t}^2\,dx+\frac{1}{2}[ q(x)u_t^2]_{\partial\Omega}. \end{equation} On the other hand, \begin{equation} \label{Second_term} \int_{\Omega }aq(x)u_{xx}u_{x}\,dx=-\frac{1}{2}\int_{\Omega }aq'(x)u_{x}^2\,dx+\frac{1}{2}[ aq(x)u_x^2]_{\partial\Omega}. \end{equation} Substituting \eqref{First_term} and \eqref{Second_term} in \eqref{dF_1_dt_1}, we find that \begin{equation} \label{dF_1_dt_2} \begin{aligned} \frac{d}{dt}\mathscr{F}_1(t) &= \frac{1}{2}\int_{\Omega }q'(x)u_{t}^2\,dx+ \frac{1}{2}\int_{\Omega }aq'(x)u_{x}^2\,dx-\frac{1}{2}[ q(x)u_t^2 ]_{\partial\Omega}\\ &\quad -\frac{1}{2}[ aq(x)u_x^2]_{\partial\Omega} +\int_{\Omega }q(x)u_{x}\big(\mu _1u_t(x,t) +\mu _2y(x,1,t)\big)\,dx\,. \end{aligned} \end{equation} Using Young's inequality and \eqref{q_function}, equation \eqref{dF_1_dt_2} becomes \begin{equation} \label{dF_1_dt_3} \begin{aligned} \frac{d}{dt}\mathscr{F}_1(t) &\leq C(\epsilon_2)\int_{\Omega }u_{t}^2\,dx+\big( \frac{a}{2}+\epsilon_2\big)\int_{\Omega }u_{x}^2\,dx-\frac{1}{2}[ q(x)u_t^2]_{\partial\Omega}\\ &\quad -\frac{a}{2}[ q(x)u_x^2]_{\partial\Omega} +C(\epsilon_2)\int_{\Omega }y^2(x,1,t)\,dx. \end{aligned} \end{equation} for any $\epsilon_2>0$. Since $q(L_1)>0$ and $q(L_2)<0$, by using the boundary conditions \eqref{Boundary_Condition}, we have \begin{equation} \label{Boundary_1} \frac{1}{2}[ q(x)u_t^2]_{\partial\Omega}\geq 0. \end{equation} Also, we have \begin{equation} \label{Boundary_2} \begin{aligned} -\frac{a}{2}[ q(x)u_x^2]_{\partial\Omega} &=-\frac{aL_1}{4}[ u_x^2(L_1,t)+u_x^2(0,t)]\\ &\quad -\frac{a(L_3-L_2)}{4}[ u_x^2(L_3,t)+u_x^2(L_2,t)]. \end{aligned} \end{equation} Taking into account \eqref{Boundary_1} and \eqref{Boundary_2}, then \eqref{dF_1_dt_3} gives \eqref{J_1_estimate}. By the same method, taking the derivative of $\mathscr{F}_2(t)$ with respect to $t$, we obtain \begin{equation} \label{F_2_1} \begin{aligned} \frac{d}{dt}\mathscr{F}_2(t) &= -\int_{L_1}^{L_2}q(x)v_{tx}v_{t}\,dx-\int_{L_1}^{L_2}q(x)v_{x}v_{tt} \\ &= \frac{1}{2}\int_{L_1 }^{L_2}q'(x)v_{t}^2\,dx-\frac{1}{2}[ q(x)v_t^2]_{L_1}^{L_2}+\frac{1}{2}\int_{L_1}^{L_2}bq' (x)v_{x}^2\,dx -\frac{b}{2}[ q(x)v_x^2]_{L_1}^{L_2} \\ &\leq \frac{L_2-L_3-L_1}{4(L_2-L_1) }\Big(\int_{L_1 }^{L_2}v_{t}^2\,dx +\int_{L_1 }^{L_2}bv_{x}^2\,dx\Big) \\ &\quad +\frac{b}{4}\big((L_3-L_2)v_x^2(L_2,t)+L_1v_x^2(L_1,t)\big). \end{aligned} \end{equation} which is exactly \eqref{J_2_estimate}. \end{proof} \begin{proof}[Proof of Theorem \ref{Theorem_2}] We define the Lyapunov functional \begin{equation} \label{Functional_L} \mathscr{L} (t)=NE(t)+I(t)+\gamma_2\mathscr{D}(t)+\gamma_3 \mathscr{F} _1(t)+\gamma _{4}\mathscr{F} _2(t), \end{equation} where $N,\gamma _2,\gamma_3$ and $\gamma _{4}$ are positive constants that will be fixed later. Now, it is clear from the boundary conditions \eqref{Boundary_Condition}, that \begin{equation} \label{u_v} a^2u_x^2(L_i,t)=b^2v^2_x(L_i,t), \quad i=1,2. \end{equation} Taking the derivative of \eqref{Functional_L} with respect to $t$ and making use of \eqref{dE_dt}, \eqref{dI_dt_1}, \eqref{D_dt_estimate}, \eqref{J_1_estimate}, \eqref{J_1_estimate} and taking into account \eqref{u_v}, we obtain \begin{equation} \label{dL_dt_main} \begin{aligned} \frac{d}{dt}\mathscr{L} (t) &\leq \big\{N\big(-\mu _1+\frac{\mu _2}{2} +\frac{\zeta }{2\tau })+1+\gamma _2+\gamma _3C(\epsilon _2)\big\} \int_{\Omega }u_t^{2}\,dx \\ &\quad +\big\{N\big(\frac{\mu _2}{2}-\frac{\zeta }{2\tau })-e^{-\tau }+\gamma _2C(\epsilon _{0})+C(\epsilon_2)\gamma _3\big\} \int_{\Omega}y^{2}(x,1,t)\,dx \\ &\quad+\big\{\gamma_2(-a+\epsilon _{0}c_{0}^{2})+\gamma _3\epsilon_2+\frac{ \gamma _3a}{2}\big\}\int_{\Omega }u_{x}^{2}\,dx \\ &\quad +\big\{b\frac{L_2-L_3-L_1}{4(_2-L_1)}\gamma _{4}-\gamma _2b\big\}\int_{L_1}^{L_2}v_{x}^{2}\,dx \\ &\quad +\big\{\frac{L_2-L_3-L_1}{4(L_2-L_1)}\gamma _{4}+\gamma _2\big\}\int_{L_1}^{L_2}v_{t}^{2}\,dx-e^{-\tau }\int_{\Omega }\int_{t-\tau }^{t}u_{t}^{2}(x,s)\,ds\,dx \\ &\quad -(\gamma_3-\frac{a}{b}\gamma_4)\frac{a(L_3-L_2)}{4} u^2_x(L_2,t)-(\gamma_3-\frac{a}{b}\gamma_4)\frac{aL_1}{4} u_x^2(L_1,t). \end{aligned} \end{equation} At this point, we choose our constants in \eqref{dL_dt_main}, carefully, such that all the coefficients in \eqref{dL_dt_main} will be negative. Indeed, under the assumption \eqref{Assumption_L_1_L_2}, we can always find $\gamma_2,\gamma_3$ and $\gamma_4$ such that \begin{equation} \label{Coefficient} \frac{L_2-L_3-L_1}{4(L_2-L_1)}\gamma _{4}+\gamma _2<0,\quad \gamma_3>\frac{a}{b}\gamma_4,\quad \gamma_2>\frac{\gamma_3}{2}. \end{equation} Once the above constants are fixed, we may choose $\epsilon_2$ and $\epsilon_0$ small enough such that \begin{equation*} \epsilon_0c_0^2+\gamma_3\epsilon_20$, such that \begin{equation} \label{L_E_estimate} \frac{d\mathscr{L} (t)}{dt}\leq -\eta _2E(t),\quad \forall t\geq 0 . \end{equation} On the other hand, it is not hard to see that from \eqref{Functional_L} and for $N$ large enough, there exist two positive constants $\beta _1$ and $\beta _2$ such that \begin{equation} \label{Equiv_L_E} \beta _1\ E(t)\leq \mathscr{L} (t)\leq \beta _2E(t),\quad \forall t\geq 0. \end{equation} Combining \eqref{L_E_estimate} and \eqref{L_E_estimate}, we deduce that there exists $\Lambda >0$ for which the estimate \begin{equation} \label{L_estimate_last} \frac{d\mathscr{L} (t)}{dt}\leq -\Lambda \mathscr{L} (t),\quad \forall t\geq 0, \end{equation} holds. Integrating \eqref{L_E_estimate} over $(0,t)$ and using (\eqref {L_E_estimate} once again, then \eqref{Energy_Exponential} holds. Then, the proof is complete. \end{proof} \begin{thebibliography}{10} \bibitem{ARA10} F.~Alabau~Boussouira, J.~E. Mu\~noz~Rivera, D.~S. Almeida~J\'unior. \newblock Stability to weak dissipative {B}resse system. \newblock {\em J. Math. Anal. Appl.}, 374(2): 481--498, 2011. \bibitem{ANP10} K.~Ammari, S.~Nicaise, C.~Pignotti. \newblock Feedback boundary stabilization of wave equations with interior delay. \newblock {\em Systems. Cont. Letters}, 59: 623--628, 2010. \bibitem{BstRapo_2007} W.~D. Bastos and C.~A. Raposo. \newblock Transmission problem for waves with frictional damping. \newblock {\em Electron. J. Differential Equations}, pages No. 60, 10, 2007. \bibitem{Dat91} R.~Datko. \newblock Two questions concerning the boundary control of certain elastic systems. \newblock {\em J. Differential Equations}, 92 (1): 27--44, 1991. \bibitem{DLP86} R.~Datko, J.~Lagnese, M.~P. Polis. \newblock An example on the effect of time delays in boundary feedback stabilization of wave equations. \newblock {\em SIAM J. Control Optim.}, 24(1): 152--156, 1986. \bibitem{MaOquen_2006} T.~F. Ma H.~P. Oquendo. \newblock A transmission problem for beams on nonlinear supports. \newblock {\em Bound. Value Probl.}, pages Art. ID 75107, 14, 2006. \bibitem{MRN021} A.~Marzocchi, J.~E.~Mu\~noz Rivera, M.~G. Naso. \newblock Asymptotic behavior and exponential stability for a transmission problem in thermoelasticity. \newblock {\em Math. Meth. Appl. Sci.}, 25: 955--980, 2002. \bibitem{MRN022} A.~Marzocchi, J.~E.~Mu\~noz Rivera, M.~G. Naso. \newblock Transmission problem in thermoelasticity with symmetry. \newblock {\em IMA Journal of Appl. Math.}, 63(1): 23--46, 2002. \bibitem{MS09} S.~A. Messaoudi, B.~Said-Houari. \newblock Energy decay in a transmission problem in thermoelasticity of type iii. \newblock {\em IMA. J. Appl. Math}, 74: 344--360, 2009. \bibitem{NP06} S.~Nicaise, C.~Pignotti. \newblock Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. \newblock {\em SIAM J. Control Optim.}, 45(5): 1561--1585, 2006. \bibitem{RO00} J.~E.~Mu{\~{n}}oz Rivera, H.~P. Oquendo. \newblock The transmission problem of viscoelastic waves. \newblock {\em Acta Appl. Math.}, 62(1): 1--21, 2000. \bibitem{Souf99} A.~Soufyane. \newblock Stabilisation de la poutre de Timoshenko. \newblock {\em C. R. Acad. Sci. Paris S\'{e}r. I Math.}, 328(8): 731--734, 1999. \bibitem{XYL06} C.~Q. Xu, S.~P. Yung, L.~K. Li. \newblock Stabilization of the wave system with input delay in the boundary control. \newblock {\em ESAIM: Control Optim. Calc. Var.}, 12: 770--785, 2006. \end{thebibliography} \end{document}