0$ the
first eigenvalue and by $\varphi_\Omega=\varphi_{1,\Omega}>0$ the
first eigenfunction of the problem
\begin{equation}\label{7}
\begin{gathered}
- \Delta_p \varphi = \lambda \rho(x) |\varphi|^{p-2} \varphi \quad
\text{in } \Omega,\\
\varphi > 0 \quad \text{in } \Omega, \quad \varphi=0 \quad \text{on }
\partial \Omega,
\end{gathered}
\end{equation}
where $\Omega \subset \mathbb{R}^N$ is a smooth bounded domain.
Moreover, we denote by
$\lambda_1(\rho)=\lim_{R\to\infty}
\lambda_{1, B_R(0)}(\rho)\geq0$, where $B_R(0)$ is the ball
centered at the origin of $\mathbb{R}^N$ with radius $R>0$.
Also, we let us assume:
\begin{itemize}
\item[(V1)] $ V(x, \xi)\leq \alpha(x) |\xi |^q
+\beta(x)~ \text{in}~\Omega\times\mathbb{R}^N$ for some
$0 \leq\alpha, \beta \in C(\Omega)\cap L^\infty(\Omega)$ and
$q \geq 0$,
\item[(M1)] there exists $\omega_M \in C^1(\overline{\Omega})$
($\omega_M \in C^1({\Omega})\cap W^{1,\infty}(\Omega)$ if
$\Omega=\mathbb{R}^N$) satisfying
\begin{equation}\label{6}
\begin{gathered}
-\Delta_p \omega_M = M(x)\quad \text{in } \Omega,\\
\omega_M > 0\quad \text{in } \Omega,\quad
\omega_M=0\quad \text{on } \partial\Omega,
\end{gathered}
\end{equation}
where $M(x):=\max\{2a(x), 2b(x), \alpha(x), \beta(x)\}$, $x \in \Omega$,
\item[(F1)]
\[
(F_0)\quad f_0<1/ \|\omega_M\|_{L^\infty(\Omega)}^{p-1},\quad
\text{or}\quad (F_{\infty})\quad
f_\infty<1/\|\omega_M\|_{L^\infty(\Omega)}^{p-1}.
\]
\end{itemize}
\begin{remark} \label{rmk1.1}
{\rm With respect to the hypotheses (M1) and (F1), we note that:
\begin{enumerate}
\item If $\Omega\subset\mathbb{R}^N$ is a smooth bounded domain, then (M1)
occurs if, for example, $M \in L^q(\Omega)$ for some $q>N>1$.
See, for instance, Perera and Zhang \cite{PZ1}.
This allows we take singular potentials of the
type $a(x)=b(x)={1}/{(1-|x|)^\gamma}$, with $\gamma<1$ and
$\Omega=B_1(0)\subset\mathbb{R}^N$ in \eqref{1}.
\item If $\Omega=\mathbb{R}^N$, it is known that \eqref{6} has a solution if
$M$ is a bounded continuous function and satisfies
$$
M_\infty:=\int_0^\infty\Big[s^{1-N}\int_0^s
t^{N-1}\hat{M}(t)dt\Big]^{\frac{1}{p-1}}ds<\infty,
$$
where
$\hat{M}(t)=\max_{| x |=t} M(x)$, $t\geq 0$. The
existence and $L^{\infty}$-boundedness of a solution of \eqref{6} imply
its regularity (see \cite{DiB}).
In addition, if we assume that $N\geq 3$ and
$$
\int_1^\infty r^{\frac{1}{p-1}}\hat{M}^{\frac{1}{p-1}}(r) dr<\infty \quad
\text{or}\quad
\int_1^\infty r^{\frac{(p-2)N+1}{p-1}}\hat{M}(r)dr<\infty,
$$
if $1\lambda_\Omega(\rho),\\
\max\{0,\frac{\lambda_{\Omega}(\rho)-f_0}{g_0}\}, &\text{if } 0 0$ and a $ u=u_{\lambda, \mu} \in
C^1(\Omega)\cap C(\overline{\Omega})$ solution of \eqref{1} for
each $0\leq\mu<\mu^*$. Additionally:
\begin{itemize}
\item[(i)] $u\geq c\varphi_\Omega$ for some $c>0$,
\item[(ii)] if $(F_i)$ holds, for $i\in \{0,\infty\}$, then
$$
\lambda^*\geq
\frac{1}{g_i}\Big(\frac{1}{\|\omega_M\|_{L^\infty(\Omega)}^{p-1}}-f_i\Big)
:=\lambda^i,
$$
\item[(iii)] there exists a constant $d>0$ such that
$$
\mu^*_\lambda\geq d\min\big\{{[f^i+\lambda
g^i]^{\frac{p-1-q}{p-1}}}, {f^i+\lambda g^i}\big\},\quad \text{if }
q\in [0,p-1].
$$
\end{itemize}
\end{theorem}
For $\Omega=\mathbb{R}^N$ and $1 0$ and a $ u=u_{\lambda, \mu} \in
C^1(\mathbb{R}^N)$ solution of \eqref{1} for each
$0\leq\mu<\mu^*$. Moreover, if $(F_i)$ holds, for $i \in
\{0,\infty\}$, then there is a constant $d>0$ such that
\begin{itemize}
\item[(i)] $\lambda^*\geq \lambda^i$
\item[(ii)] $\mu^*_\lambda\geq d\min\big\{{[f^i+\lambda
g^i]^{\frac{p-1-q}{p-1}}}, {f^i+\lambda g^i}\big\}$ for
$0<\lambda<\lambda^i$.
\end{itemize}
\end{theorem}
\begin{remark} \label{rmk1.2} \rm
In the definition of $\lambda_{*}$, the possibility
$f_0>\lambda_{1}(\rho)$ does not permit $(F_0)$ to occur, because
$\lambda_\Omega(\rho)\geq \lambda_{\Omega}(M)\geq \Vert
w_M\Vert^{1-p}_{L^{\infty}(\Omega)}$ and as a consequence of this,
we have $\lambda_{1}(\rho)\geq \lambda_{1}(M)\geq \Vert
w_M\Vert^{1-p}_{L^{\infty}(\mathbb{R}^N)}$ also (see Santos
\cite{CAS3}). In this situation, $(F_{\infty})$ should occur, as
in \cite{GR1} and \cite{XZ}.
\end{remark}
Theorem \ref{NL+} improves previous results principally because
it addresses the p-Laplacian operator, obtains estimates for
$\lambda^{*} $ and $\mu^{*} $, no monotonicity or
growth restriction on the nonlinearities are required, the cases
$q=0$ and $q=p-1 $ are included and we assume the
hypothesis (M1) that is weaker than \eqref{5a}. We point out that
problem \eqref{1} has no solution for $p\geq N$ (see Serrin and Zou
\cite{sz}).
This paper is organized as follows: In section 2 we construct
several auxiliary functions for the terms $f$ and $g$ and we study
their properties. Because of the singularities allowed on $f$ and
$g$, we regularize the problem \eqref{1} and we obtain an upper
solution for it in bounded domain and in $\mathbb{R}^N$, in sections
3 and 5, respectively. After that, we use section 4 to prove
Theorem \ref{DL+}. In section 6, we generalize this result for $\mathbb{R}^N$.
\section{Auxiliary functions}
To prove Theorems \ref{DL+} and \ref{NL+} we refine a
regularization-motonicity technique used, among others, by Feng
and Liu \cite{FL}, Zhang \cite{Z} and Mohammed \cite{MO}.
Observing that we do not assume monotonicity on the nonlinearities,
we introduce a truncation of the terms $f$ and $g$ through a
parameter $\gamma>0$ and build auxiliary functions
which allow us to obtain not only the monotonicity, but also the
necessary regularity for the proof of our results. Parallel to this,
the inclusion of a parameter $\theta<1$, in this construction, makes
it possible solving the problem \eqref{1} for the case $q>p-1$.
Analyzing the behavior of these auxiliary functions,
the parameters $\lambda, \gamma, \theta$ and the fact that the
problem \eqref{6} has a solution, we determine a
$\Lambda^*$-curve whose behavior allow us to find region of
variation for the parameter $\lambda$, and consequently, obtain an
estimate from below for that region.
With these purposes, let us define the continuous functions,
depending on real parameter $\gamma>0$, as
$$
f_ \gamma(s):= \begin{cases}
f(s), &\text{if } 0 0$, defining the function
\begin{equation} \label{12}
{\zeta}_{\lambda, \gamma}(s)=s^{p-1}\sup \big\{\frac{{f_
\gamma}(t)}{t^{p-1}}, \;t>s\big\}+\lambda s^{p-1} \sup
\big\{\frac{{g_ \gamma}(t)}{t^{p-1}}, \; t>s\big\}, \quad
\lambda\geq 0
\end{equation}
we obtain, from the above definitions, that
\begin{itemize}
\item[(i)] $\frac{{\zeta}_{\lambda, \gamma}(s)}{s^{p-1}}$ is non-increasing in
$s>0$;
\item[(ii)] ${\zeta}_{\lambda, \gamma}(s)\geq {f_\gamma}(s)+\lambda {g_ \gamma}(s)$,
$s>0$;
\item[(iii)] $\lim_{s\to\infty}\frac{{\zeta}_{\lambda, \gamma}(s)}{s^{p-1}}
=\frac{f(\gamma)}{\gamma^{p-1}}+\lambda \frac{g(\gamma)}{\gamma^{p-1}}$.
\end{itemize}
Now, defining
$$
H_{\lambda,
\gamma}(s)=\frac{s^2}{\int_0^s\frac{t}{{\zeta}_{\lambda,
\gamma}(t)^{\frac{1}{p-1}}}dt}, \ s>0,
$$
and using (i) and (iii) above, we have the following lemma.
\begin{lemma}\label{H}
The function $H$ satisfies:
\begin{itemize}
\item[(i)] $H_{\lambda, \gamma} \in C^1((0,\infty), (0,\infty))$;
\item[(ii)] ${\zeta}_{\lambda, \gamma}(s) \leq [H_{\lambda, \gamma}(s)]^{{p-1}}$,
$s>0$;
\item[(iii)] $\frac{H_{\lambda, \gamma}(s)}{s}$ is non-increasing in
$s>0$;
\item[(iv)]
\[
\lim_{s\to\infty}\frac{H_{\lambda, \gamma}(s)}{s}
=\Big[\frac{f(\gamma)}{\gamma^{p-1}}+\lambda
\frac{g(\gamma)}{\gamma^{p-1}}\Big]^{\frac{1}{p-1}}.
\]
\end{itemize}
\end{lemma}
After these, introducing a parameter $ \theta \in (0, 1]$ and
defining the function
\begin{equation}\label{13}
\Gamma_{\lambda}(\gamma)=\Gamma_{\lambda,\theta}(\gamma)=\frac{\theta}{\gamma}\int_0^\gamma\frac{t^\theta}{H_{\lambda,
\gamma}(t^\theta)}dt, \quad \gamma>0
\end{equation}
we obtain, from the previously defined functions and their
properties, the following result.
\begin{lemma}\label{Gamma2}
Suppose {\rm (M1)} and {\rm (F1)} hold.
Then for each $\theta \in (\Vert w_M \Vert_{\infty}f_i^{1/(p-1)}
,1]$, for either $i=0$ or $i=\infty$, we have:
\begin{itemize}
\item[(i)] $\lim_{\gamma\to\infty}\Gamma_{\lambda, \theta}(\gamma)
=\frac{\theta}{(f_\infty+\lambda
g_\infty)^{\frac{1}{p-1}}}$, for each $\lambda\geq 0$;
\item[(ii)] $\lim_{\gamma\to 0}\Gamma_{\lambda,
\theta}(\gamma)=\frac{\theta}{(f_0+\lambda
g_0)^{\frac{1}{p-1}}}$, for each $\lambda\geq 0$;
\item[(iii)] $\Gamma_{\lambda, \theta}$ is decreasing in $\lambda>0$,
for each $\gamma>0$;
\item[(iv)
] there exists a $\tilde{\gamma}=\tilde{\gamma}(\Omega, \theta)>0$ such that
$\Gamma_{0,\theta}(\tilde{\gamma})>\|\omega_M\|_{L^\infty(\Omega)}$.
\end{itemize}
\end{lemma}
By Lemma \ref{Gamma2}, we can define the nonempty set
$$
\mathcal{A}=\mathcal{A}_{\Omega, \theta}:=\{{\gamma} \in (0,
\infty) : \Gamma_{0,\theta}({\gamma})>\|\omega_M\|_{L^\infty(\Omega)}\}.
$$
Now, as a consequence of $\lim_{\lambda\to
\infty}\Gamma_{\lambda,\theta}(\gamma)=0$,
$\lim_{\lambda\to 0}\Gamma_{\lambda,\theta}(\gamma)=\Gamma_{0,\theta}(\gamma)$
and of the above lemma, we have that the function
$\Lambda^*=\Lambda^*_{\Omega, \theta}:\mathcal{A}\to (0,
\infty)$ that associate for each ${\gamma} \in \mathcal{A}$ the
unique number $\Lambda^*({\gamma})$ satisfying
\begin{equation}\label{14}
\Gamma_{\Lambda^*({\gamma}),\theta}({\gamma})=\|\omega_M\|_{L^{\infty}(\Omega)},
\end{equation}
is well defined.
Thus, we can define the positive number
\begin{equation}\label{lam}
\lambda^*_{\theta}({\Omega}):=\sup\{\Lambda^*({\gamma}): {\gamma}
\in \mathcal{A}\}.
\end{equation}
After these, we infer the following lemma.
\begin{lemma}\label{eta2}
Suppose {\rm (M1)} and {\rm (F1)} hold. Then for each
$\theta \in (\Vert w_M \Vert_{\infty}f_i^{1/(p-1)},1]$, we have
$$
\lambda^*_\theta(\Omega)\geq \frac{1}{g_i}
\Big(\frac{\theta}{\|\omega_M\|_{L^\infty(\Omega)}^{p-1}}-f_i\Big)
:=\lambda^i_{\theta}.
$$
\end{lemma}
\begin{proof}
If $(F_0)$ occurs and $g_0<\infty$, then for each
$0<\delta<{\lambda}^0_{\theta}$,
from Lemma \ref{Gamma2} (ii) it follows that
\begin{align*}
\liminf_{\gamma\to 0}
(\Gamma_{\delta,\theta}(\gamma)-\|\omega_M\|_\infty)
&=\frac{\theta}{(f_0+\delta g_0)^{\frac{1}{p-1}}}-\|\omega_M\|_\infty\\
&>\frac{\theta}{(f_0+{\lambda}^0_{\theta}
g_0)^{\frac{1}{p-1}}}-\|\omega_M\|_\infty= 0.
\end{align*}
Now, if $(F_{\infty})$ occurs and $g_{\infty}<\infty$, using Lemma
\ref{Gamma2} (i), we have
\begin{align*}
\liminf_{\gamma\to \infty}
(\Gamma_{\delta,\theta}(\gamma)-\|\omega_M\|_\infty)
&=\frac{\theta}{(f_\infty+\delta
g_\infty)^{\frac{1}{p-1}}}-\|\omega_M\|_\infty\\
&>\frac{\theta}{(f_\infty+{\lambda^{\infty}_{\theta}}
g_\infty)^{\frac{1}{p-1}}}-\|\omega_M\|_\infty=0,
\end{align*}
for each $0<\delta<{\lambda^{\infty}_{\theta}}$.
So, in both cases, there exists a $\gamma_0=\gamma_0(\delta)>0$ such
that $\Gamma_{\delta,\theta}(\gamma_0)>\|\omega_M\|_\infty$. As a
consequence of this and Lemma \ref{eta2}(iii), we have that
$\gamma_0 \in \mathcal{A}$, because $\Gamma_{0,
\theta}(\gamma_0)>\Gamma_{\delta,
\theta}(\gamma_0)>\|\omega_M\|_\infty$. So, from \eqref{14} there is
a unique $\Lambda^*(\gamma_0)$ such that
$\Gamma_{\Lambda^*(\gamma_0),\theta}(\gamma_0)=\|\omega_M\|_\infty$.
Now, using
$\Gamma_{\Lambda^*(\gamma_0),\theta}(\gamma_0)<\Gamma_{\delta,\theta}(\gamma_0)$
and Lemma \ref{eta2}(iii), we obtain $\Lambda^*(\gamma_0)>\delta$.
So, by the arbitrariness of $\delta$, it follows the proof of the Lemma.
\end{proof}
Now, defining
\begin{equation}\label{15}
\eta_\lambda(s)=\eta_{\lambda,\theta}(s)
=\frac{\theta}{{\gamma}}\int_0^s\frac{t^{\theta}}{H_{\lambda,
{\gamma}}(t^{\theta})}dt, \quad s>0, \; {\gamma} \in \mathcal{A}, \;
\lambda>0,
\end{equation}
it follows that
\begin{equation}\label{a+}
\eta_{\lambda,\theta}({\gamma})=\Gamma_{\lambda,\theta}({\gamma})
>\|\omega_M\|_\infty+\bar{\sigma},
\end{equation}
for each $0<\lambda<\Lambda^*({\gamma})$, where
$\bar{\sigma}=\bar{\sigma}(\lambda, \theta,
{\gamma})=\big(\Gamma_{\lambda,\theta}({\gamma})-\|\omega_M\|_\infty\big)/2>0$.
Besides this, the following lemma follows from the previous results.
\begin{lemma}\label{eta}
Suppose {\rm (M1)} and {\rm(F1)} hold. Then, for each
$0<\lambda<\lambda^*_\theta(\Omega)$ given:
\begin{itemize}
\item[(i)] $[\bar{\sigma}, \|\omega_M\|_\infty+\bar{\sigma}]\subset
\operatorname{Im}(\eta_\lambda)$;
\item[(ii)] $\eta_\lambda \in C^2((0, \infty), \operatorname{Im}(\eta_\lambda))$
is increasing in $s>0$;
\item[(iii)] $ \eta_\lambda^{-1}:=\psi_\lambda \in \ C^2((\operatorname{Im}
(\eta_\lambda)\backslash \{0\}, (0,\infty))$ is increasing in $s>0$;
\item[(iv)] $\psi_\lambda'(s)=\frac{{\gamma} H_{\lambda,
\gamma_0}(\psi_\lambda(s)^{\theta})}{\theta\psi_\lambda(s)^{\theta}}$, $s>0$;
\item[(v)] $\psi_\lambda''(s)\leq 0$, $s>0$;
\item[(vi)] $\eta_\lambda$ is decreasing in $\lambda$.
\end{itemize}
\end{lemma}
\section{An auxiliary problem}
To solve the problem \eqref{1} with the gradient term in the
presence of nonlinearities $f$ and $g$ already described, we will
explore the behavior of the auxiliary $\lambda, \gamma,
\theta$-functions given in the previous section considering
different intervals of variation for $q\in [0, p]$ and an
appropriate division of the domain $\Omega\subset\mathbb{R}^N$. All
this together with the behavior of the $\Lambda^*$-curve will allow
us to determine a $\mu^*$-curve whose behavior will define the
region of variation of the parameter $\mu\geq 0$.
As a consequence of the hypotheses (M1), (F1) and of the behavior of
$\Lambda^*, \mu^* $-curves, we obtain a $\gamma_0$ which allow us to
show the existence of solution ($\epsilon$-uniformly limited in $
L^\infty(\Omega)$) of the $\epsilon $-family of problems \eqref{8}
below, for appropriate $ \lambda>0$ and $\mu \geq 0$.
In this sense, we will construct a positive bounded upper solution
for the $\epsilon$-family of problems
\begin{equation} \label{8}
\begin{gathered}
- \Delta_p u = a(x)f(u+\epsilon) + \lambda b(x)g(u+\epsilon) +\mu V(x, \nabla u)
\quad \text{in } \Omega\\
u>0 \quad\text{in } \Omega,\quad u=0 \quad \text{on } \partial \Omega,
\end{gathered}
\end{equation}
for sufficiently small $\epsilon>0$.
\begin{proposition}\label{SuperDL}
Assume {\rm (F1), (M1), (V1)} with $q \in [0, p]$ hold. Then there
exists a $ \lambda^*>0$ such that for each $0<\lambda<\lambda^*$,
there exist real numbers
$\overline{\sigma}=\overline{\sigma}(\lambda)>0$ and
$\mu^*=\mu^*_\lambda>0$, both independent of $\epsilon$, such that
if $0<\sigma\leq\overline{\sigma}$ and $0\leq\mu<\mu^*$, then there
exists a $ v_\sigma=v_{\sigma, \lambda} \in C^1(\overline{\Omega})$
upper solution of $\eqref{8}$. Additionally:
\begin{itemize}
\item [(i)] $\psi_\lambda({\sigma})^{\theta_0} \leq
v_{{{\sigma}}}\leq \gamma_0^{\theta_0}$ for some
$\theta_0=\theta_0(\lambda) \in (\Vert w_M
\Vert_{\infty}f_i^{1/(p-1)} ,1]$ and
$\gamma_0=\gamma_0(\lambda)>0$;
\item [(ii)] if $(F_ i)$ holds, for $i \in \{0,\infty\}$, then
$$
\lambda^*\geq
\frac{1}{g_i}\Big(\frac{1}{\|\omega_M\|_{L^\infty(\Omega)}^{p-1}}-f_i\Big)
:=\lambda^i;
$$
\item [(iii)] there exists a constant $d>0$ such that for
$0<\lambda<\lambda^i$, we have
$$
\mu^*_\lambda\geq d\min\big\{{[f^i+\lambda
g^i]^{\frac{p-1-q}{p-1}}}, {f^i+\lambda g^i}\big\} \quad \text{if } q
\in [0,p-1].
$$
\end{itemize}
\end{proposition}
\begin{proof}
Because the possible singular behavior of the nonlinearities, we divide this
proof into two parts, depending on the value of the
exponent $q$ of the gradient term in the hypothesis (V1).
\smallskip
\noindent\textbf{Case one:} $q \in [0, p-1]$. In this case, we
pick $\theta_0=1$ and take $\theta=\theta_0$ in the functions
$\Gamma_{\lambda, \theta}$ and $\eta_{\lambda,\theta}$. So, given
$0<\lambda<\lambda^*:=\lambda^*_1(\Omega)$ we define, for each
${\gamma}>0$, the positive number
\begin{equation}\label{ex}
\mu^*_{\lambda}({\gamma})=\mu^*_{\lambda,
\Omega}({\gamma}):=\min\Big\{\frac{[{f}({\gamma})+\lambda
{g}({\gamma})]^{\frac{p-1-q}{p-1}}}{4\|\nabla\omega_M\|_{L^\infty(\Omega)}^q},
\frac{{f}({\gamma})+\lambda {g}({\gamma})}{4}\Big\}.
\end{equation}
Now, we can define
\begin{equation}\label{ex1}
\mu^*_\lambda=\mu^*_{\lambda,
\Omega}:=\sup\{\mu^*_{\lambda}({\gamma}): {\gamma} \in
\mathcal{A}\ \text{and} \ \lambda<\Lambda^*({\gamma})\}\in
(0,\infty].
\end{equation}
So, from \eqref{lam}, there exists $\overline{\gamma} \in
\mathcal{A}$ such that $\lambda<\Lambda^*(\overline{\gamma})$. That
is, $\mu^*_\lambda\geq\mu^*_{\lambda}(\overline{\gamma})>0$.
Thus, given $0\leq\mu<\mu^*_\lambda$ there is a $\gamma_0 =
\gamma_0(\lambda)\in \mathcal{A}$ such that $\lambda <
\Lambda^*(\gamma_0)$ and $\mu<\mu^*_{\lambda}(\gamma_0)$. Now, we
fix this $\gamma_0$.
From the hypothesis (M1) and Lemma \ref{eta} (ii), we define
$v_{\sigma}=v_{\sigma,\lambda} \in C^1(\overline{\Omega})$,
increasing in $\sigma$, by
\begin{equation}\label{17}
v_{\sigma}(x):=\psi_\lambda(\omega_M(x)+{\sigma}), \ x \in
\overline{\Omega}
\end{equation}
for each $0<\sigma \leq \bar{\sigma}$, where
$\bar{\sigma}=\bar{\sigma}(\lambda)$ is given in \eqref{a+}. So,
$v_\sigma(x)>\psi_\lambda(\sigma)$ in $\Omega$ and
$v_\sigma(x)=\psi_\lambda({\sigma})$ on $\partial \Omega$, because
$\omega_M(x)>0$ in $\Omega$ and $\omega_M(x)=0$ on $\partial\Omega$.
Besides this, from \eqref{a+}, Lemma \ref{eta} (iii) and
$0<\lambda<\Lambda^*(\gamma_0)$ we have that
$v_{\overline{\sigma}}(x)<\gamma_0, \ x \in \overline{\Omega}$. So,
there exists an $\epsilon>0$, which is sufficiently small, such that
\begin{equation}\label{18}
\| v_{\sigma}\|_{L^\infty(\Omega)}<\gamma_0-\epsilon,~0<\sigma \leq
\bar{\sigma}.
\end{equation}
Now, it follows from \eqref{17}, Lemmas \ref{H}, \ref{eta} and the
assumption (M1), that
\begin{equation}\label{19}
\begin{aligned}
&\int_{\Omega}|\nabla v_{\sigma}|^{p-2}\nabla v_{\sigma} \nabla\phi\, dx\\
&=\int_{\Omega}[\psi_\lambda'(\omega_M)+\sigma]^{p-1}
|\nabla\omega_M|^{p-2} \nabla\omega_M\nabla\phi\,dx\\
&= \int_{\Omega}|\nabla\omega_M|^{p-2} \nabla\omega_M
\nabla([\psi_\lambda'(\omega_M+\sigma)]^{p-1} \phi)\, dx\\
&\quad -(p-1)\int_{\Omega}|\nabla\omega_M|^p
[\psi_\lambda'(\omega_M+\sigma)]^{p-2}\psi_\lambda''(\omega_M+\sigma)\phi\,dx\\
&\geq \int_{\Omega} M(x)[\psi_\lambda'(\omega_M+\sigma)]^{p-1} \phi\,dx\\
&=\int_{\Omega} M(x)\gamma_0^{p-1}\Big[\frac{H_{\lambda,
\gamma_0}(\psi_\lambda(\omega_M+\sigma))}{\psi_\lambda(\omega_M+\sigma)}\Big]^{p-1}
\phi\, dx
\end{aligned}
\end{equation}
for each $\phi \in C_0^\infty(\Omega)$, $\phi\geq 0$.
The study of this inequality will be divided in two parts. One of
them will produce an estimate for $af+\lambda bg$ while the other
will result in an estimate for $\mu V$.
We note that from the definitions and properties of the functions
defined in the Section 2 and \eqref{18} that
\begin{equation}\label{20}
\begin{aligned}
&\frac{1}{2}\int_{\Omega}
M(x)\gamma_0^{p-1}\Big[\frac{ H_{\lambda,
\gamma_0}(\psi_\lambda(\omega_M+{\sigma}))}{\psi_\lambda(\omega_M+{\sigma})}
\Big]^{p-1}\phi \\
&\geq\frac{1}{2}\int_{\Omega}
M(x)\gamma_0^{p-1}\frac{{\zeta}_{\lambda,
\gamma_0}(v_{\sigma}+\epsilon)}{(v_{\sigma}+\epsilon)^{p-1}} \phi \\
&\geq \frac{1}{2}\int_{\Omega}
M(x)\gamma_0^{p-1}\frac{{\zeta}_{\lambda,
\gamma_0}(v_{\sigma}+\epsilon)}{(\gamma_0)^{p-1}} \phi\\
&\geq\int_{\Omega} [a(x) f(v_{\sigma}+\epsilon)+\lambda
b(x)g(v_{\sigma}+\epsilon)]\phi
\end{aligned}
\end{equation}
for each $\epsilon>0$ and $0<\sigma<\bar{\sigma}$.
On the other hand, from Lemma \ref{H} (iii)-(iv)
and $0 \leq q \leq p-1$, it follows that
\begin{align*}
&\frac{1}{2}\int_{\Omega}
M(x)\gamma_0^{p-1}\Big[\frac{ H_{\lambda,
\gamma_0}(\psi_\lambda(\omega_M+{\sigma}))}{\psi_\lambda(\omega_M+{\sigma})}\Big]^{p-1}\phi\,dx\\
&\geq \frac{1}{4}\int_{\Omega}
M(x)\gamma_0^{p-1}\Big[\frac{f(\gamma_0)}{\gamma_0^{p-1}}+\lambda
\frac{g(\gamma_0)}{\gamma_0^{p-1}}\Big] \phi\,dx \\
&\quad +\frac{1}{4}\int_{\Omega}
M(x)\gamma_0^{p-1-q}\Big[\frac{ H_{\lambda,
\gamma_0}(\psi_\lambda(\omega_M+{\sigma}))}{\psi_\lambda(\omega_M+{\sigma})}
\Big]^{p-1-q}\Big[\frac{
\gamma_0 H_{\lambda,
\gamma_0}(\psi_\lambda(\omega_M+{\sigma}))}
{\psi_\lambda(\omega_M+{\sigma})}\Big]^q\phi\,dx\\
&\geq \frac{[{f(\gamma_0)}+\lambda
{g(\gamma_0)}]}{4}\int_\Omega M(x)\phi\,dx\\
&\quad + \frac{\{[{f(\gamma_0)}+\lambda {g(\gamma_0)}]^{\frac{1}{p-1}}\}^{p-1-q}}{4}\int_\Omega
M(x)[\psi'_\lambda(\omega_M+{\sigma})]^q \phi\,dx\\
&\geq \frac{[f(\gamma_0)+\lambda {g(\gamma_0)}]}{4}\int_\Omega
\beta(x)\phi\,dx\\
&\quad +\frac{[{f}({\gamma_0})+ \lambda
{g}({\gamma_0})]^{\frac{p-1-q}{p-1}}}{4\|\nabla\omega_M\|_{L^\infty(\Omega)}^q}
\int_\Omega M(x)[\psi'_\lambda(\omega_M+{\sigma})]^q |\nabla\omega_M |^q \phi\,dx.
\end{align*}
Now, using (V1) and \eqref{ex} we can write
\begin{equation}\label{5+}
\begin{aligned}
&\frac{1}{2}\int_{\Omega}
M(x)\gamma_0^{p-1}\Big[\frac{ H_{\lambda,
\gamma_0}(\psi_\lambda(\omega_M+{\sigma}))}{\psi_\lambda(\omega_M+{\sigma})}
\Big]^{p-1}\phi\,dx\\
&\geq \mu^*_{\lambda}(\gamma_0)\int_\Omega\beta(x)\phi\,dx
+\mu^*_{\lambda}(\gamma_0)\int_\Omega\alpha(x)| \nabla v_{\sigma}
|^q \phi\,dx \geq \mu\int_\Omega V(x, \nabla v_{\sigma})\phi\,dx.
\end{aligned}
\end{equation}
So, replacing \eqref{20} and \eqref{5+} in \eqref{19}, we conclude
the proof of Proposition \ref{SuperDL}.
\smallskip
\noindent\textbf{Case two:} $q \in (p-1, p]$. If $g_i<\infty$, we
define $\lambda^*:=\liminf_{\theta\nearrow 1}\lambda^*_\theta(\Omega)$, where
$\lambda^*_{\theta}(\Omega)$ was
defined in \eqref{lam}. Note that, by Lemma \ref{eta2}, we have
$\lambda^*\geq \lambda^i_{\theta}$ with $\theta=1$. So, given
$0<\lambda<\lambda^*$, there is a $\theta_0=\theta_0(\lambda) \in
(\Vert w_M \Vert_{\infty}f_i^{1/(p-1)} ,1)$ such that
$0<\lambda<\lambda^*_{\theta_0}(\Omega).$ Now, we fix this
$\theta_0$ in the functions $\Gamma_{\lambda, \theta}$ and
$\eta_{\lambda, \theta}$ defined in \eqref{13} and \eqref{15},
respectively. So, if $g_i=\infty$, we choose a $\theta_0 \in (\Vert
w_M \Vert_{\infty}f_i^{1/(p-1)} ,1)$ and we set
$\lambda^*=\lambda^*_{\theta_0}(\Omega)$. In this case, we have
$\lambda^*\geq \lambda^i_{\theta_0}$.
In both cases, given $0<\lambda<\lambda^*$, we set the positive
number $\mu^*_\lambda(\gamma):=\mu^*_{\lambda, \Omega}({\gamma})$ by
\begin{equation}\label{mu'}
\begin{aligned}
\min\Big\{&\frac{\gamma^{p-1-q}}{4C_2\|\nabla\omega_M\|^q_{L^\infty(\Omega)}}
\frac{\gamma^{(p-1)(\theta_0-1)}[f(\gamma)+\lambda g(\gamma)]}{4},\\
&\frac{(1-\theta_0)(p-1)[\gamma H_{\lambda,
\gamma}(1)]^{p-q}}{4\|\alpha\|_{L^\infty(\Omega)}}\Big\}
\end{aligned}
\end{equation}
for each $\gamma>0$ and for some constant $C_2=C_2(\gamma)>0$ to be
chosen posteriorly. Now, we define
$$
\mu^*_\lambda=\mu^*_{\lambda,
\Omega}:=\sup\big\{\mu^*_\lambda(\gamma): \gamma \in \mathcal{A} \
\text{and} \ \lambda<\Lambda^*(\gamma)\big\}.
$$
As in Case one, we claim that $\mu^*_\lambda>0$ and given
$0\leq\mu<\mu^*_\lambda$, there is a $\gamma_0=\gamma_0(\lambda)
\in \mathcal{A}$ such that $\lambda<\Lambda^*(\gamma_0)$ and
$\mu<\mu^*_\lambda(\gamma_0)$. From now on, we fix this $\gamma_0$.
Since $\omega_M \in C^1(\overline{\Omega}) $ and
${\partial\omega_M}/{\partial\nu}<0 $ on $\partial\Omega$, there are
$\delta_0>0$ sufficiently small and $k_0=k_0(\delta_0)>0$ such that
\begin{equation}\label{11+}
|\nabla\omega_M|^p>{k_0(\delta_0)} \quad \text{for } x \in
\Omega_{\delta_0},
\end{equation}
where $\Omega_{\delta_0}=\{ x \in \Omega: \text{dist}(x,
\partial\Omega)<\delta_0\}$ and
$\nu$ is the exterior normal to the $\partial\Omega$.
In a similar way to that done in \eqref{17}, we obtain that
\begin{equation}\label{defv}
v_{{\sigma}}(x):=[\psi_\lambda(\omega_M(x)+{\sigma})]^{\theta_0}, \quad
x \in \overline{\Omega}
\end{equation}
is well-defined, $\psi_\lambda(\sigma)^{\theta_0} \leq v_\sigma\in
C^1(\overline{\Omega})$ and
$\|v_\sigma\|_{L^\infty(\Omega)}<\gamma_0^{\theta_0}$, for each $
0<\sigma\leq\bar{\sigma}$. In the last conclusion, we used Lemma
\ref{eta} and the inequality \eqref{a+}.
That is, there is a sufficiently small $\epsilon>0$ such that
\begin{equation}\label{10+}
\| v_\sigma\|_{L^\infty(\Omega)}<\gamma_0^{\theta_0}-\epsilon.
\end{equation}
Since
$\lim_{s\to 0} \psi_\lambda(s)=0$, we can take
$0<\tilde{\sigma}<\bar{\sigma}$ sufficiently small such that
\begin{equation}\label{d}
\psi_\lambda(\tilde{\sigma})^{\theta_0}<\frac{1}{2} \quad\text{and} \quad
\frac{k_0(\delta_0)}{2\psi_\lambda(\tilde{\sigma})^{\theta_0}}
>\|\nabla\omega_M\|^q_{L^\infty(\Omega)}.
\end{equation}
So, from Lemma \ref{eta} (iii), it follows that
$v_\sigma(x)0$ sufficiently
small such that
\begin{equation}\label{10+"}
v_{{\sigma}}(x)< v_{\tilde{\sigma}}(x)<
2\psi_\lambda({{\tilde{\sigma}}})^{\theta_0}, \quad \text{for }
x \in \Omega_{\delta_1}, \; \sigma \in (0, \tilde{\sigma}).
\end{equation}
Then, from \eqref{11+}, \eqref{d} and \eqref{10+"}, we have
\begin{equation}\label{1.27}
\frac{|\nabla\omega_M(x)|^p}{v_{\sigma}(x)}>\frac{k_0(\delta_0)}{2
\psi_\lambda(\tilde{\sigma})^{\theta_0}}> |\nabla\omega_M(x)|^q,
\end{equation}
for each $ x \in \Omega_\delta$, where $\delta=\min\{\delta_0,
\delta_1\}>0$.
Now, given $\phi \in C_0^\infty(\Omega)$ with $\phi\geq 0$ and
$0<\sigma<{\tilde{\sigma}}$, we take $ \tau\in C_0^\infty(\Omega)$
defined by $\tau= 1$ in $\Omega\backslash\Omega_\delta$ and $\tau=
0$ in $\Omega_{\delta/2}$ with $0\leq\tau\leq 1$. So,
writing $\phi = \tau \phi + (1-\tau) \phi$, we have that
\begin{equation}\label{15+}
\int_\Omega| \nabla v_{\sigma}|^{p-2}\nabla v_{\sigma} \nabla \phi
=\int_{\Omega\backslash\Omega_{\delta/2}}|\nabla
v_{\sigma} |^{p-2}\nabla v_{\sigma} \nabla (\tau\phi)
+\int_{\Omega_\delta}|\nabla v_{\sigma} |^{p-2}\nabla
v_{\sigma} \nabla (1-\tau)\phi .
\end{equation}
In $\Omega\backslash\Omega_{\delta/2}$, it follows from the
definition of $v_\sigma$, that
\begin{align*}
&\int_{\Omega\backslash\Omega_{\delta/2}}|\nabla v_{\sigma}
|^{p-2}\nabla v_{\sigma} \nabla (\tau\phi)\\
&=\int_{\Omega\backslash\Omega_{\delta/2}}|\nabla\omega_M|^{p-2}
\nabla\omega_M\nabla\big\{
{\theta_0}^{p-1}[\psi_\lambda(\omega_M+\sigma)]^{(\theta_0-1)(p-1)}
[\psi'_\lambda(\omega_M+\sigma)]^{p-1}\tau\phi\big\}\\
&\quad-(\theta_0-1)(p-1)\int_{\Omega\backslash\Omega_{\delta/2}}
|\nabla\omega_M|^{p} {\theta_0}^{p-1}\\
&\quad\times [\psi_\lambda(\omega_M+\sigma)]^{(\theta_0-1)(p-1)-1}
[\psi'_\lambda(\omega_M+\sigma)]^{p} \tau\phi \\
&\quad -(p-1)\int_{\Omega\backslash\Omega_{\delta/2}}|\nabla\omega_M|^{p}
{\theta_0}^{p-1}[\psi_\lambda(\omega_M+\sigma)]^{(\theta_0-1)(p-1)}\\
&\quad\times [\psi'_\lambda(\omega_M+\sigma)]^{p-2}
\psi''_\lambda(\omega_M+\sigma) \tau\phi
\end{align*}
Now, recalling that $\theta_0 \in (\Vert w_M
\Vert_{\infty}f_i^{1/(p-1)} ,1)$, $ \psi^{\prime}_\lambda\geq 0$,
$\psi_\lambda^{\prime\prime}\leq 0$ (see Lemma \ref{eta}) and noting that
$$
{\theta_0}^{p-1}[\psi_\lambda(\omega_M+\sigma)]^{(\theta_0-1)(p-1)}[\psi'_\lambda(\omega_M+\sigma)]^{p-1}\tau\phi
\in W_0^{1, p}(\Omega),
$$ it follows from (M1) and Lemma \ref{eta} (iv) that
\begin{equation} \label{16++}
\begin{aligned}
&\int_{\Omega\backslash\Omega_{\delta/2}}|\nabla
v_{\sigma} |^{p-2}\nabla v_{\sigma} \nabla (\tau\phi) dx\\
&\geq \int_{\Omega\backslash\Omega_{\delta/2}}|\nabla\omega_M|^{p-2}
\nabla\omega_M \nabla\big\{
{\theta_0}^{p-1}[\psi_\lambda(\omega_M+\sigma)]^{(\theta_0-1)(p-1)}\\
&\quad\times [\psi'_\lambda(\omega_M+\sigma)]^{p-1}\tau\phi\big\}\\
&\geq \int_{\Omega\backslash\Omega_{\delta/2}}M(x)
{\theta_0}^{p-1}[\psi_\lambda(\omega_M+\sigma)]^{(\theta_0-1)(p-1)}[\psi'_\lambda(\omega_M+\sigma)]^{p-1}\tau\phi
\\
&=\int_{\Omega\backslash\Omega_{\delta/2}}
M(x)
{\theta_0}^{p-1}{v}_{\sigma}^{\frac{(\theta_0-1)(p-1)}{\theta_0}}
\frac{\gamma_0^{p-1}}{\theta_0^{p-1}}\Big[\frac{H_{\lambda,
\gamma_0}((\psi_\lambda(\omega_M+\sigma))^{\theta_0})}
{(\psi_\lambda(\omega_M+\sigma))^{\theta_0}}\Big]^{p-1}\tau\phi.
\end{aligned}
\end{equation}
As in Case one, the analysis of this inequality will be divided in
two parts. So, from the properties of auxiliary functions, Lemma
\ref{H} (ii) and \eqref{10+}, we have
\begin{equation}\label{17+}
\begin{aligned}
&\frac{1}{2}\int_{\Omega\backslash\Omega_{\delta/2}}| \nabla
v_{\sigma} |^{p-2}\nabla v_{\sigma} \nabla \tau\phi\,dx\\
&\geq \frac{1}{2}\int_{\Omega\backslash\Omega_{\delta/2}}
M(x)\gamma_0^{(\theta_0-1)(p-1)}\gamma_0^{p-1}\frac{{\zeta}_{\lambda,
\gamma_0}(v_{\sigma}+\epsilon)}{(v_{\sigma}+\epsilon)^{p-1}}\tau\phi \\
&\geq \frac{1}{2}\int_{\Omega\backslash\Omega_{\delta/2}}
M(x)\gamma_0^{(p-1)\theta_0}\frac{{\zeta}_{\lambda,
\gamma_0}(v_{\sigma}+\epsilon)}{\gamma_0^{\theta_0(p-1)}}\tau\phi
\\
&\geq \frac{1}{2}\int_{\Omega\backslash\Omega_{\delta/2}}
M(x)[{f_ {\gamma_0}}(v_{\sigma}+\epsilon)+\lambda{g_ {\gamma_0}}(v_{\sigma}+\epsilon)]\tau\phi \\
&\geq \int_{\Omega\backslash\Omega_{\delta/2}}[a(x)f(v_{\sigma}+\epsilon)+\lambda
b(x)g(v_{\sigma}+\epsilon)]\tau\phi,
\end{aligned}
\end{equation}
for each $\lambda\in (0, \lambda^*)$,
$\sigma \in (0, \tilde{\sigma})$, $\epsilon>0$.
Now, denoting by
\begin{equation}\label{v}
v(x):=\lim_{\sigma\to 0}v_{\sigma}(x)
=[\psi_\lambda(\omega_M(x))]^{\theta_0}, \quad
x \in \overline{\Omega},
\end{equation}
it follows from Lemma \ref{H} (iii), $v_{\sigma}>v>0$ in
$\Omega\backslash\Omega_{\delta/2}$ and $ q \in (p-1, p]$
that
\begin{equation}\label{18+}
\begin{aligned}
\Big[\frac{H_{\lambda,\gamma_0}(v_{\sigma})}{v_{\sigma}}\Big]^{q-(p-1)}
&\leq \Big[\frac{H_{\lambda, \gamma_0}(v)}{v}\Big]^{q-(p-1)}\\
&\leq\big\|\frac{H_{\lambda, \gamma_0}(v)}{v}
\big\|_{L^\infty(\Omega\backslash\Omega_{\delta/2})}^{q-(p-1)}\\
&= C_2\Big[\min_{\overline{\Omega}\backslash\Omega_{\delta/2}}
v\Big]^{\frac{(\theta_0-1)(p-1-q)}{\theta_0}}\\
&\leq C_2 v^{\frac{(\theta_0-1)(p-1-q)}{\theta_0}}\\
&< C_2 v_{\sigma}^{\frac{(\theta_0-1)(p-1-q)}{\theta_0}}, \quad
\text{for all } x \in \overline{\Omega\backslash\Omega}_{\delta/2},
\end{aligned}
\end{equation}
where
\[
C_2={\big\|\frac{H_{\lambda,\gamma_0}(v)}{v}\big\|_{L^\infty(\Omega
\backslash\Omega_{\delta/2})}^{q-(p-1)}}
\big/{\Big[\min_{\overline{\Omega}\backslash\Omega_{\delta/2}}
v\Big]^{\frac{(\theta_0-1)(p-1-q)}{\theta_0}}}>0
\]
is independent of $\sigma$.
Now we show that
\begin{align*}
\frac{1}{2}\int_{\Omega\backslash\Omega_{\delta/2}}| \nabla
v_{\sigma} |^{p-2}\nabla v_{\sigma} \nabla \tau\phi\,dx
&\geq \frac{\gamma_0^{(p-1)(\theta_0-1)}[{f}(\gamma_0)+\lambda
{g}(\gamma_0)]}{4}\int_{\Omega\backslash\Omega_{\delta/2}}
\beta(x)\tau\phi\,dx\\
&\quad +\frac{\gamma_0^{p-1-q}}{4
C_2\|\nabla\omega_M\|^q_{L^\infty(\Omega)}}
\int_{\Omega\backslash\Omega_{\delta/2}}\alpha(x)|\nabla
v_{\sigma} |^q]\tau\phi\,dx
\end{align*}
and as a consequence of this, using \eqref{mu'}, we obtain
$$
\frac{1}{2}\int_{\Omega\backslash\Omega_{\delta/2}}| \nabla
v_{\sigma} |^{p-2}\nabla v_{\sigma} \nabla \tau\phi\,dx
\geq\mu\int_{\Omega\backslash\Omega_{\delta/2}} V(x,
\nabla v_{\sigma})\tau\phi\,dx
$$
for each $0\leq\mu<\mu^*_\lambda$.
By \eqref{18+} and Lemma \ref{H}
(iii)-(iv) in \eqref{16++}, we have
\begin{align*}%\label{comp2}
&\frac{1}{2}\int_{\Omega\backslash\Omega_{\delta/2}}|
\nabla v_{\sigma} |^{p-2}\nabla v_{\sigma} \nabla \tau\phi\,dx\\
&\geq\frac{1}{2}\int_{\Omega\backslash\Omega_{\delta/2}}
M(x)
v_{\sigma}^{\frac{(\theta_0-1)(p-1)}{\theta_0}}\gamma_0^{p-1}
\Big[\frac{H_{\lambda, \gamma_0}(v_{\sigma})}{v_{\sigma}}\Big]^{p-1}\tau\phi \\
&\geq \frac{1}{4}\int_{\Omega\backslash\Omega_{\delta/2}}
M(x)\gamma_0^{(\theta_0-1)(p-1)}\gamma_0^{p-1}
\Big[\frac{f(\gamma_0)}{\gamma_0^{p-1}}+\lambda
\frac{g(\gamma_0)}{\gamma_0^{p-1}}\Big]\tau\phi \\
&\quad +\frac{1}{4}\int_{\Omega\backslash\Omega_{\delta/2}}
M(x)v_{\sigma}^{\frac{(\theta_0-1)(p-1-q)}{\theta_0}}\gamma_0^{p-1-q}
\Big[\frac{H_{\lambda, \gamma_0}(v_{\sigma})}{v_{\sigma}}\Big]^{p-1}
\frac{\theta_0^q}{\theta_0^q} v_{\sigma}^{\frac{(\theta_0-1)q}{\theta_0}}
\gamma_0^q \tau\phi \\
&\geq \frac{\gamma_0^{(p-1)\theta_0}[\frac{f(\gamma_0)}{\gamma_0^{p-1}}+\lambda
\frac{g(\gamma_0)}{\gamma_0^{p-1}}]}{4}\int_{\Omega\backslash\Omega_{\delta/2}}
M(x)\tau\phi
\\
&\quad +\frac{\gamma_0^{p-1-q}}{4
C_2}\int_{\Omega\backslash\Omega_{\delta/2}} M(x)\theta_0^q
v_{\sigma}^{\frac{(\theta_0-1)q}{\theta_0}}\frac{\gamma_0^q}{\theta_0^q}
\Big[\frac{H_{\lambda,
\gamma_0}(v_{\sigma})}{v_{\sigma}}\Big]^q\tau\phi.
\end{align*}
Using \eqref{mu'}, Lemma \ref{eta} (iv), the definition of $M$
and (V1), we obtain
\begin{equation}\label{19++}
\begin{aligned}
&\frac{1}{2}\int_{\Omega\backslash\Omega_{\delta/2}}
| \nabla v_{\sigma} |^{p-2}\nabla v_{\sigma} \nabla \tau\phi\,dx\\
&\geq\frac{\gamma_0^{(p-1)(\theta_0-1)}[{f}(\gamma_0)+\lambda
{g}(\gamma_0)]}{4}\int_{\Omega\backslash\Omega_{\delta/2}}
M(x)\tau\phi\,dx\\
&\quad +\mu^*_\lambda(\gamma_0)\|\nabla\omega_M\|_{L^\infty(\Omega)}^q
\int_{\Omega\backslash\Omega_{\delta/2}}
M(x)[\theta_0\psi_\lambda(\omega_M+\sigma)^{\theta_0-1}
\psi'_\lambda(\omega_M+\sigma)]^q\tau\phi\,dx\\
&\geq \frac{\gamma_0^{(p-1)(\theta_0-1)}[{f}(\gamma_0)+\lambda
{g}(\gamma_0)]}{4}\int_{\Omega\backslash\Omega_{\delta/2}}
\beta(x)\tau\phi\,dx\\
&\quad +\mu^*_\lambda(\gamma_0)
\int_{\Omega\backslash\Omega_{\delta/2}}\alpha(x)
[\theta_0\psi_\lambda(\omega_M+\sigma)^{\theta_0-1}\psi'_\lambda(\omega_M+\sigma)
|\nabla\omega_M|]^q \tau\phi\,dx\\
&\geq \mu^*_\lambda(\gamma_0)\int_{\Omega\backslash
\Omega_{\delta/2}}[\beta(x)+\alpha(x)|\nabla v_{\sigma} |^q]\tau\phi\,dx\\
&\geq \mu\int_{\Omega\backslash\Omega_{\delta/2}} V(x, \nabla
v_{\sigma})\tau\phi\,dx.
\end{aligned}
\end{equation}
Going back to \eqref{16++} and using \eqref{17+} and
\eqref{19++}, we obtain
\begin{equation}\label{21+}
\begin{aligned}
&\int_{\Omega\backslash\Omega_{\delta/2}}|\nabla v_{\sigma}
|^{p-2}\nabla v_{\sigma} \nabla \tau\phi\,dx\\
&\geq\int_{\Omega\backslash\Omega_{\delta/2}}[a(x)f(
v_{\sigma}+\epsilon)+\lambda b(x)g( v_{\sigma}+\epsilon)+\mu V(x,
\nabla v_{\sigma})]\tau\phi,
\end{aligned}
\end{equation}
for each $0<\lambda<\lambda^*$, $0\leq\mu<\mu^*_\lambda$,
$\epsilon>0$.
Below we work on the ring $\Omega_\delta$. As before,
using the definition of $v_{\sigma}$, it follows that
\begin{equation}\label{21++}
\begin{aligned}
&\int_{\Omega_\delta} |\nabla v_{\sigma}
|^{p-2}\nabla v_{\sigma} \nabla (1-\tau)\phi\,dx\\
&= \int_{\Omega_\delta}|\nabla\omega_M|^{p-2}
\nabla\omega_M\nabla\big\{{\theta_0}^{p-1}
[\psi_\lambda(\omega_M+\sigma)]^{(\theta_0-1)(p-1)}\\
&\quad\times [\psi'_\lambda(\omega_M+\sigma)]^{p-1}(1-\tau)\phi\big\} \\
&\quad -(\theta_0-1)(p-1)\int_{\Omega_\delta}|\nabla\omega_M|^{p}
{\theta_0}^{p-1}[\psi_\lambda(\omega_M+\sigma)]^{(\theta_0-1)(p-1)-1}\\
&\quad\times [\psi'_\lambda(\omega_M+\sigma)]^{p}(1-\tau)\phi \\
&\quad -(p-1)\int_{\Omega_\delta}|\nabla\omega_M|^{p}
{\theta_0}^{p-1}[\psi_\lambda(\omega_M+\sigma)]^{(\theta_0-1)(p-1)}\\
&\quad [\psi'_\lambda(\omega_M+\sigma)]^{p-2}
\psi''_\lambda(\omega_M+\sigma)(1-\tau)\phi.
\end{aligned}
\end{equation}
In a way similar to the one for \eqref{17+}, we have
\begin{equation}\label{22+}
\begin{aligned}
&\frac{1}{2}\int_{\Omega_\delta}|\nabla v_{\sigma}
|^{p-2}\nabla v_{\sigma} \nabla (1-\tau)\phi\,dx\\
&\geq \frac{{\theta_0}^{p-1}}{2}\int_{\Omega_\delta} M(x)
[\psi_\lambda(\omega_M+\sigma)]^{(\theta_0-1)(p-1)}
[\psi'_\lambda(\omega_M+\sigma)]^{p-1}(1-\tau)\phi\,dx\\
&\geq \int_{\Omega_\delta}[a(x)f(v_{\sigma}+\epsilon)
+\lambda b(x)g(v_{\sigma}+\epsilon)](1-\tau)\phi\,dx,
\end{aligned}
\end{equation}
for each $\lambda \in (0, \lambda^*)$, $\sigma \in (0,\tilde{\sigma})$,
$\epsilon>0$.
Besides this, we will show that
\begin{align*}
&\frac{1}{2}\int_{\Omega_\delta}| \nabla v_{\sigma}
|^{p-2}\nabla v_{\sigma} \nabla (1-\tau)\phi\,dx\\
&\geq\frac{(1-\theta_0)(p-1)[\gamma_0 H_{\lambda,
\gamma_0}(1)]^{p-q}}{4\Vert \alpha
\Vert_{\infty}}\int_{\Omega_\delta}\alpha(x)|\nabla
v_\sigma|^q(1-\tau)\phi\,dx\\
&\quad +\frac{\gamma_0^{(p-1)(\theta_0-1)}[{f}(\gamma_0)+\lambda
{g}(\gamma_0)]}{4}\int_{\Omega_\delta}\beta(x)(1-\tau)\phi\,dx
\end{align*}
and as a consequence of this, using \eqref{mu'}, we obtain
$$
\frac{1}{2}\int_{\Omega_\delta}| \nabla v_{\sigma} |^{p-2}\nabla
v_{\sigma} \nabla (1-\tau)\phi\,dx\geq\mu\int_{\Omega_\delta}V(x,
\nabla v_{\sigma})(1-\tau)\phi\,dx
$$
for each $0\leq \mu<\mu^*_\lambda$.
In fact, from the properties of the auxiliary functions and (M1), we
have
\begin{align*}
&\frac{1}{2}\int_{\Omega_\delta}| \nabla v_{\sigma}
|^{p-2}\nabla v_{\sigma} \nabla (1-\tau)\phi\,dx\\
&\geq -\frac{(\theta_0-1)(p-1)}{4}\int_{\Omega_\delta}
|\nabla\omega_M|^p\theta_0^{p-1}[\psi_\lambda(\omega_M+\sigma)
]^{(\theta_0-1)(p-1)-1}\\
&\quad\times [\psi'_\lambda(\omega_M+\sigma)]^p(1-\tau)\phi\\
&\quad +\frac{1}{4}\int_{\Omega_\delta}|\nabla\omega_M|^{p-2}
\nabla\omega_M\nabla\{
{\theta_0}^{p-1}[\psi_\lambda(\omega_M+\sigma)]^{(\theta_0-1)(p-1)}\\
&\quad\times [\psi'_\lambda(\omega_M+\sigma)]^{p-1}(1-\tau)\phi\}\\
&= \frac{(1-\theta_0)(p-1)}{4}\int_{\Omega_\delta}
|\nabla\omega_M|^p\theta_0^{p-1}v_{\sigma}^{\frac{p(\theta_0-1)
-\theta_0}{\theta_0}}\frac{\gamma_0^p}{\theta_0^p}
\Big[\frac{H_{\lambda, \gamma_0}(v_{\sigma})}{v_{\sigma}}\Big]^p(1-\tau)\phi\\
&\quad +\frac{1}{4}\int_{\Omega_\delta}M(x){\theta_0}^{p-1}
[\psi_\lambda(\omega_M+\sigma)]^{(\theta_0-1)(p-1)}
[\psi'_\lambda(\omega_M+\sigma)]^{p-1}(1-\tau)\phi.
\end{align*}
That is, from \eqref{1.27} and Lemma \ref{H}, we have
\begin{equation}\label{aa}
\begin{aligned}
&\frac{1}{2}\int_{\Omega_\delta}| \nabla
v_{\sigma} |^{p-2}\nabla v_{\sigma} \nabla (1-\tau)\phi\,dx\\
&=\frac{(1-\theta_0)(p-1)}{4}\int_{\Omega_\delta}
\frac{|\nabla\omega_M|^p}{v_{\sigma}}\frac{\theta_0^{p-1}}{\theta_0^{p-1}}
v_{\sigma}^{\frac{p(\theta_0-1)}{\theta_0}}
\gamma_0^p\Big[\frac{H_{\lambda,
\gamma_0}(v_{\sigma})}{v_{\sigma}}\Big]^p(1-\tau)\phi\,dx\\
&\quad +\frac{1}{4}\int_{\Omega_\delta}M(x){\theta_0}^{p-1}
v_{\sigma}^{\frac{(\theta_0-1)(p-1)}{\theta_0}}\frac{\gamma_0^{p-1}}{\theta_0^{p-1}}
\Big[\frac{H_{\lambda,
\gamma_0}(v_{\sigma})}{v_{\sigma}}\Big]^p(1-\tau)\phi\,dx\\
&\geq \frac{(1-\theta_0)(p-1)}{4}\int_{\Omega_\delta}|\nabla\omega_M|^q
v_{\sigma}^{\frac{p(\theta_0-1)}{\theta_0}}
\gamma_0^p\Big[\frac{H_{\lambda,
\gamma_0}(v_{\sigma})}{v_{\sigma}}\Big]^p(1-\tau)\phi\,dx\\
&\quad + \frac{1}{4}\int_{\Omega_\delta}M(x)\gamma_0^{(\theta_0-1)(p-1)}
\gamma_0^{p-1}\Big[\frac{f(\gamma_0)}{\gamma_0^{p-1}}+\lambda
\frac{g(\gamma_0)}{\gamma_0^{p-1}}\Big](1-\tau)\phi\,dx.
\end{aligned}
\end{equation}
Using that $v_{\sigma}<1$ in $\Omega_\delta$ (see
\eqref{d}), $q[v_{\sigma}(x)
]^{\frac{(\theta_0-1)q}{\theta_0}},
\quad \text{for each } x \in \Omega_\delta
\end{equation}
and from Lemma \ref{H}, we have
\begin{equation}\label{24+}
[H_{\lambda, \gamma_0}(1)]^{p-q}\Big[\frac{H_{\lambda,
\gamma_0}(v_{\sigma})}{v_{\sigma}}\Big]^q\leq
\Big[\frac{H_{\lambda, \gamma_0}(v_{\sigma})}{v_{\sigma}}\Big]^p,
\ x \in \Omega_\delta.
\end{equation}
From \eqref{23+} and \eqref{24+}, we rewrite \eqref{aa} as
\begin{align*}
&\frac{1}{2}\int_{\Omega_\delta}|\nabla
v_{\sigma} |^{p-2}\nabla v_{\sigma}
\nabla (1-\tau)\phi\,dx\\
&\geq \frac{(1-\theta_0)(p-1)}{4}\int_{\Omega_\delta}|\nabla\omega_M|^q
v_{\sigma}^{\frac{(\theta_0-1)q}{\theta_0}}\gamma_0^{p-q}\gamma_0^q
\frac{\theta_0^q}{\theta_0^q}[H_{\lambda, \gamma_0}(1)]^{p-q}\\
&\quad\times \Big[\frac{H_{\lambda,\gamma_0}(v_{\sigma})}{v_{\sigma}}
\Big]^q(1-\tau)\phi\,dx
+\frac{\gamma_0^{(p-1)\theta_0}[\frac{f(\gamma_0)}{\gamma_0^{p-1}}+\lambda
\frac{g(\gamma_0)}{\gamma_0^{p-1}}]}{4}\int_{\Omega_\delta} M(x)(1-\tau)\phi\,dx\\
&= \frac{(1-\theta_0)(p-1)[\gamma_0 H_{\lambda,
\gamma_0}(1)]^{p-q}}{4\Vert \alpha
\Vert_{\infty}}\int_{\Omega_\delta}\Vert \alpha
\Vert_{\infty}\theta_0^q v_{\sigma}^{\frac{(\theta_0-1)q}{\theta_0}}
\Big[\frac{\gamma_0 H_{\lambda, \gamma_0}(v_{\sigma})}{\theta_0
v_{\sigma}}\Big]^q \\
&\quad\times |\nabla\omega_M|^q(1-\tau)\phi
+\frac{\gamma_0^{(p-1)(\theta_0-1)}[{f}(\gamma_0)+\lambda
{g}(\gamma_0)]}{4}\int_{\Omega_\delta} M(x)(1-\tau)\phi\,dx.
\end{align*}
From Lemma \ref{eta} (iv), \eqref{mu'} and definitions of
$v_{\sigma}$, $M$ and (V1), we obtain
\begin{equation}\label{25+}
\begin{aligned}
&\frac{1}{2}\int_{\Omega_\delta}|\nabla
v_{\sigma}|^{p-2}\nabla v_{\sigma} \nabla (1-\tau)\phi\,dx\\
&\geq \mu^*_\lambda(\gamma_0)\|\alpha\|_{L^\infty(\Omega)}\int_{\Omega_\delta}|
\nabla v_{\sigma}|^q(1-\tau)\phi\,dx
+\mu^*_\lambda(\gamma_0)\int_{\Omega_\delta} M(x)(1-\tau)\phi
\\
&\geq \mu^*_\lambda(\gamma_0)\int_{\Omega_\delta}[\alpha(x)|\nabla
v_{\sigma} |^q+\beta(x)](1-\tau)\phi\,dx\\
&\geq \mu\int_{\Omega_\delta}V(x, \nabla v_{\sigma})(1-\tau)\phi\,dx.
\end{aligned}
\end{equation}
for each $0\leq\mu<\mu^*_\lambda$.
Considering \eqref{21++} and
using \eqref{22+} and \eqref{25+}, we have
\begin{equation}\label{26+}
\begin{aligned}
&\int_{\Omega_\delta}|\nabla v_{\sigma} |^{p-2}\nabla v_{\sigma}
\nabla (1-\tau)\phi \\
&\geq\int_{\Omega_\delta}[a(x)f(
v_{\sigma}+\epsilon)+\lambda b(x)g(v_{\sigma}+\epsilon)+\mu V(x,
\nabla v_{\sigma})](1-\tau)\phi ,
\end{aligned}
\end{equation}
for each $0<\lambda<\lambda^*$, $0\leq \mu<\mu^*_\lambda$,
$0 <\sigma <\tilde{\sigma}$ and $\epsilon>0$.
Therefore, replacing \eqref{21+} and \eqref{26+} in \eqref{15+}, we
conclude the proof of the existence of a upper solution for
Proposition \ref{SuperDL}.
To finalize the proof of the proposition, we need to verify the
estimate for $\mu^*$. Assume $(F_0)$. So, from
Lemma \ref{Gamma2} (ii), we have
$$
\lim_{\gamma\to 0}\Gamma_{0, 1}(\gamma)
={f_0^{\frac{-1}{p-1}}}>\|\omega_M\|_{L^\infty(\Omega)}
$$
and a consequence of this there exists a $\tilde{\gamma}>0$
sufficiently small such that $(0, \tilde{\gamma})\subset \mathcal{A}$.
Given $0<\lambda<\lambda^0$, where $\lambda^0=\lambda^i$ with $i=0$
($\lambda^i$ was defined in Theorem \ref{DL+}), we claim that there
exists a $\gamma_0<\tilde{\gamma}$ such that
$\lambda<\Lambda^*(\gamma)$ for all $0<\gamma<\gamma_0$. In fact,
from $\lambda<\lambda^0$ and Lemma \ref{Gamma2} (ii) we have
$$
\lim_{\gamma\to 0}\Gamma_{\lambda,1}(\gamma)=\frac{1}{(f_0+\lambda
g_0)^{\frac{1}{p-1}}}>\|\omega_M\|_{L^\infty(\Omega)}.
$$
So, there exists a $\gamma_0<\tilde{\gamma}$ such that
$\Gamma_{\lambda,1}(\gamma)>\|\omega_M\|_{L^\infty(\Omega)}
=\Gamma_{\Lambda^*(\gamma), 1}(\gamma)$ for $0<\gamma<\gamma_0$.
Now, by Lemma \ref{Gamma2} (iii), we obtain $\lambda<\Lambda^*(\gamma)$,
for all $\gamma \in (0, \gamma_0)$.
From \eqref{ex} and \eqref{ex1} we have
\begin{align*}
\mu^*_{\lambda}
&\geq \sup\{\mu^*_{\lambda}(\gamma):\gamma \in (0,
\gamma_0) ~ \text{and} ~ \lambda<\Lambda^*(\gamma)\}\\
&\geq \liminf_{\gamma\to 0}
\mu^*_{\lambda}(\gamma)=\min\Big\{\frac{[f^0+\lambda
g^0]^{p-1-q}}{4\|\nabla\omega_M\|_{L^\infty(\Omega)}^q},
\frac{f^0+\lambda g^0}{4}\Big\}.
\end{align*}
If $(F_{\infty})$ occurs, we proceed in a similar manner to the above case.
We point out that, in this case, $\gamma_0$ is large.
This completes the proof of Proposition \ref{SuperDL}.
\end{proof}
\section{Conclusion of the proof of Theorem \ref{DL+}}
We begin by constructing a lower solution
for problem \eqref{8}. It follows from the definition of $\lambda_*$
that given $\lambda>\lambda_*$, there exists a $0<\epsilon_1 \leq
\min\{\gamma_0,\gamma_0^{\theta_0}\}$ such that
$$
f(s) + \lambda g(s) \geq \lambda_{ \Omega}(\rho)
s^{p-1},\quad \text{for } 00$ such that
$C\|\varphi_\Omega\|_{L^\infty(\Omega)}={\epsilon_1}/2$, it follows
that
\begin{equation}\label{27ii}
C\|\varphi_\Omega\|_{L^\infty(\Omega)}+\epsilon
0$
is the eigenfunction associated to the first eigenvalue
$\lambda_{\Omega}>0$ of problem \eqref{7}.
Thus, given $\phi \in C_0^\infty(\Omega)$ with $\phi\geq 0$, we
obtain
$$
\int_\Omega|\nabla (C\varphi_\Omega)|^{p-2} \nabla (C\varphi_\Omega)
\nabla\phi\,dx\leq\int_\Omega[\lambda b(x)g( C\varphi_\Omega+\epsilon)
+a(x)f( C\varphi_\Omega+\epsilon)]\phi\,dx;
$$
that is, $C\varphi_\Omega$ is a lower solution of \eqref{8} for each
$0<\epsilon<\epsilon_1/{2}$, $0<\lambda<\lambda^*$ and $0<\mu <
\mu^*_\lambda$, because of the positivity of $V$.
Now, we claim that
\begin{equation}\label{compp}
C\varphi(x)\leq v_{\sigma}(x), \quad x \in \overline{\Omega}.
\end{equation}
First, we consider $q \in [0, p-1]$. In this case,
$v_{\sigma}=\psi_\lambda(\omega_M+\sigma)$ is defined in \eqref{17}.
So, from \eqref{27ii} and \eqref{12}, for all
$\phi \in C_0^\infty(\Omega)$, $\phi\geq 0$, we have
\begin{equation}\label{22'}
\begin{aligned}
&\int_\Omega|\nabla
(C\varphi_\Omega)|^{p-2} \nabla (C\varphi_\Omega) \nabla\phi\,dx\\
&\leq \int_\Omega\Big[\gamma_0^{p-1}
a(x)\frac{f(C\varphi_\Omega+\epsilon)}{(C\varphi_\Omega+\epsilon)^{p-1}}
+\gamma_0^{p-1}\lambda
b(x)\frac{g(C\varphi_\Omega+\epsilon)}{(C\varphi_\Omega+\epsilon)^{p-1}}\Big]\phi\,dx
\\
&\leq \int_\Omega\Big[\gamma_0^{p-1} a(x)\frac{{f_{
\gamma_0}}(C\varphi_\Omega+\epsilon)}{(C\varphi_\Omega
+\epsilon)^{p-1}}+\gamma_0^{p-1}\lambda
b(x)\frac{{g_ {\gamma_0}}(C\varphi_\Omega+\epsilon)}
{(C\varphi_\Omega+\epsilon)^{p-1}}\Big]\phi\,dx\\
&=\int_\Omega M(x)\gamma_0^{p-1}\frac{{\zeta}_{\lambda,
\gamma_0}(C\varphi_\Omega+\epsilon)}{(C\varphi_\Omega+\epsilon)^{p-1}}\phi\,dx\\
&\leq \int_\Omega M(x)\gamma_0^{p-1}\frac{{\zeta}_{\lambda,
\gamma_0}(C\varphi_\Omega)}{(C\varphi_\Omega)^{p-1}}\phi\,dx.
\end{aligned}
\end{equation}
Moreover, from \eqref{19} and Lemma \ref{H}, we have
\begin{equation}\label{23'}
\int_\Omega|\nabla v_\sigma)|^{p-2} \nabla v_\sigma \nabla\phi\,dx
\geq \int_\Omega M(x)\gamma_0^{p-1}\frac{{\zeta}_{\lambda, \gamma_0}
(v_{\sigma})}{v_{\sigma}^{p-1}}\phi\,dx,
\end{equation}
for all $\phi \in C_0^\infty(\Omega), \phi\geq 0$. So, from
\eqref{22'}, \eqref{23'}, ${\zeta}_{\lambda, \gamma_0}(s)/{s^{p-1}}$
non-increasing in $s>0$ and
$C\varphi_\Omega=0<\psi_{\lambda}(\sigma)=v_{\sigma}$ on
$\partial\Omega$, we apply a comparison principle for weak
solutions (see Tolksdorf \cite{Tolks1}) to obtain \eqref{compp}.
In the second case, that is $q \in (p-1,p]$, we recall that
$v_{\sigma}=[\psi_\lambda(\omega_M+\sigma)]^{\theta_0}$, where
$\theta_0 \in (\Vert w_M \Vert_{\infty}f_i^{1/(p-1)},1)$, see
\eqref{defv}. In a similar way to the first case (that is, $q \in
[0,p-1]$), we obtain
\begin{equation}\label{27+i}
\int_\Omega|\nabla v_\sigma|^{p-2} \nabla v_\sigma \nabla\phi\,dx\geq
\int_\Omega M(x)\gamma_0^{(p-1)\theta_0}\frac{{\zeta}_{\lambda,
\gamma_0}(v_{\sigma})}{v_{\sigma}^{p-1}}\phi\,dx,
\end{equation}
for all $\phi \in C_0^\infty(\Omega)$ with $\phi\geq 0$.
From \eqref{27ii}, definitions and properties of auxiliary
functions $\xi_{f,\gamma_0}$, $\xi_{g,\gamma_0}$ and
$\xi_{\lambda,\gamma_0}$, we have
\begin{equation} \label{27+ii}
\begin{aligned}
&\int_\Omega|\nabla (C\varphi_\Omega)|^{p-2} \nabla
(C\varphi_\Omega) \nabla\phi\,dx\\
&\leq \int_\Omega\left[\gamma_0^{(p-1)\theta_0}
a(x)\frac{f(C\varphi_\Omega+\epsilon)}{(C\varphi_\Omega+\epsilon)^{p-1}}
+\gamma_0^{(p-1)\theta_0}\lambda b(x)\frac{g(C\varphi_\Omega+\epsilon)}
{(C\varphi_\Omega+\epsilon)^{p-1}}\right]\phi\,dx\\
&\leq \int_\Omega\Big[\gamma_0^{(p-1)\theta_0}a(x)\frac{f_{
\gamma_0}(C\varphi_\Omega+\epsilon)}{(C\varphi_\Omega
+\epsilon)^{p-1}}+\gamma_0^{(p-1)\theta_0}\lambda
b(x)\frac{{g_ {\gamma_0}}(C\varphi_\Omega+\epsilon)}{(C\varphi_\Omega+\epsilon)^{p-1}}
\Big]\phi\,dx\\
&=\int_\Omega
M(x)\gamma_0^{(p-1)\theta_0}\frac{{\zeta}_{\lambda,
\gamma_0}(C\varphi_\Omega+\epsilon)}{(C\varphi_\Omega+\epsilon)^{p-1}}\phi\,dx\\
&\leq\int_\Omega
M(x)\gamma_0^{(p-1)\theta_0}\frac{{\zeta}_{\lambda,
\gamma_0}(C\varphi_\Omega)}{(C\varphi_\Omega)^{p-1}}\phi\,dx,
\end{aligned}
\end{equation}
for all $\phi \in C_0^\infty(\Omega), \phi\geq 0$.
Hence, from \eqref{27+i}, \eqref{27+ii}, ${\zeta}_{\lambda,
\gamma_0}(s)/{s^{p-1}}$ non-increasing in $s>0$ and
$C\varphi_\Omega=0<\psi_{\lambda}^{\theta_0}(\sigma)=v_{\sigma}$ on
$\partial\Omega$, the claim follows. Here, again we used Tolksdorf
\cite{Tolks1}.
Now, by taking $\sigma=1/m$ and $\epsilon=1/n$ with sufficiently
large $m,n \in \mathbb{N}$, it follows from the lower upper solution
Theorem (see Boccardo, Murat and Puel \cite{BMP}) that there exists
$u_{m,n} \in W_0^{1, p}(\Omega)\cap L^\infty(\Omega)$ with
$0 0 \quad \text{in } \mathbb{R}^N \quad \text{and $u\to 0$ as $|x|\to \infty$},
\end{gathered}
\end{equation}
for $10$ such that for each
$0<\lambda<\lambda^*$ and $\epsilon>0$, there exist a
$\mu^*=\mu^*_\lambda> 0$ and a function $ v=v_{\lambda, \mu} \in
C^1(\mathbb{R}^N)$, both independent of $\epsilon$, with $v$ being a
solution of $\eqref{SP+}$ for each $0\leq\mu<\mu^*$. Additionally:
\begin{itemize}
\item [(i)] if $(F_i)$ occurs for $i \in \{0,\infty\}$, then
$$
\lambda^*\geq \frac{1}{g_i}\Big(\frac{1}{\|\omega_M\|_{L^\infty(\mathbb{R}^N)}^{p-1}}
-f_i\Big);
$$
\item[(ii)] there is $d>0$ such that
$$
\mu^*_\lambda \geq d \min\big\{ {[f^i+\lambda
g^i]^{\frac{p-1-q}{p-1}}}, {f^i+\lambda g^i}\big\}.
$$
\end{itemize}
\end{proposition}
\begin{proof}
The proof of this result is analogous to the
proof of part one of Proposition \ref{SuperDL}. Considering
$\Omega=\mathbb{R}^N$ and $\theta_0=1$, we define the set
$\mathcal{A}=\mathcal{A}_{\mathbb{R}^N}=\{\gamma \in (0, \infty):
\Gamma_{0, 1}(\gamma)>\|\omega_M\|_{L^\infty(\mathbb{R}^N)}\}$. So,
we obtain \eqref{14} and the positive number
$\lambda^*=\lambda^*(\mathbb{R}^N)=\sup\{\Lambda^*(\gamma): \gamma
\in \mathcal{A}_{\mathbb{R}^N}\} $.
Moreover, we define the positive number
\begin{equation}\label{ex2}
\mu^*_{\lambda}({\gamma})=\mu^*_{\lambda,
\mathbb{R}^N}({\gamma})=\min\Big\{\frac{[{f}({\gamma})+\lambda
{g}({\gamma})]^{\frac{p-1-q}{p-1}}}
{4\|\nabla\omega_M\|_{L^\infty(\mathbb{R}^N)}^q},
\frac{{f}({\gamma})+\lambda {g}({\gamma})}{4}\Big\}.
\end{equation}
for each ${\gamma}, \lambda>0$.
Now, for $0<\lambda<\lambda^*$, we take the number
$\mu^*_\lambda=\mu^*_{\lambda, \mathbb{R}^N}>0$ as defined in
\eqref{ex1}. Thus, for $0\leq\mu<\mu^*_\lambda$ given, we have that
there exists a $\gamma_0 \in \mathcal{A}$ such that
$\lambda<\lambda^*(\gamma_0)$ and $\mu<\mu^*_\lambda(\gamma_0)$.
Now, we fix this $\gamma_0$.
So, given $0<\lambda<\lambda^*$, we define
$$
v(x)=v_\lambda(x)=\psi_\lambda(\omega_M(x)), \quad x \in \mathbb{R}^N
$$
and, as a consequence of the properties of
$\psi_\lambda$, we obtain that
$v \in C^1(\mathbb{R}^N)$, $v(x) \to 0$ as
$\Vert x \Vert \to \infty$ and
$00$, we have
\begin{equation}\label{+0}
\| v\|_{L^\infty(\mathbb{R}^N)}<\gamma_0-\epsilon.
\end{equation}
So, for each $\phi \in C_0^\infty(\mathbb{R}^N)$ with $\phi \geq 0$
given, we have (in a similar way to \eqref{19}) that
\begin{equation}\label{+1}
\int_{\mathbb{R}^N}|\nabla v|^{p-2}\nabla v \nabla\phi\,dx
\geq\int_{\mathbb{R}^N}
M(x)\gamma_0^{p-1}\Big[\frac{ H_{\lambda,
\gamma_0}(\psi_\lambda(\omega_M))}{\psi_\lambda(\omega_M))}\Big]^{p-1}\phi\,dx.
\end{equation}
Below, we analyze the previous integral in two parts. First, we have
\begin{align*}
&\frac{1}{2}\int_{\mathbb{R}^N}
M(x)\gamma_0^{p-1}\Big[\frac{ H_{\lambda,
\gamma_0}(\psi_\lambda(\omega_M))}{\psi_\lambda(\omega_M)}\Big]^{p-1}\phi\,dx\\
&\geq\frac{1}{2}\int_{\mathbb{R}^N}
M(x)\gamma_0^{p-1}\frac{{\zeta}_{\lambda,
\gamma_0}(v)}{v^{p-1}} \phi\,dx\\
&\geq \frac{1}{2}\int_{\mathbb{R}^N}
M(x)\gamma_0^{p-1}\frac{{\zeta}_{\lambda,
\gamma_0}(v+\epsilon)}{(v+\epsilon)^{p-1}} \phi\,dx\\
&\geq \frac{1}{2}\int_{\mathbb{R}^N} M(x)[f_{
\gamma_0}(v+\epsilon)+\lambda g_ {\gamma_0}(v+\epsilon)]\phi\,dx.
\end{align*}
As a consequence of this, \eqref{+0}, definitions of
$\zeta_{f,\gamma_0}$, $\zeta_{g,\gamma_0}$ and $M$, we have
\begin{equation}\label{+2}
\begin{aligned}
&\frac{1}{2}\int_{\mathbb{R}^N}
M(x)\gamma_0^{p-1}\Big[\frac{ H_{\lambda,
\gamma_0}(\psi_\lambda(\omega_M))}{\psi_\lambda(\omega_M)}\Big]^{p-1}\phi\,dx\\
&\geq\int_{\mathbb{R}^N}[a(x)f(v+\epsilon)+\lambda
b(x)g(v+\epsilon)]\phi\,dx.
\end{aligned}
\end{equation}
For the other part, using the properties of the auxiliary functions
and \eqref{ex2}, we have
\begin{equation}\label{+5}
\begin{aligned}
&\frac{1}{2}\int_{\mathbb{R}^N}
M(x)\gamma_0^{p-1}\Big[\frac{ H_{\lambda,
\gamma_0}(\psi_\lambda(\omega_M))}{\psi_\lambda(\omega_M)}\Big]^{p-1}\phi\,dx\\
&\geq \frac{1}{4}\int_{\mathbb{R}^N}
M(x)\gamma_0^{p-1}\Big[\frac{f(\gamma_0)}{\gamma_0^{p-1}}+\lambda
\frac{g(\gamma_0)}{\gamma_0^{p-1}}\Big]\phi\,dx\\
&\quad +\frac{1}{4}\int_{\mathbb{R}^N}
M(x)\gamma_0^{p-1-q}\Big[\frac{ H_{\lambda,
\gamma_0}(\psi_\lambda(\omega_M))}{\psi_\lambda(\omega_M)}\Big]^{p-1-q}
\Big[\frac{\gamma_0 H_{\lambda,
\gamma_0}(\psi_\lambda(\omega_M))}{\psi_\lambda(\omega_M)}\Big]^q\phi\,dx\\
&\geq \frac{({f}(\gamma_0)+\lambda
{g}(\gamma_0))}{4}\int_{\mathbb{R}^N} M(x)\phi\,dx
\\
&\quad +\frac{1}{4}\int_{\mathbb{R}^N}
M(x)\gamma_0^{p-1-q}\Big[\frac{f(\gamma_0)}{\gamma_0^{p-1}}+\lambda
\frac{g(\gamma_0)}{\gamma_0^{p-1}}\Big]^{\frac{p-1-q}{p-1}}[\psi'_\lambda(\omega_M)]^q \phi\,dx\\
&\geq \mu^*_\lambda\int_{\mathbb{R}^N}\beta(x)\phi\,dx+\mu^*_\lambda\int_{\mathbb{R}^N} M(x)[\psi'_\lambda(\omega_M)]^q
|\nabla\omega_M |^q \phi\,dx\\
&\geq \mu^*_\lambda\int_{\mathbb{R}^N}[\beta(x)+\alpha(x)| \nabla v
|^q ]\phi\,dx \geq \mu\int_{\mathbb{R}^N} V(x, \nabla v)\phi\,dx,
\end{aligned}
\end{equation}
for each $0\leq\mu<\mu^*_\lambda$.
Hence, replacing \eqref{+2} and \eqref{+5} in \eqref{+1}, we get
that $v$ satisfies \eqref{SP+}, for each $0<\lambda<\lambda^*$ and
$0\leq\mu<\mu^*_\lambda$.
The estimates given for $\lambda^*$ and $\mu^*_\lambda$ are obtained
in a similar way as those of Proposition \ref{SuperDL}. This proves
Proposition \ref{T02+}.
\section{Conclusion of the proof of Theorem \ref{NL+}}
First, we note that
$\mathcal{A}_{\mathbb{R}^N}\subset \mathcal{A}_{B_R}$ for all
$R\geq 1$. In fact, if $\gamma \in \mathcal{A}_{\mathbb{R}^N}$, then (using
Lemma \ref{Gamma2} (iv)) we have
$$
\Gamma_{0,\theta}(\gamma)> \|\omega_M\|_{L^\infty(\mathbb{R}^N)} \geq
\|(\omega_M)_{\vert_{B_R}}\|_{L^\infty(B_R)},\quad \text{for all } R\geq 1;
$$
that is, $ \gamma \in \mathcal{A}_{B_R}$.
So, we obtain
$$
\lambda^*(\mathbb{R}^N)=\sup\{\lambda^*(\gamma):
\gamma \in \mathcal{A}_{\mathbb{R}^N}\}\leq
\sup\{\lambda^*(\gamma): \gamma \in
\mathcal{A}_{B_R}\}=\lambda^*(B_R)
$$
for all $R\geq 1$.
Concerning $\mu^*_\lambda$. As a direct consequence of \eqref{ex}
and \eqref{ex2}, we obtain that $\mu^*_\lambda(\mathbb{R}^N) \leq
\mu^*_\lambda(B_R)$, for all $R\geq 1$.
So, given $\lambda_{*} < \lambda
<\lambda^*(\mathbb{R}^N) $, $0 \leq \mu <
\mu^{*}_\lambda(\mathbb{R}^N)$ and taking $v_R=v_{\vert_{B_R}}$ as
an upper solution, there exists (Theorem \ref{DL+} and its
demonstration) a $u_R\in W^{1,p}_0(B_R)\cap C(\overline{B}_R)$ with
$0 0 \quad \text{in } B_R,\quad u_R = 0 \quad \text{on } \partial B_R,
\end{gathered}
\end{equation}
for each $R> 1$, where $v$ is given by Proposition \ref{T02+}.
Besides this, from the definition of $\lambda_{*}$, $0<\lambda< \lambda_{*}$ and
$\lambda_1(\rho)=\lim_{R\to\infty}\lambda_{
B_R}(\rho)$, it follows that there exists a $L_0>1$ such that
$\lambda_{ B_{L_0}}(\rho)<\lambda g_0+f_0.$ That is, from the
monotonicity of the first eigenvalue concerning the domain, there
exists one $\delta=\delta(L_0)>0$ such that
\begin{equation}\label{02+}
{f(s)+\lambda {g(s)}}> \lambda_{ B_{R}}(\rho) {s^{p-1}}, \quad
\text{for all } s \in (0, \delta) \text{ and } R\geq L_0.
\end{equation}
Now, considering $C_{L_0}$ the constant of the lower solution of
\eqref{01+} with $R={L_0}$ defined in \eqref{27ii}, we take a
sufficiently small $C=C(\delta) \in (0, C_{L_0})$ such that
\begin{equation}\label{05+}
0L_0.
$$
Now, proceeding as in the end of proof of Theorem \ref{DL+}, we finish the
proof of Theorem \ref{NL+}.
\end{proof}
\subsection*{Acknowledgments}
M. C. Rezende was partially supported by CNPq/Brasil.
C. A. Santos was partially supported by
PROCAD/UFG/UnB and from FAPDF under grant
PRONEX 193.000.580/2009
\begin{thebibliography}{00}
\bibitem{ACF} C. O. Alves, P. C. Carri\~{a}o, L. F. O. Faria;
\emph{Existence of solutions to singular elliptic equations with
convection terms via the galerkin method}, Electron. Journal Diff. Eq., 12
(2010), 1-12.
\bibitem{BMP} L. Boccardo, F. Murat, J. P. Puel;
\emph{Resultats d'existence pour
certains problemes elliptiques quasilineaires}, Annali della Scuola
Normale Superiore de Pisa, 2 (1984), 213-235.
\bibitem{CN} A. Callegari, A. Nashman;
\emph{A nonlinear singular boundary-value
problem in the theory of pseudoplastic fluids}, SIAM J. Appl. Math.,
38 (1980), 275-281.
\bibitem{CRU} F. C. Cirstea, V. Radulescu;
\emph{Existence and uniqueness of positive solutions
to a semilinear elliptic problem in $\mathbb{R}^N$}, {J. Math. Anal.
Appl.}, {229} (1999), 417-425.
\bibitem{CRT} M. G. Crandall, P. H. Rabinowitz, L. Tartar;
\emph{On a Dirichlet problem with a singular nonlinearity}, Comm.
Partial Differential Equations, 2 (1977), 193-222.
\bibitem{FGM} D. De Figueiredo, M. Girardi, M. Matzeu;
\emph{Semilinear elliptic equations with dependence on the gradient via
mountain-pass techniques}, Differential Integral Equations, 17
(2004) no. 1-2, 119--126.
\bibitem{DS} J. I. D\'{i}az, J. E. Sa\'a;
\emph{Existence et unicit\'e de solutions positives pour certaines \'equations
elliptiques quasilin\'eaires}, C. R. Acad. Sci. Paris Sér. I Math.,
305 (1987), 521-524.
\bibitem{DiB} E. DiBenedetto;
\emph{$C^{1+\alpha}$ local regularity of weak solutions of degenerate
elliptic equations},
Nonlinear Analysis, 7 no.8 (1983), 827-850.
\bibitem{FL} W. Fen, X. Liu;
\emph{Existence of entire solutions of a singular semilinear
elliptic problem}, Acta Math. Sin., 20 (2004), 983-988.
\bibitem{FM} W. Fulks, J. S. Maybee;
\emph{A singular nonlinear equation}, Osaka
Math. J., 12 (1960), 1-19.
\bibitem{GR3} M. Ghergu, V. Radulescu;
\emph{Multi-parameter bifurcation and asymptotics for the singular Lane-Emden-Fowler
equation with a convection term}, Proc. Roy. Soc. Edinburgh Sect. A,
135 (2005), 61-83.
\bibitem{GR1} M. Ghergu, V. Radulescu;
\emph{Ground state solutions for the
singular Lane-Emden-Fowler equation with sublinear convection term},
J. Math. Anal. Appl., 333 (2007), 265-273.
\bibitem{HS} N. Hoang, K. Schmitt;
\emph{Boundary value problems for singular elliptic equations},
Rocky Mountain J. Math., 41 (2011), 555-572.
\bibitem{LS1} A. V. Lair, A. W. Shaker;
\emph{Entire solutions of a singular elliptic problem},
{J. Math. Anal. Appl.}, {200} (1996), 498-505.
\bibitem{LS} A. V. Lair, A. W. Shaker;
\emph{Classical and weak solutions of singular semilinear elliptic problem},
J. Math. Anal. Appl., 211 (1997), 371--385.
\bibitem{LSW} G. Liu, S. Shi, Y. Wei;
\emph{Semilinear elliptic equations with dependence on the gradient},
Electronic Journal of Differential Equations, 139 (2012), 1-9.
\bibitem{LSc} N. H. Loc, K. Schmitt;
\emph{Applications of sub-supersolution theorems to singular
nonlinear elliptic problems}, Advanced Nonlinear Studies, 11 (2011),
493-524.
\bibitem{AhM3} A. Mohammed;
\emph{Positive solutions of the p-Laplace
equation with singular nonlinearity}, J. Math. Anal. Appl., 352
(2009), 234-245.
\bibitem{MO} A. Mohammed;
\emph{Ground state solutions for singular semi-linear elliptic equations},
{ Nonlinear Analysis}, {71} (2009), 1276-1280.
\bibitem{PZ1} K. Perera, Z. Zhang;
\emph{Multiple positive solutions of singular p-Laplacian problems
by variational methods},
Boundary Value Problems, 3 (2005), 377-382.
\bibitem{CAS3} C. A. Santos;
\emph{Non-existence and existence of
entire solutions for a quasilinear problem with singular and
super-linear terms}, Nonlinear Anal. TMA, 72 (2010), 3813-3819.
\bibitem{sz} J. Serrin, H. Zou;
\emph{Cauchy-Liouville and universal
boundedness theorems for quasilinear elliptic equations and
inequalities}, Acta Math., 189 (2002), 79-142.
\bibitem{Tolks1} P. Tolksdorf;
\emph{On the Dirichlet problem for quasilinear equations in domains with
conical boundary points},
Comm. in Partial Differential Equations, 8(7) (1983), 773-817.
\bibitem{XZ} H. Xue, Z. Zhang;
\emph{A remark on ground state solutions for Lane-Emden-Fowler equations
with a convection term},
Electronic Journal of Differential Equations, 53 (2007), 1-10.
\bibitem{YZ} D. Ye, F. Zhou;
\emph{Invariant criteria for existence of bounded positive solutions},
Discrete Contin. Dynam. Syst., 12 (2005), 413-424.
\bibitem{Z} Z. Zhang;
\emph{A remark on the existence of positive solutions of a sublinear elliptic
problem}, Nonlinear Analysis, 67 (2007), 147-153.
\bibitem{ZY} Z. Zhang, J. Yu;
\emph{On a singular nonlinear Dirichlet problem
with a convection term}, SIAM J. Math. Anal., 4 (2000), 916-927.
\end{thebibliography}
\end{document}