\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 223, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/223\hfil A sixth-order parabolic equation] {A sixth-order parabolic equation describing continuum evolution of film free surface} \author[X. Zhao \hfil EJDE-2014/223\hfilneg] {Xiaopeng Zhao} % in alphabetical order \address{Xiaopeng Zhao \newline School of Science, Jiangnan University, Wuxi 214122, China} \email{zhaoxiaopeng@sina.cn} \thanks{Submitted June 24, 2014. Published October 21, 2014.} \subjclass[2000]{35B65, 35K35, 35K55} \keywords{Regularity; sixth-order parabolic equation; existence; \hfill\break\indent Campanato space} \begin{abstract} In this article, we study the regularity of solutions for a sixth-order parabolic equation. Based on the Schauder type estimates and Campanato spaces, we prove the existence of classical global solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} \label{sect1} In the previous fifteen-twenty years, essentially sixth-order nonlinear parabolic partial differential equationa, as models for applications in mechanics and physics, have become more common in the literature on pure and applied PDEs. Evans, Galaktionov and King\cite{Evans1,Evans2} studied the blow-up behavior and global similarity patterns of solutions for a sixth order thin film equations containing an unstable (backward parabolic) second-order term $$ u_t=\nabla\cdot(|u|^n\nabla\Delta^2u)-\Delta(|u|^{p-1}u),\quad n>0,p>0, $$ with bounded integrable initial data. J\"{u}ngel and Milisi\'{c}\cite{Junge1} proved the global in time existence of weak nonnegative solutions to the following initial value problem in one space dimension with periodic boundary conditions: \begin{gather*} n_t=L[n]:=\Big[n\Big(\frac1n(n(\log n)_{xx})_{xx}+\frac12((\log n)_{xx})^2 \Big)_x\Big]_x,\quad x\in\mathbb{T}, t>0, \\ n(x,0)=n_0(x),\quad x\in\mathbb{T}. \end{gather*} In \cite{Korzec}, by an extension of the method of matched asymptotic expansions, Korzec, Evans, M\"{u}nch and Wangner derived the stationary solutions of a 1D driven sixth order Cahn-Hilliard equation which arises as a model for epitaxially growing nano-structures. Li and Liu\cite{Liu} studied the radial symmetric solutions for the following sixth order thin film equation: $$ u_t=\nabla\cdot[|u|^n\nabla\Delta^2u],\quad x\text{ in the unit ball of }\mathbb{R}^2, \; n>0. $$ Recently, based on the Landau-Ginzburg theory, Pawlow and Zajaczkowski \cite{Paw} proved that a 3D sixth order Cahn-Hilliard equation under consideration is well posed in the sense that it admits a unique global smooth solution which depends continuously on the initial datum. We also refer the solvability conditions in $H^6(\mathbb{R}^3)$ for sixth order linearized Cahn-Hilliard problem is also studied in \cite{Vougalter}. In the study of a thin, solid film grown on a solid substrate, in order to describe the continuum evolution of the film free surface, there arise a classical surface\-diffusion equation (see \cite{Golovin}) \begin{equation} \label{1-0} v_n=\mathcal{D}\Delta_S\mu=\mathcal{D}\Delta_S(\mu_{\gamma}+\mu_{w}) =\mathcal{D}\Delta_S(\tilde{\gamma}_{\alpha\beta}C_{\alpha\beta}+\nu\Delta^2u+\mu_w), \end{equation} where $v_n$ is the normal surface velocity, $\mathcal{D}=D_SS_0\Omega_0V_0/(RT)^{23}$ ($D_s$ is the surface diffusivity, $S_0$ is the number of atoms per unit area on the surface, $\Omega_0$ is the atomic volume, $V_0$ is the molar volume of lattice cites in the film, $R$ is the universal gas constant and $T$ is the absolute temperature), $\Delta_S$ is the surface Laplace operator, $\nu$ is the regularization coefficient that measures the energy of edges and corners, $C_{\alpha\beta}$ is the surface curvature tensor and $\mu_w$ being an exponentially decaying function of $u$ that has a singularity at $u\to 0$ (see \cite{Golovin}). In the small-slop approximation, in the particular cases of high-symmetry orientations of a crystal with cubic symmetry, then the evolution equation \eqref{1-0} for the film thickness can be written in the following form \begin{equation}\label{1-00} \frac{\partial u}{\partial t}=D\left\{D^5u+D^3u-D[|Du|^2D^2u]+D[w_0(u)+w_2(u)|Du|^2 +w_3(u)D^2u]\right\}, \end{equation} where $w_{0,2,3}(h)$ are smooth functions, respectively $[w_3(h_0)=0,2w_2=\frac{d w_3}{dh}]$. We study the sixth-order nonlinear parabolic equation \begin{equation}\label{1-1} \begin{aligned} \frac{\partial u}{\partial t} &=D\big\{m(u)\big[D^5u+D^3u-D(|Du|^{2}D^2u) \\ &\quad +D(w_0(u)+w_2(u)|Du|^2+w_3(u)D^2u)\big]\big\}, \end{aligned} \end{equation} where $(x,t)\in Q_T$, $Q_T\equiv (0,1)\times(0,T)$. On the basis of physical consideration, Equation \eqref{1-1} is supplemented by the following boundary conditions \begin{equation} \label{1-2} Du(x,t)=D^3u(x,t)=D^5u(x,t)=0,\quad x=0,1, \end{equation} and initial condition \begin{equation} \label{1-3} u(x,0)=u_0(x),\quad x\in[0,1]. \end{equation} Our main purpose is to establish the existence of classical global solutions under much general assumptions. The main difficulties for treating the problem \eqref{1-1}-\eqref{1-3} are caused by the nonlinearity of the principal part and the lack of maximum principle. Due to the nonlinearity of the principal part, there are more difficulties in establishing the global existence of classical solutions. Our method for investigating the regularity of solutions is based on uniform Schauder type estimates for local in time solutions, which are relatively less used for such kind of parabolic equations of sixth order. Our approach lies in the combination of the energy techniques with some methods based on the framework of Campanato spaces. Now, we give the main results in this paper. \begin{theorem} \label{thm1.1} Assume that \begin{itemize} \item $u_0\in C^{6+\alpha}[0,1]$, $\alpha\in[0,1)$, $D^iu_0(0)=D^iu_0(1)=0$ $(i=0,2,4)$; \item $m(s)\in C^{1+\alpha}(\mathbb{R})$, $\inf_{s\in\mathbb{R}} m(s)=m_0>0$; \item $w_3(h_0)=0$, $2w_2(h)=w_3'(h)$, $W_0(s)=\int_0^sw_0(s)ds\geq\frac34[w_3(s)]^2$. \end{itemize} Then \eqref{1-1}-\eqref{1-3} admits a unique classical solution $u(x,t)\in C^{6+\alpha,1+\frac{\alpha}6}(\bar{Q}_T)$. \end{theorem} \begin{remark} \rm During the past few years, many authors studied the properties of solutions (such as blow-up behavior and global similarity patterns of solutions, weak nonnegative solutions, radial symmetric solutions, stationary solutions, solvability conditions and so on) for sixth-order parabolic equation, but only a few papers were devoted to the existence of classical solution for sixth order parabolic equation. In this article, based on the Schauder type estimates, Campanato spaces and a result in \cite{Liu2}, we consider the existence of classical solutions for a sixth-order parabolic equation which was introduced in \cite{Golovin}. \end{remark} \section{Proof of the main result} Based on the classical approach, it is easy for us to conclude that problem \eqref{1-1}-\eqref{1-3} admits a unique classical solution local in time. So, it is sufficient to make a priori estimates. First of all, we give the H\"{o}lder norm estimate on the local in time solutions. \begin{lemma} \label{lem2.1} Assume that $u$ is a smooth solution of the problem \eqref{1-1}-\eqref{1-3}. Then there exists a constant $C$ depending only on the known quantities, such that for any $(x_1, t_1)$, $(x_2, t_2) \in Q_T$ and some $0 < \alpha < 1$, \begin{gather*} |u(x_1,t_1)-u(x_2,t_2)|\leq C(|t_1-t_2|^{\frac{\alpha}6}+|x_1-x_2|^{\alpha}),\\ |Du(x_1,t_1)-Du(x_2,t_2)|\leq C(|t_1-t_2|^{\frac1{12}}+|x_1-x_2|^{1/2}). \end{gather*} \end{lemma} \begin{proof} Now, we set $$ F(t)=\int_0^1\Big(\frac12|D^2u|^2-\frac12|Du|^2+\frac1{12}|Du|^4+W_0(u) -\frac12w_3(u)|Du|^2\Big)dx. $$ Integrating by parts, from the boundary value condition \eqref{1-2}, we deduce that \begin{align*} \frac {d}{dt}F(t) &=\int_0^1[D^2uD^2u_t-DuDu_t+\frac13|Du|^2DuDu_t+w_0(u)u_t\\ &\quad -w_3(u)DuDu_t-\frac12w_3'(u)|Du|^2u_t]dx\\ &=\int_0^1[D^2uD^2u_t-DuDu_t+\frac13|Du|^2DuDu_t+w_0(u)u_t\\ &\quad +w_3(u)D^2uu_t+\frac12w_3'(u)|Du|^2u_t]dx\\ &=\int_0^1\Big[D^4u+D^2u-\frac13D(|Du|^2Du)+w_0(u)\\ &\quad +w_2(u)|Du|^2+w_3(u)D^2u\Big]u_tdx \\ &=-\int_0^1m(u)\Big|D\Big[D^4u+D^2u-\frac13D(|Du|^2Du)+w_0(u) \\ &\quad +w_2(u)|Du|^2+w_3(u)D^2u\Big]\Big|^2dx \leq 0. \end{align*} Hence $F(t)\leq F(0)$, that is \begin{equation}\label{2-3} \begin{aligned} &\int_0^1(\frac12|D^2u|^2+\frac1{12}|Du|^4+W_0(u))dx\\ &\leq F(0)+\frac12\int_0^1(|Du|^2+w_3(u)|Du|^2)dx. \end{aligned} \end{equation} It then from Poincar\'{e}'s inequality and the boundary value condition \eqref{1-2} follows that \begin{equation} \label{yue-1} \int_0^1|Du|^2dx\leq\frac1{\pi^2}\int_0^1|D^2u|^2dx. \end{equation} On the other hand, we have \begin{equation}\label{yue-2} \int_0^1w_3(u)|Du|^2dx\leq\frac16\int_0^1|Du|^4dx+\frac32\int_0^1[w_3(u)]^2dx. \end{equation} Adding \eqref{2-3}, \eqref{yue-1} and \eqref{yue-2}, noticing that $W_0(u)\geq\frac34[w_3(u)]^2$, we obtain \begin{equation} \label{2-8} \sup_{00$, we obtain $$ \frac d{dt}\int_0^1|D^2u|^2dx+(2m_0-22\varepsilon)\int_0^1|D^5u|^2dx\leq C, $$ where $\varepsilon$ is small enough, it satisfies $2m_0-10\varepsilon>0$. Therefore, \begin{equation} \label{2-13} \int \int_{Q_T}|D^5u|^2dxdt\leq C. \end{equation} Multiplying both sides of the equation \eqref{1-1} by $D^6u$, integrating the resulting relation with respect to $ x$ over $(0, 1)$, after integrating by parts, and using the boundary value conditions, we have \begin{align*} %\begin{aligned} &\frac12\frac d{dt}\int_0^1|D^3u|^2dx +\int_0^1D(m(u)D^5u)D^6u\,dx+\int_0^1D(m(u)D^3u)D^6u\,dx \\ &=\int_0^1D[m(u)D(|Du|^2D^2u)]D^6u\,dx\\ &\quad-\int_0^1D[m(u)D(w_0(u)+w_2(u)|Du|^2+w_3(u)D^2u)]D^6u\,dx. \end{align*} Simple calculations show that %\label{yueyue-1} \begin{align*} &\frac12\frac d{dt}\int_0^1|D^3u|^2dx+\int_0^1m(u)|D^6u|^2dx \\ &=-\int_0^1m'(u)DuD^5uD^6u\,dx-\int_0^1m(u)D^4uD^6u\,dx -\int_0^1m'(u)DuD^3uD^6u\,dx \\ &\quad +\int_0^1m(u)(|Du|^2D^4u\,dx+6DuD^2uD^3u+2|D^2u|^2D^2u)D^6u\,dx\\ &\quad +\int_0^1m'(u)Du(|Du|^2D^3u+2Du|D^2u|^2)D^6u\,dx\\ &\quad -\int_0^1m(u)(w_0'(u)D^2u+w_0'' (u)|Du|^2)D^6u\,dx -\int_0^1m{'}(u)w_0'(u)|Du|^2D^6u\,dx\\ &\quad -\int_0^1m'(u)Du(w_2'(u)|Du|^2Du+2w_2(u)DuD^2u)D^6u\,dx\\ &\quad -\int_0^1m(u)[w_2''(u)|Du|^4+5w_2'(u)|Du|^2D^2u+2w_2(u)|D^2u|^2\\ &\quad +2w_2(u)DuD^3u]D^6u\,dx\\ &\quad -\int_0^1m(u)[w_3'' (u)DuD^2u+2w_3'(u)D^3u+w_3'(u)D^4u]D^6u\,dx\\ &\quad -\int_0^1m'(u)Du(w_3'(u)D^2u+w_3(u)D^3u)D^6u\,dx\\ &=:I_8+I_9+I_{10}+I_{11}+I_{12}+I_{13}+I_{14}+I_{15}+I_{16}+I_{17}+I_{18}. \end{align*} By Nirenberg's inequality, we deduce that \begin{align*} &\int_0^1|D^5u|^2dx\\ &\leq \Big(C'\Big(\int_0^1|D^6u|^2dx\Big)^{\frac3{8}} \Big(\int_0^1|D^2u|^2dx\Big)^{\frac{1}{8}}+C'' \Big(\int_0^1|D^2u|^2dx\Big)^{1/2}\Big)^2\\ &\leq \varepsilon\int_0^1|D^6u|^2dx+C_{\varepsilon}. \end{align*} \begin{align*} &\int_0^1|D^4u|^2dx\\ &\leq \Big(C'\Big(\int_0^1|D^6u|^2dx\Big)^{\frac1{4}} \Big(\int_0^1|D^2u|^2dx\Big)^{\frac{1}{4}} +C'' \Big(\int_0^1|D^2u|^2dx\Big)^{1/2}\Big)^2 \\ &\leq \varepsilon\int_0^1|D^6u|^2dx+C_{\varepsilon}. \end{align*} \begin{align*} & \int_0^1|D^3u|^2dx\\ &\leq \Big(C'\Big(\int_0^1|D^6u|^2dx\Big)^{1/8} \Big(\int_0^1|D^2u|^2dx\Big)^{3/8}+C'' \Big(\int_0^1|D^2u|^2dx\Big)^{1/2}\Big)^2 \\ &\leq \varepsilon\int_0^1|D^6u|^2dx+C_{\varepsilon}. \end{align*} \begin{align*} &\int_0^1|D^2u|^4dx\\ &\leq \Big(C'\Big(\int_0^1|D^6u|^2dx\Big)^{\frac1{32}} \Big(\int_0^1|D^2u|^2dx\Big)^{\frac{15}{32}} +C'' \Big(\int_0^1|D^2u|^2dx\Big)^{1/2}\Big)^4\\ &\leq \varepsilon\int_0^1|D^6u|^2dx+C_{\varepsilon}. \end{align*} \begin{align*} & \int_0^1|D^2u|^6dx\\ &\leq \Big(C'\Big(\int_0^1|D^6u|^2dx\Big)^{\frac1{24}} \Big(\int_0^1|D^2u|^2dx\Big)^{\frac{11}{24}}+C'' \Big(\int_0^1|D^2u|^2dx\Big)^{1/2} \Big)^4\\ &\leq \varepsilon\int_0^1|D^6u|^2dx+C_{\varepsilon}. \end{align*} and \begin{align*} & \int_0^1|D^3u|^4dx\\ &\leq \Big(C'\Big(\int_0^1|D^6u|^2dx\Big)^{\frac5{32}} \Big(\int_0^1|D^2u|^2dx\Big)^{\frac{11}{32}} +C'' \Big(\int_0^1|D^2u|^2dx\Big)^{1/2}\Big)^4\\ &\leq \varepsilon\int_0^1|D^6u|^2dx+C_{\varepsilon}. \end{align*} Therefore, \begin{align*} I_8 &\leq \sup_{Q_T}|m'(u)Du|\int_0^1|D^5uD^6u|dx \leq C\int_0^1|D^5uD^6u|dx\\ &\leq \varepsilon \int_0^1|D^6u|^2dx+C_{\varepsilon}\int_0^1|D^5u|^2dx \leq 2\varepsilon \int_0^1|D^6u|^2dx+C'_{\varepsilon}. \end{align*} \begin{align*} I_9&\leq \sup_{Q_T}|m(u)|\int_0^1|D^4uD^6u|dx\leq C\int_0^1|D^4uD^6u|dx \\ &\leq \varepsilon \int_0^1|D^6u|^2dx+C_{\varepsilon}\int_0^1|D^4u|^2dx\leq 2\varepsilon \int_0^1|D^6u|^2dx+C'_{\varepsilon}. \end{align*} \begin{align*} I_{10} &\leq \sup_{Q_T}|m'(u)Du|\int_0^1|D^3uD^6u|dx \leq C\int_0^1|D^3uD^6u|dx\\ &\leq \varepsilon \int_0^1|D^6u|^2dx+C_{\varepsilon}\int_0^1|D^3u|^2dx \leq 2\varepsilon \int_0^1|D^6u|^2dx+C'_{\varepsilon}. \end{align*} \begin{align*} I_{11} &\leq \sup_{Q_T}|m(u)(Du)^2|\int_0^1|D^4uD^6u|dx +6\sup_{Q_T}|m(u)Du|\int_0^1|D^2uD^3uD^6u|dx\\ &\quad +2\sup_{Q_T}|m(u)|\int_0^1|D^2u|^3D^6u\,dx\\ &\leq C\int_0^1|D^3uD^6u|dx+C\int_0^1|D^2uD^3uD^6u|dx +C\int_0^1|D^2u|^3D^6u\,dx\\ &\leq \varepsilon\int_0^1|D^6u|^2dx+C_{\varepsilon}(\int_0^1|D^3u|^2dx +\int_0^1|D^2u|^4dx+\int_0^1|D^3u|^4dx\\ &\quad +\int_0^1|D^2u|^6dx\\ &\leq 2\varepsilon \int_0^1|D^6u|^2dx+C. \end{align*} \begin{align*} I_{12} &\leq \sup_{Q_T}|m'(u)(Du)^3|\int_0^1|D^3uD^6u|dx +2\sup_{Q_T}|m'(u)(Du)^2|\int_0^1|(D^2u)^2D^6u|dx\\ &\leq C\int_0^1|D^3uD^6u|dx+C\int_0^1|(D^2u)^2D^6u|dx\\ &\leq \varepsilon\int_0^1|D^6u|^2dx+C_{\varepsilon} \Big(\int_0^1|D^3u|^2dx+\int_0^1|D^2u|^4dx\Big)\\ &\leq 2\varepsilon \int_0^1|D^6u|^2dx+C. \end{align*} \begin{align*} I_{13}&\leq \sup_{Q_T}|m(u)w_0'(u)|\int_0^1|D^2uD^6u|dx +\sup_{Q_T}|m(u)w_0'' (u)Du|\int_0^1|DuD^6u|dx \\ &\leq C\int_0^1|D^2uD^6u|dx+C\int_0^1|DuD^6u|dx\\ &\leq \varepsilon\int_0^1|D^6u|^2dx+C_{\varepsilon} \Big(\int_0^1|D^2u|^2dx+\int_0^1|Du|^2dx\Big)\\ &\leq \varepsilon \int_0^1|D^6u|^2dx+C. \end{align*} \[ I_{14}\leq \sup_{Q_T}|m'(u)w_0'(u)Du|\int_0^1|DuD^6u|dx \leq C\int_0^1DuD^6u\,dx\leq \varepsilon \int_0^1|D^6u|^2dx+C. \] \begin{align*} I_{15} &\leq \sup_{Q_T}|m'(u)w_2'(u)(Du)^3|\int_0^1|DuD^6u|dx\\ &\quad +2\sup_{Q_T}|m'(u)w_2(u)(Du)^2|\int_0^1|D^2uD^6u|dx \\ &\leq C\int_0^1|DuD^6u|dx+C\int_0^1|D^2uD^6u|dx\\ &\leq \varepsilon\int_0^1|D^6u|^2dx+C_{\varepsilon}(\int_0^1|Du|^2dx +\int_0^1|D^2u|^2dx)\\ &\leq \varepsilon \int_0^1|D^6u|^2dx+C. \end{align*} \begin{align*} I_{16} &\leq \sup_{Q_T}|m(u)w_2'' (u)(Du)^3|\int_0^1|DuD^6u|dx\\ &\quad +5\sup_{Q_T}|m(u)w_2'(u)(Du)^2|\int_0^1|D^2uD^6u|dx \\ &\quad +2\sup_{Q_T}|m(u)w_2(u)|\int_0^1|(D^2u)^2D^6u|dx\\ &\quad +2\sup_{Q_T}|m(u)w_2(u)Du|\int_0^1|D^3uD^6u|dx \\ &\leq C\int_0^1|DuD^6u|dx+C\int_0^1|D^2uD^6u|dx +C\int_0^1|(D^2u)^2D^6u|dx\\ &\quad +C\int_0^1|D^3uD^6u|dx \\ &\leq \varepsilon\int_0^1|D^6u|^2dx +C_{\varepsilon}\Big(\int_0^1|Du|^2dx+\int_0^1|D^2u|^2dx+\int_0^1|D^2u|^4dx\\ &\quad +\int_0^1|D^3u|^2dx\Big) \\ &\leq 2 \varepsilon \int_0^1|D^6u|^2dx+C. \end{align*} \begin{align*} I_{17} &\leq \sup_{Q_T}|m(u)w_3'' (u)Du|\int_0^1|D^2uD^6u|dx +2\sup_{Q_T}|m(u)w_3'(u)|\int_0^1|D^3uD^6u|dx\\ &\quad +\sup_{Q_T}|m(u)w_3(u)|\int_0^1|D^4uD^6u|dx \\ &\leq C\int_0^1|D^2uD^6u|dx+C\int_0^1|D^3uD^6u|dx+C\int_0^1|D^4uD^6u|dx \\ &\leq \varepsilon\int_0^1|D^6u|^2dx+C_{\varepsilon}(\int_0^1|D^2u|^2dx +\int_0^1|D^3u|^2dx+\int_0^1|D^4u|^2dx)\\ &\leq 2 \varepsilon \int_0^1|D^6u|^2dx+C. \end{align*} \begin{align*} I_{18} &\leq \sup_{Q_T}|m'(u)w_3'(u)Du|\int_0^1|D^2uD^6u|dx +\sup_{Q_T}|m'(u)w_3(u)Du|\int_0^1|D^3uD^6u|dx \\ &\leq C\int_0^1|D^2uD^6u|dx+C\int_0^1|D^3uD^6u|dx\\ &\leq \varepsilon\int_0^1|D^6u|^2dx+C_{\varepsilon} \Big(\int_0^1|D^2u|^2dx+\int_0^1|D^3u|^2dx\Big) \\ &\leq 2 \varepsilon \int_0^1|D^6u|^2dx+C. \end{align*} Summing up, noticing that $m(s)\geq m_0>0$, we obtain $$ \frac d{dt}\int_0^1|D^3u|^2dx+(2m_0-38\varepsilon)\int_0^1|D^6u|^2dx\leq C, $$ where $\varepsilon$ is small enough, it satisfies $2m_0-38\varepsilon>0$. Hence \begin{equation} \label{jiangnan} \sup_{0