\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 229, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{8mm}} \begin{document} \title[\hfilneg EJDE-2014/229\hfil Existence of solutions] {Existence of solutions to nonlinear parabolic unilateral problems with an obstacle depending on time} \author[N. Bellal \hfil EJDE-2014/229\hfilneg] {Nabila Bellal} % in alphabetical order \address{Nabila Bellal \newline Universit\'e 20 ao\"ut 1955, Skikda, Alg\'erie} \email{nabilabellal@yahoo.fr} \thanks{Submitted March 23, 2014. Published October 27, 2014.} \subjclass[2000]{35K86, 35R35, 49J40} \keywords{Parabolic variational inequalities; Leray-Lions operator; \hfill\break\indent penalization; existence theorem} \begin{abstract} Using the penalty method, we prove the existence of solutions to nonlinear parabolic unilateral problems with an obstacle depending on time. To find a solution, the original inequality is transformed into an equality by adding a positive function on the right-hand side and a complementary condition. This result can be seen as a generalization of the results by Mokrane in \cite{M} where the obstacle is zero. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \allowdisplaybreaks \section{Introduction} The main purpose of this article is to prove the existence of a solution to a nonlinear parabolic inequality of obstacle type. Our problem is associated to a second-order nonlinear operator of Leray-Lions type. We prove that actually the solution satisfies an equation with a modification of the right-hand side by a positive function and a complementary condition. This result can be seen as a generalization of the result obtained Mokrane \cite{M} when the obstacle is zero. \subsection*{Statement of the problem} Let $\Omega$ be a bounded Lipschitz open set of $\mathbb{R}^N$ with boundary $\partial\Omega$ and $T$ a positive real number. Set $ Q = \Omega \times (0,T)$ and $\Sigma = \Gamma \times (0,T)$. Given functions $ u_0 $ and $\psi$ we look for a solution $u$ to the problem \begin{gather}\label{ineq1} \frac{\partial u}{\partial t}+A( u) +g( u,Du) -f=\mu \quad \text{in }Q=\Omega \times ] 0,T[, \\ \label{ineq2} u\geq \psi,\quad \mu \geq 0, \quad \mu( u-\psi) =0\quad \text{in }Q,\\ \label{ineq3} u( x,t) =0\quad \text{on }\Sigma,\\ \label{ineq4} u( x,0) =u_0( x) \quad \text{in }\Omega . \end{gather} Here $A$ is a Leray-Lions operator from $L^{p}( 0,T;W_0^{1,p}( \Omega ) ) $ into its dual, $f$ belongs to $L^{p' }(Q)$ and $g(x,t,u,Du)$ is a nonlinear term, the prototype of which is $u|Du|^{q}$ with $q2$. When $g$ is equal to zero, the corresponding result has been proved e.g. in \cite{D}. On the other hand, the equation associated with the unilateral problem \eqref{ineq1}, \eqref{ineq3}, \eqref{ineq4} (i.e. the case where $\mu =0$ in \eqref{ineq1}, the conditions \eqref{ineq2} being omitted) has been solved in \cite{BM1}. Here we extend Mokrane's result \cite{M}, by utilizing different techniques. For $\psi= 0$, \cite{M} proved the existence of a solution. Considered just as an equation (without obstacle) or as a variational inequality this problem, or very similair ones with various types of hypotheses on the operator $A$ (or the function $a(x,t,s,\xi)$ see below), $ g$ and the data have been addressed by several authors, \cite{AAR,ABBM,KKS}. For some of these results, an extra condition on the form $a( x,t,s,.)$ applied to the positive part on any test function is added. It seems for us that it is more interesting and realistic, to avoid this condition, and replace it by an extra regularity condition on the obstacle. Moreover these authors did not deal with the existence of the function $\mu$ and the complementary condition $\mu(u-\psi)=0$ in $Q$. In this article we use a regularization-penalization procedure and a compactness result analogous to the ones introduced \cite{M}, and some other different techniques. This article is organised as follows. The first part is devoted to the hypotheses and the setting of the main result. In the second one we proceed by the regularization-penalisation method. We construct a one parameter family of solutions and prove some estimates on these approximate solutions. In the third part we prove the convergence of an extracted subsequence of this family, to a solution of our problem. \section{Hypotheses and the main result} Let $\Omega $ be a bounded subset of $ \mathbb{R}^{N}$, with Lipschitz boundary $ \partial \Omega ,Q$ be $\Omega \times ] 0,T[ $ for a given $T$, $ 0< T< \infty $ and $\Sigma =\partial \Omega \times ] 0,T[$. Let $p$ and $p' $ be fixed with $\frac{1}{p}+\frac{1}{p' }=1$, $2< p < \infty$, $W^{1,p}_0(\Omega)$ is the usual Sobolev space equipped with the $L^p$ norm of the gradients. Let $A$ be a nonlinear operator from $L^{p}( 0,T;W_0^{1,p}( \Omega ) ) $ into its dual $L^{p' }( 0,T;W^{-1,p' }( \Omega )) $ of Leray-Lions type defined by \begin{equation*} A(u) =-\operatorname{div}(a(x,t,u,Du)), \end{equation*} where $a( x,t,s,\xi ) $ is a Carath\'{e}odory function such that \begin{equation}\label{eqcoer} \begin{gathered} a(x,t,s,\xi)\leq \beta [|s|^{p-1}+|\xi|^{p-1}+k(x,t)], \quad k(x,t)\in L^{p'}(Q),\; \beta >0 \\ { [a(x,t,s,\xi)- a(x,t,s,\eta)][\xi-\eta]>0, \quad \forall \xi\neq \eta}\\ a(x,t,s,\xi)\xi \geq \alpha |\xi|^{p}, \quad \alpha >0. \end{gathered} \end{equation} Let $g( x,t,u,Du) $ be a nonlinear lower order term having growth of order $q$, $(q0, \; 1< m0$, we define \begin{equation}\label{eq3.1} g_{\varepsilon }( x,t,s,\xi ) =\frac{g( x,t,s,\xi ) }{ 1+\varepsilon | g( x,t,s,\xi ) | } \end{equation} and we denote by $u_{\varepsilon }$ the solution of the approximate and penalized problem \begin{equation}\label{eq3.2} \begin{gathered} \begin{aligned} &\frac{\partial u_{\varepsilon }}{\partial t}-\operatorname{div}(a(x,t,u_{ \varepsilon },Du_{\varepsilon }))+g_{\varepsilon }(x,t,u_{\varepsilon}, Du_{\varepsilon }) \\ &-\frac{1}{\varepsilon ^{p-1}} | ( u_{\varepsilon }-\psi) ^{-}| ^{p-2}( u_{\varepsilon }-\psi) ^{-}=f,\quad \text{in } Q, \end{aligned} \\ u_{\varepsilon }(x,0)=u_0(x), \quad x\in \Omega, \\ u_{\varepsilon }=0\text{ on }\Sigma, \\ u_{\varepsilon }\in L^{p}( 0,T;W_0^{1,p}( \Omega ) ) \end{gathered} \end{equation} which has a weak solution by the classical result of Lions \cite{L}, Donati \cite{D}, where $v^{-}$ denotes the negative part of $v$, i.e. $v^{-}=\sup (0,-v) $, for any function $v$. The function $u_\varepsilon$ is a solution of \eqref{eq3.2} in the following sense: \begin{equation}\label{eq3.2a} \begin{gathered} u_\varepsilon\in L^p(]0,T[, W^{1,p}_0(\Omega))\cap \mathcal{C}([0,T], L^2(\Omega)),\\ { \frac{\partial u_\varepsilon}{\partial t}\in L^{p'}(0,T; W^{-1,p'}(\Omega) ) },\quad u_\varepsilon(x,0)=u_0(x),\\ \begin{aligned} &\int_0^T\langle\frac{\partial u_\varepsilon}{\partial t}, v\rangle dt +\int_Qa(x,t,u_\varepsilon, Du_\varepsilon)Dv\,dx\,dt +\int_Qg_\varepsilon(x,t,u_\varepsilon,Du_\varepsilon)v\,dx\,dt\\ &-\frac{1}{\varepsilon^{p-1}}\int_Q(( u_{\varepsilon }-\psi) ^{-}) ^{p-2}( u_{\varepsilon }-\psi) ^{-}v\,dx\,dt\\ &=\int_Q fv\,dx\,dt, \quad \forall v\in L^p(]0,T[, W^{1,p}_0(\Omega)) \end{aligned} \end{gathered} \end{equation} \subsection{$L^p(0,T; W^{1,p}_0(\Omega))$ - estimate of $u_\varepsilon$} Recall that since $\psi\in L^p(]0,T[, W^{1,p}(\Omega))$, $p> 2$ and ${ \frac{\partial \psi}{\partial t}}\in L^{p' }( Q), $ we have $\psi\in W^{1,p' }(Q)$. From this and by a slight modifaction of the \cite[Lemma 1.1]{St}, we deduce that ${ \frac{\partial \psi^+}{\partial t}}\in L^{p' }( Q) $ and $(u_\varepsilon-\psi^+)$ is a possible test function. We use it in \eqref{eq3.2a}. Multiplying \eqref{eq3.2} by the test function $( u_{\varepsilon }-\psi ^{+}) $ we get, denoting by $\langle ,\rangle $ the duality pairing between $W_0^{1,p}( \Omega ) $ and its dual \begin{equation}\label{eq3.3} \begin{aligned} &\int_0^{t}\big\langle \frac{\partial ( u_{\varepsilon }-\psi ^{+}) }{\partial t},u_{\varepsilon }-\psi^{+}\big\rangle dt' +\int_0^{t}\int_{\Omega }\ a( x,t' ,u_{\varepsilon },Du_{\varepsilon })D( u_{\varepsilon }-\psi^{+}) \,dx\,dt' \\ &+\int_0^{t}\int_{\Omega } g_{\varepsilon }( x,t' ,u_{\varepsilon }, Du_{\varepsilon })( u_{\varepsilon }-\psi^{+}) \,dx\,dt' \\ &-\frac{1}{\varepsilon ^{p-1}} \int_0^{t}\int_{\Omega } | ( u_{\varepsilon }-\psi) ^{-}| ^{p-2}( u_{\varepsilon }-\psi) ^{-}( u_{\varepsilon }-\psi^{+}) \,dx\,dt' \\ &=\int_0^{t}\int_{\Omega } ( f-\frac{\partial \psi^+}{\partial t} ) ( u_{\varepsilon }-\psi^+)\,dx\,dt' . \end{aligned} \end{equation} which implies \begin{equation}\label{eq3.4} \begin{aligned} &\frac{1}{2} \| u_{\varepsilon }( t) -\psi^{+}(t) \| _{L^2 ( \Omega ) }^{2} +\int_0^{t}\int_{\Omega }a( x,t' ,u_{\varepsilon },Du_{\varepsilon }) Du_{\varepsilon }\,dx\,dt' \\ &+\int_0^{t}\int_{\Omega }u_{\varepsilon }g_{\varepsilon }( x,t' ,u_{\varepsilon },Du_{\varepsilon })\,dx\,dt' \\ &{ +\frac{1}{\varepsilon^{p-1}}\int_0^{t}\| {( u_{\varepsilon }-\psi) ^{-}( t' ) }{}\| ^{p}_{L^p( \Omega ) }dt'+\frac{1 }{\varepsilon^{p-1}} \int_0^{t}\int_{\Omega }| ( u_{\varepsilon }-\psi) ^{-}| ^{p-1} \psi^{-}\,dx\,dt'} \\ & = \frac{1}{2} \| ( u_0-\psi ^{+}( 0) ) \| _{L^2 ( \Omega ) }^{2}+\int_0^{t}\int_{\Omega } ( f-\frac{\partial \psi^{+}}{\partial t}) u_{\varepsilon } \,dx\,dt' -\int_0^{t}\int_{\Omega }( f-\frac{\partial \psi^{+}}{\partial t}) \psi^{+}\,dx\,dt' \\ &\quad +\int_0^{t}\int_{\Omega }a( x,t' ,u_{\varepsilon },Du_{\varepsilon }) D\psi^{+}\,dx\,dt' +\int_0^{t}\int_{\Omega }\psi^{+}g_{\varepsilon }( x,t' ,u_{\varepsilon }, Du_{\varepsilon })\,dx\,dt'\,. \end{aligned} \end{equation} Using the conditions \eqref{eqcoer}, \eqref{eqcriosg}, \eqref{eq2.3}, \eqref{eq2.4}, \eqref{eq2.8}, Poincar\'e and H\"{o}lder inequalities we obtain \begin{equation}\label{eq3.5} \begin{aligned} &\int_Q |a(x,t,u_\varepsilon, Du_\varepsilon)D\psi^+|\,dx\,dt\\ &\le \beta\int_Q |u_\varepsilon|^{p-1} |D\psi^+|\,dx\,dt +\beta\int_Q|Du_\varepsilon|^{p-1} |D\psi^+|\,dx\,dt +\int_Q|k(x,t)|\,|D\psi^+|\,dx\,dt \\ &\leq \theta\int_Q|Du_\varepsilon|^{p}\,dx\,dt+M_1+M_2, \end{aligned} \end{equation} and $$ \big|\int_Q \psi^+g_\varepsilon(x,t,u_\varepsilon,Du_\varepsilon)\,dx\,dt\big| \le 3\theta\int_0^t|Du_\varepsilon|^p_{L^p(\Omega)}\,dt' +M_3, $$ where $\theta$ is any positive real number and $M_1$, $M_2$ and $M_3$ depend on the data $\theta$ and $T$. By \eqref{eqcoer}, we obtain \begin{equation}\label{eq3.6} \int_0^{t}\int_{\Omega }a( x,t' ,u_{\varepsilon },Du_{\varepsilon })Du_{\varepsilon }\,dx\,dt' \geq \alpha \int_0^{t}\int_{\Omega }| Du_{\varepsilon }| ^{p}\,dx\,dt' =\alpha \int_0^{t}\| Du_{\varepsilon }\| _{L^{p}( \Omega ) }^{p}dt' . \end{equation} Moreover, since $f, \frac{\partial \psi^{+}}{\partial t}\in L^{p' }( Q) $ and $u_0\in L^2( \Omega ) $ we deduce from \eqref{eq2.8} and H\"{o}lder inequality that \begin{equation}\label{eq3.8} \begin{aligned} &\int_0^{t}\int_{\Omega }( f-\frac{\partial \psi^{+}}{\partial t} ) u_{\varepsilon }\,dx\,dt' -\int_0^{t}\int_{\Omega }( f- \frac{\partial \psi^{+}}{\partial t}) \psi^{+}\,dx\,dt' +\frac{1 }{2}\| ( u_0-\psi^{+}( 0) ) \| _{L^2( \Omega ) }^{2} \\ &\leq M_4+\theta \int_0^{t}\| Du_{\varepsilon}\| _{L^{p}( \Omega ) }^{p}dt' . \end{aligned} \end{equation} Now we deduce from \eqref{eq3.4} and inequalities \eqref{eq3.5}, \eqref{eq3.6} and \eqref{eq3.8} that \begin{equation}\label{eq3.9} \begin{aligned} &\frac{1}{2}\| u_{\varepsilon }( t) -\psi^{+}(t) \| _{L^2 ( \Omega ) }^{2} +( \alpha -5\theta ) \int_0^t\| u_{\varepsilon }\| _{W_0^{1,p}( \Omega ) }^{p}dt' \\ &+\int_0^{t}\int_{\Omega }u_{\varepsilon }g_{\varepsilon }( x,t' ,u_{\varepsilon },Du_{\varepsilon }) \,dx\,dt' +\frac{1}{\varepsilon ^{p-1}}\int_0^{t}\| {( u_{\varepsilon }-\psi) ^{-}( t' ) }\| _{L^{p}( \Omega) }^{p}dt' \\ &+\frac{1}{\varepsilon ^{p-1}} \int_0^{t}\int_{\Omega }| ( u_{\varepsilon }-\psi) ^{-}| ^{p-2}(u_{\varepsilon }-\psi)^{-}\psi^{-}\,dx\,dt' \\ &\leq M_1+M_2+M_3+M_4. \end{aligned} \end{equation} Choosing $\theta$ small enough (for example $\theta= \frac{\alpha}{10})$ it results that \begin{gather}\label{eq3.10} \| u_{\varepsilon }\| _{L^{p}( 0,T;W_0^{1,p}(\Omega ) ) }\leq C_1,\\ \label{eq3.11} \| u_{\varepsilon }\| _{L^{\infty }( 0,T;L^2( \Omega ) ) }\leq C_2, \\ \label{eq3.12} \int_{Q}u_{\varepsilon } g_{\varepsilon }( x,t,u_{\varepsilon },Du_{\varepsilon }) \, dx\, dt\leq C_3. \end{gather} Note that $\theta, M_i$ and $C_i$ denote nonnegative constants which do no depend on $\varepsilon $. Then by extracting a subsequence also denoted by $u_{\varepsilon }$, we see that there exists \begin{equation}\label{eq3.13} u_\varepsilon\in L^{p}( 0,T;W_0^{1,p}( \Omega) ) \cap L^{\infty }( 0,T;L^{2}( \Omega ) ) \end{equation} such that \begin{gather}\label{eq3.14} u_{\varepsilon }\rightharpoonup u \quad\text{weakly in }L^{p}(0,T;W_0^{1,p}( \Omega ) ),\\ \label{eq3.15} u_{\varepsilon }\rightharpoonup u \quad \text{weakly star in }L^{\infty }( 0,T;L^{2}( \Omega ) ) \end{gather} Then \eqref{eq2.10} is proved. \subsection{$L^p(Q) $-estimate of $ \frac{(u_\varepsilon-\psi)^-}{\varepsilon}$} The equation \eqref{eq3.2} can be written as \begin{equation}\label{eq3.222} \begin{aligned} &\frac{\partial( u_\varepsilon-\psi) }{\partial t} -\operatorname{div}[(a(x,t,u_\varepsilon ,Du_\varepsilon ) -a(x,t,u_\varepsilon,D\psi))]+g_\varepsilon(x,t,u_\varepsilon ,Du_\varepsilon) \\ &-\frac{1}{\varepsilon^{p-1}}| ( u_\varepsilon-\psi) ^{-}| ^{p-2}( u_\varepsilon-\psi) ^{-}\\ &=f- \frac{\partial \psi }{\partial t} +\operatorname{div}(a(x,t,u_\varepsilon,D\psi )),\quad \text{in }Q. \end{aligned} \end{equation} Multiplying \eqref{eq3.222} by the test function $-\frac{( u_{\varepsilon }-\psi ) ^{-}}{\epsilon }$, we obtain \begin{equation}\label{eq3.333} \begin{aligned} &-\frac{1}{\varepsilon } \int_0^{T}\big\langle \frac{\partial ( u_{\varepsilon }-\psi ) }{\partial t},( u_{\varepsilon }-\psi ) ^{-}\big\rangle dt\\ &-\frac{1}{\varepsilon }\int_{Q}[(a(x,t,u_\varepsilon ,Du_\varepsilon ) -a(x,t,u_\varepsilon,D\psi))]D( u_{\varepsilon }-\psi ) ^{-}\,dx\,dt \\ &-\frac{1}{\varepsilon }\int_{Q}( u_{\varepsilon }-\psi ) ^{-}g_{\varepsilon }( x,t,u_{\varepsilon },Du_{\varepsilon })\,dx\,dt +\frac{1}{\varepsilon ^{p}}\int_{Q}| ( u_{\varepsilon }-\psi ) ^{-}| ^{p}\,dx\,dt\\ &=-\frac{1}{\varepsilon } \int_0^{T} \big\langle f-\frac{\partial \psi }{\partial t} + \operatorname{div}(a(x,t,u_\varepsilon, D\psi)),( u_{\varepsilon }-\psi ) ^{-} \big\rangle dt. \end{aligned} \end{equation} Using \eqref{eq2.6}, \eqref{eq2.9}, \eqref{eq2.9bis}, we have $ f-\frac{\partial \psi }{\partial t} + \operatorname{div}(a(x,t,u_\varepsilon, D\psi))\in L^{p'}(0,T; L^{p'}(\Omega))$, then using Young inequality the right hand side of \eqref{eq3.333} is absorbed by the fourth term of the left hand side. On the set where $u_\varepsilon\le \psi$, thanks to the strict monotony, the second term is non negative. Concerning the third term of \eqref{eq3.333}, we can rewrite it in the form \begin{align*} I&= -\frac{1}{\varepsilon }\int_{\{u_\varepsilon\le \psi, u_\varepsilon<0\}}( u_\varepsilon-\psi) ^-g_\varepsilon( x,t,u_\varepsilon, Du_\varepsilon )\,dx\,dt \\ &\quad - \frac{1}{\varepsilon }\int_{\{0\le u_\varepsilon\le \psi \}} ( u_\varepsilon-\psi) ^-g_\varepsilon( x,t,u_\varepsilon, Du_\varepsilon )\,dx\,dt =I_1+I_2, \end{align*} by the sign condition on $g$, $I_1$ is non negative. For $I_2$ using the growth condition on $g, h, b$ and $\psi^+$, we can easily obtain two positive constants $K_1$ and $K_2$ such that $|g(x,t,u_\varepsilon, Du_\varepsilon)|\le K_1+K_2|Du_\varepsilon|^q$. Then $I_2$ can be estimated as follows \begin{align*} |I_2|&\le K_1\int_{\{0\le u_\varepsilon\le \psi \}} \frac{(u_\varepsilon-\psi)^-}{\varepsilon}\,dx\,dt + K_2\int_{\{0\le u_\varepsilon\le \psi \}}|Du_\varepsilon|^q \frac{(u_\varepsilon-\psi)^-}{\varepsilon}\,dx\,dt\\ &=A_1+A_2. \end{align*} It is clear that $|A_1|\le C\|\frac{(u_\varepsilon-\psi)^-}{\varepsilon}\|_{L^p(Q)}$. For $A_2$ we use \eqref{eq3.10} and H\"older inequality to obtain \begin{align*} A_2 &= K_2\int_{\{0\le u_\varepsilon\le \psi\}}|Du_\varepsilon|^q \frac{(u_\varepsilon-\psi)^-}{\varepsilon}\,dx\,dt\\ &\le K_2\int_{\{0\le u_\varepsilon\le \psi \}} \Bigr(|Du_\varepsilon|^{qr}\Bigl)^{\frac{1}{r}} \Bigr((\frac{(u_\varepsilon-\psi)^-}{\varepsilon})^{r'}\Bigl)^{\frac{1}{r'}}\,dx\,dt \end{align*} with $\frac{1}{r}+\frac{1}{r'}=1$. Choosing $r$ such that $qr=p$ and thus $r'=\frac{p}{p-q}$, one has $A_2\le C\|\frac{(u_\varepsilon-\psi)^-}{\varepsilon}\|_{L^{r'}(Q)}$. Since $q0$, define the sets \begin{gather*} F_{\delta }=\{ ( x,t) \in Q:| u| \leq \delta\},\\ G_{\delta }=\{ ( x,t) \in Q:| u| >\delta\}. \end{gather*} Using the estimates \eqref{eq3.10} on $u_{\varepsilon }$, the conditions \eqref{eqcriosg}, \eqref{eq2.3} and \eqref{eq2.4}, for any measurable subset $E\subset Q$, we have \begin{equation}\label{eq3.19} \begin{aligned} &\int_{E} | g_{\varepsilon }( x,t,u_{\varepsilon},Du_{\varepsilon }) | \,dx\,dt\\ &=\int_{E \cap F_{\delta}}| g_{\varepsilon }( x,t,u_{\varepsilon }, Du_{\varepsilon}) | \,dx\,dt +\int_{E \cap G_{\delta }}| g_{\varepsilon }( x,t,u_{\varepsilon },Du_{\varepsilon }) | \,dx\,dt \\ &\leq \int_{E \cap F_{\delta}}( \rho +| u_{\varepsilon }| ^{m}) ( h( x,t) +| Du_{\varepsilon }|^{q})\,dx\,dt + \frac{1}{\delta }\int_{E \cap G_{\delta }}u_{\varepsilon } g_{\varepsilon }( x,t,u_{\varepsilon },Du_{\varepsilon }) \,dx\,dt\\ &\leq ( \rho +\delta ^{m}) \int_{E}( h( x,t) +| Du_{\varepsilon}| ^{q})\,dx\,dt +\frac{1}{\delta }\int_{E}u_{\varepsilon } g_{\varepsilon }( x,t,u_{\varepsilon },Du_{\varepsilon }) \,dx\,dt\\ &\leq ( \rho +\delta ^{m}) ( \| h\| _{L^{\infty }( Q) } | E|+C_1^{q/p}(| E|) ^{1-\frac{q}{p}}) +\ \frac{1}{\delta } C_3. \end{aligned} \end{equation} From \eqref{eq3.19}, by choosing first $\delta $ sufficiently large and the measure of $E$ sufficiently small, we deduce that \begin{equation}\label{eq3.20} g_{\varepsilon }( x,t,u_{\varepsilon },Du_{\varepsilon }) \text{ is equi-integrable}. \end{equation} Note also that \eqref{eq3.19} with $E=Q$ implies \begin{equation}\label{eq3.21} g_{\varepsilon }( x,t,u_{\varepsilon },Du_{\varepsilon }) \text{ is bounded in }L^{1}( Q) . \end{equation} \subsection{Almost pointwise convergence of $u_{\varepsilon }$ and $Du_{\varepsilon}$} From \eqref{eq3.2} we can write $ \frac{\partial u_{\varepsilon }}{\partial t}=\lambda _1^{\varepsilon }+\lambda _2^{\varepsilon } $, with $\lambda_2^\varepsilon=g_\varepsilon(x,t, u_\varepsilon,Du_\varepsilon)$. Since $u_{\varepsilon }$ is bounded in $L^{p}( 0,T;W_0^{1,p}( \Omega )) $ (see \eqref{eq3.10} and $\frac{( u_{\varepsilon }-\psi) ^{-}}{\varepsilon }$ is bounded in $L^{p}( Q) $ (see \eqref{eq3.123}) we deduce from \eqref{eq3.21} that \begin{equation}\label{eq3.22} \frac{\partial u_{\varepsilon }}{\partial t}=\lambda _1^{\varepsilon }+\lambda _2^{\varepsilon } \end{equation} with $\lambda _1^{\varepsilon}$ bounded in $L^{p' }(0,T;W^{-1,p' }( \Omega ) )$ and $\lambda _2^{\varepsilon }$ bounded in $L^{1}( Q)$. Since $g_{\varepsilon}( x,t,u_{\varepsilon },Du_{\varepsilon }) $ is equi-integrable in $L^{1}( Q) $ we can extract subsequences (still denoted by $\lambda _1^{\varepsilon }$ and $\lambda _2^{\varepsilon }$) such that \begin{gather}\label{eq3.23} \lambda _1^{\varepsilon }\rightharpoonup \lambda _1\quad \text{weakly in } L^{p' }( 0,T;W^{-1,p' }( \Omega )),\\ \label{eq3.24} \lambda _2^{\varepsilon }\rightharpoonup \lambda _2 \quad \text{weakly in } L^{1}( Q) \end{gather} This implies \begin{equation}\label{eq3.25} \frac{\partial u}{\partial t}=\lambda _1+\lambda _2\in L^{p'}( 0,T;W^{-1,p' } ( \Omega ) ) +L^{1}(Q) \end{equation} which proves \eqref{eq2.11}. From \eqref{eq3.22} and the estimate \eqref{eq3.10} on $u_{\varepsilon }$ we have \begin{equation}\label{eq3.26} \parbox{95mm}{ $u_{\varepsilon }$ is bounded in $L^{p}( 0,T;W_0^{1,p}( \Omega))$ with $\frac{\partial u_{\varepsilon } }{\partial t}$ bounded in $L^{p' }( 0,T;W^{-1,p' }( \Omega )) +L^{1}( 0,T;L^{1}( \Omega ) ) \subset L^{1}(0,T;W^{-1,r}( \Omega ) )$ for all $r<\inf \{ \frac{N}{N-1},\frac{p}{p-1}\}$. }\end{equation} Since $W_0^{1,p}( \Omega ) \subset L^{p}( \Omega ) \subset W^{-1,r}( \Omega ) $ for $p>r$, the first injection being compact, a lemma of Aubin's type (see eg. \cite[corollary 4]{S}) implies that \begin{equation}\label{eq3.27} u_{\varepsilon }\to u \quad \text{strongly in }L^{p}(0,T; L^{p}( \Omega ) ) \end{equation} which also implies that at least for a subsequence; still denoted by $u_{\varepsilon }$, \begin{equation}\label{eq3.28} u_{\varepsilon }\to u \quad \text{a.e in }Q. \end{equation} Then we apply a compactness result due to Boccardo and Murat \cite{BM1, BM2}, and more precisely \cite[Theorem 4.3 and Remark 4.1]{BM2}. Since $u_{\varepsilon }$ is bounded in $L^{p}( 0,T;W_0^{1,p}( \Omega )) $ and since \begin{equation}\label{eq3.29} \frac{\partial u_{\varepsilon }}{\partial t}-\operatorname{div}( a( x,t,u_{\varepsilon },Du_{\varepsilon }) ) =\lambda _1^{\varepsilon }+\lambda _2^{\varepsilon } \text{is bounded in }L^{p' }( Q) +L^{1}( Q), \end{equation} in view of the approximation $g_{\varepsilon }( x,t,u_{\varepsilon },Du_{\varepsilon }) $ which is weakly compact in $L^{1}( Q) $ see \eqref{eq3.20}, \eqref{eq3.21} and \eqref{eq3.123}, we have (for a subsequence) \begin{equation}\label{eq3.30} Du_{\varepsilon }\to Du \quad \text{strongly in }L^{q}( Q) \forall q0$ we have \begin{equation}\label{eq3.41} \begin{aligned} &\| u_{\varepsilon } ( t+h) -u_{\varepsilon }(t) \| _{W^{-1,r}( \Omega ) }\\ &=\| \int_{t}^{t+h}( \lambda _1^{\varepsilon }+\lambda _2^{\varepsilon }) dt' \| _{W^{-1,r}( \Omega) }\\ &\leq C\int_{t}^{t+h}\| \lambda _1^{\varepsilon }\| _{W^{-1,p' }( \Omega ) }dt' +C\int_{t}^{t+h}\| \lambda _2^{\varepsilon }\| _{L^{1}( \Omega )}dt'\\ &\leq C h^{\frac{1}{p}}\| \lambda _1^{\varepsilon }\| _{L^{p' }( 0,T;W^{-1,p' }( \Omega ) ) }+C\| \lambda _2^{\varepsilon }\| _{L^{1}( t,t+h;L^{1}( \Omega ) ) }, \end{aligned} \end{equation} which in view of \eqref{eq3.39} implies that the function $u_{\varepsilon }$ is uniformly equicontinuous in $C^{0}( 0,T;W^{-1,r}( \Omega ) ) $. Since $u_{\varepsilon }$ is bounded in $L^{\infty }( 0,T;L^{2}( \Omega ) ) $, (see \eqref{eq3.11}) we deduce from Ascoli's theorem (see, eg \cite[Lemma 1]{S}) that $u_{\varepsilon }$ is relatively compact in $C^{0}( 0,T;W^{-1,r}( \Omega ) ) $ which proves \eqref{eq3.38}. \subsection*{Remarks} In this article, we assumed that $p>2$, and realized that does not seem to be easy extending this method for the case $p<2$. It seems difficult to avoid a supplementary condition on $\psi$ like \eqref{eq2.9bis}. A similar condition is assumed for example in \cite[hypotheses (9), (10)]{D}. The condition \eqref{eq2.9bis} can be seen as follows: let us define for $u\in L^p(0,T, W^{1,p}_0(\Omega))$ the function $G=f-\frac{\partial \psi}{\partial t}+\operatorname{div} a(x,t,u,D\psi)$. The hypotheses on $a, \psi$ are set in order to have $G\in L^{p'}(Q)$. In the case where $a$ is independent of $u$, this is essentially a regularity condition on the obstacle $\psi$. If $a$ depends on $u$, then with suitable condition on the derivative of $a(x,t,s,\xi)$ with respect to $x, s, \xi$ one can see that\eqref{eq2.9bis} is satisfied by a function $a$ of the form $a(x,t,s,\xi)=b(x,t,s)|\xi|^{p-2}\xi$. \subsection*{Acknowledgements} The author is indebted to the anonymous referees for their valuable comments and suggestions that helped improving the original manuscript. \begin{thebibliography}{99} \bibitem{AAR} L. Aharouch, E. Azroul, M. Rhoudaf; \emph{Existence result for variational degenerated parabolic problems via pseudo-monotonicity}, Oujda International Conference on Nonlinear Analysis. Electronic Journal of Differential Equations, Conference 14, (2006), pp. 9-20. \bibitem{ABBM} Y. Akdim, J. Bennouna, A. Bouajaja, M. Mekkour; \emph{Strongly nonliear parabolic unilateral problems without sign conditions and three unbounded non linearities}, IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November (2012). \bibitem{BB} H. Brezis, F. E. Browder; \emph{Strongly nonlinear parabolic variational inequalities}, Proc. Nat. Acad. Sci. USA 77 (1980), pp. 713-715. \bibitem{[BL]} A. Bensoussan, J. L. Lions, G. Papanicolaou; \emph{Asymptotic analysis for periodic structures}, North-Holland, Amsterdam (1978). \bibitem{BM1} L. Boccardo, F. Murat; \emph{Strongly nonlinear Cauchy problems with gradient dependent lower order nonlinearity}, in Recent Advances in Nonlinear Elliptic and Parabolic Problems, (Proceedings, Nancy, 1988) ed. by P. Benilan, M. Chipot, L. C. Evans, M. Pierre, Pitman Research Notes in Mathematics series 208 (1989), Longman, Harlow, pp. 247-254. \bibitem{BM2} L. Boccardo, F. Murat; \emph{Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations}, Nonlinear Analysis, Theory, Methods \& Applications, Vol. 19, No. 6, (1992), pp. 581-597. \bibitem{CT} P. Charrier, G. M. Troianiello; \emph{On strong solutions to parabolic unilateral problems with obstacle dependent on time}, J. Math. Anal. Appl. 65 (1978), pp. 110-125. \bibitem{D} F. Donati; \emph{A penality method approach to strong solutions of some nonlinear parabolic unilateral problems}, Nonlinear Analysis, Theory, Methods and Applications 6 (1982), pp. 285-297. \bibitem{KKS} R. Korte, T. Kuusi, J. Siljander; \emph{Obstacle problem for nonlinear parabolic equations}, J. Differential Equations 246 (9), (2009), pp. 3668 -3680. \bibitem{L} J.-L. Lions; \emph{Quelques m\'{e}thodes de r\'{e}solution des probl\`{e}mes aux limites non lin\'{e}aires}, Dunod, Paris, (1969). \bibitem{M} A. Mokrane; \emph{An existence result via penalty method for some nonlinear parabolic unilateral problems}, Bolletino della Unione Matematica Italiana, 8B, (1994), pp. 405-417. \bibitem{[MP]} F. Mignot, J. P. Puel; \emph{In\'{e}quations d'\'{e}volution paraboliques avec convexes d\'{e}pendant du temps. Application aux in\'{e}quations quasi-variationnelles d'\'{e}volution}, Ai-ch. Rat. Mech. Analysis 64 (1977), pp. 59-91. \bibitem{S} J. Simon; \emph{Compact set in the space $L^{p}(0,T;B)$}, Annali di Matematica Pura ed Aplicata 146 (1987), pp. 65-96. \bibitem{St} G. Stampacchia; \emph{\'Equations elliptiques du second ordre \`a coefficients discontinus}, Presses de l'Universit\'e de Montr\'eal, (1966). \bibitem{W} J. Webb; \emph{Boundary value problems for Strongly nonlinear elliptic equations}, J. London Math. Soc. 21 (1980), pp. 123-132. \end{thebibliography} \end{document}