\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 23, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2013 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/23\hfil Existence and stability for SICNNs] {Existence and stability of almost periodic solutions for SICNNs with neutral type delays} \author[Q.-L. Liu, H.-S. Ding \hfil EJDE-2014/23\hfilneg] {Qing-Long Liu, Hui-Sheng Ding} % in alphabetical order \address{Qing-Long Liu \newline College of Mathematics and Information Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China} \email{758155543@qq.com} \address{Hui-Sheng Ding (corresponding author)\newline College of Mathematics and Information Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China} \email{dinghs@mail.ustc.edu.cn} \thanks{Submitted November 4, 2013. Published January 10, 2014.} \subjclass[2000]{34C25, 34K13, 34K25} \keywords{Almost periodic; shunting inhibitory cellular neural networks; \hfill\break\indent neutral type delays; stability} \begin{abstract} This article concerns the shunting inhibitory cellular neural networks with neutral type delays. Under a weaker condition than the usual Lipschitz condition, we establish the existence and stability of almost periodic solutions for SICNNs with neutral type delays. An example is given to illustrate our main results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} Since Bouzerdoum and Pinter \cite{Bouzerdoum91,Bouzerdoum92,Bouzerdoum} introduced and analyzed the shunting inhibitory cellular neural networks (SICNNs), they have been extensively applied in psychophysics, speech, perception, robotics, adaptive pattern recognition, vision, and image processing (cf. \cite{Bouzerdoum1,Bouzerdoum2} and references therein). It is well known that studies on neural networks not only involve a discussion of stability properties, but also involve many dynamic behaviors such as periodic oscillatory behavior and almost periodic oscillatory properties. In applications, if the various constituent components of the temporally nonuniform environment is with incommensurable (nonintegral multiples) periods, then one has to consider the environment to be almost periodic since there is no a priori reason to expect the existence of periodic solutions. Therefore, if we consider the effects of the environmental factors, almost periodicity is sometimes more realistic and more general than periodicity. Also, as pointed out in \cite{Fink,corduneanu}, compared with periodic effects, almost periodic effects are more frequent in many real world applications. In fact, this point of view is partially verified by a recent work \cite{zheng-ding-gaston}, where the authors proved that the ``amount'' of almost periodic functions (not periodic) is far more than the ``amount'' of continuous periodic functions in the sense of category. Thus, studying the existence of almost periodic solutions for differential equations is natural and necessary. Recently, many authors have studied the existence and stability of periodic solutions and almost periodic solutions for the following SICNNs: \begin{equation*} x'_{ij}(t)=-a_{ij}x_{ij}(t)-\sum_{C_{kl}\in N_r(i,j)}C^{kl}_{ij}f[x_{kl}(t-\tau(t))]x_{ij}(t)+L_{ij}(t), \end{equation*} and its variants. We refer the reader to \cite{n6,n4,n5, n3,n1, farouk,ding,fang1,n2,fang2,liu2,liu1} and reference therein for some of recent developments on this topic. Especially, in a very recent work, the authors in \cite{fang2} investigated the existence and stability of almost periodic solutions for the following SICNNs with neutral type delays: \begin{equation}\label{moxing} \begin{aligned} x'_{ij}(t) &= -a_{ij}(t)x_{ij}(t)-\sum_{C_{kl}\in N_r(i,j)}C^{kl}_{ij}(t) \int_0^\infty K_{ij}(u)f(x_{kl}(t-u))dux_{ij}(t) \\ &\quad -\sum_{D_{kl}\in N_s(i,j)}D^{kl}_{ij}(t)\int_0^\infty J_{ij}(u)g(x'_{kl}(t-u))dux_{ij}(t)+L_{ij}(t), \end{aligned} \end{equation} $i=1,2,\dots ,m$, $j=1,2,\dots n$, where $m,n$ are two fixed positive integers, $C_{ij}$ is the cell at the $(i,j)$ position of the lattice, the $r$-neighborhood $N_r(i,j)$ of $C_{ij}$ is defined as follows: $$ N_r(i,j)=\{C_{kl}: \max{|k-i|,|l-j|}\leq r, 1\leq k \leq m,1\leq l\leq n \}, $$ and $N_s(i,j)$ is defined similarly. Here $x_{ij}(t)$ is the activity of cell $C_{ij}$, $L_{ij}(t)$ is the external input to $C_{ij}$, the coefficient $a_{ij}(t)$ is the passive decay rate of the cell activity, $f,g$ are continuous activity functions of signal transmission, $C^{kl}_{ij}(t)$ represents the connection or coupling strength of postsynaptic activity of the cell transmitted to the cell $C_{ij}$, and $D^{kl}_{ij}(t)$ has a similar meaning. In \cite{fang2}, the activation functions $f$ and $g$ satisfy the global Lipschitz conditions. In this paper, as one will see, we allow for more general activity functions, i.e., we will discuss the existence and stability of almost periodic solutions for the SICNNs \eqref{moxing} under a weaker Lipschitz conditions on $f$ and $g$. Next, let us recall some basic notation and results about almost periodic functions. For more details, we refer the reader to \cite{corduneanu,Fink,gaston}. \begin{definition} \rm A continuous function $u$: $\mathbb{R}\to \mathbb{R}$ is called almost periodic if for each $\varepsilon > 0$ there exists $l(\varepsilon) > 0$ such that every interval $I$ of length $l(\varepsilon)$ contains a number $\tau$ with the property that $$ |u(t+\tau)-u(t)|<\varepsilon. $$ \end{definition} We denote by $AP(\mathbb{R})$ the set of all almost periodic functions from $\mathbb{R}$ to $\mathbb{R}$, and by $AP^1(\mathbb{R})$ the set of all continuously differentiable functions $u:\mathbb{R}\to \mathbb{R}$ satisfying $u,u'\in AP(\mathbb{R})$. \begin{lemma}\label{ap-lemma} Let $f,g\in AP(\mathbb{R})$ and $k\in L^1(\mathbb{R}^+)$. Then the following assertions hold: \begin{itemize} \item[(a)] $f+g\in AP(\mathbb{R})$ and $f\cdot g\in AP(\mathbb{R})$; \item[(b)] the function $t\mapsto f(t-\tau)$ belongs to $AP(\mathbb{R})$ for every $\tau\in\mathbb{R}$; \item[(c)] $F\in AP(\mathbb{R})$, where $$ F(t)=\int_0^{+\infty}k(u)f(t-u)du,\quad t\in\mathbb{R}. $$ \item[(d)] $AP(\mathbb{R})$ is a Banach space under the norm $\|f\|=\sup_{t\in\mathbb{R}}|f(t)|$. \end{itemize} \end{lemma} \section{Existence of almost periodic solution} For the rest of this article, we denote \begin{gather*} J=\{11,\dots ,1n,,\dots ,m1,\dots ,mn\},\\ x(t)=\{x_{ij}(t)\}=(x_{11}(t),\dots ,x_{1n}(t),..,x_{m1}(t),\dots ,x_{mn}(t)),\\ X=\{\varphi:\varphi=\{\varphi_{ij}\},\ \varphi_{ij},\varphi'_{ij}\in AP(\mathbb{R})\}. \end{gather*} For every $\varphi\in X$, we denote \begin{gather*} \|\varphi\|=\sup_{t\in \mathbb{R} }\max_{ij\in J}\{|\varphi_{ij}(t)|\},\\ \|\varphi\|_X=\max\{\|\varphi\|,\|\varphi'\|\} =\max\{\sup_{t\in \mathbb{R} }\max_{ij\in J}|\varphi_{ij}(t)|, \sup_{t\in \mathbb{R} }\max_{ij\in J}|\varphi'_{ij}(t)|\}. \end{gather*} It is not difficult to verify that $X$ is a Banach space under the norm $\|\cdot\|_X$. For every $ij \in J$, we denote \begin{gather*} a^+_{ij}:=\sup_{t\in \mathbb{R}}a_{ij}(t),\quad a^-_{ij}:=\inf_{t\in \mathbb{R}}a_{ij}(t),\quad L^{+}_{ij}:=\sup_{t\in \mathbb{R}}|L_{ij}(t)|,\\ \overline{C_{ij}^{kl}}:=\sup_{t\in \mathbb{R}}|C_{ij}^{kl}(t)|,\quad \overline{D_{ij}^{kl}}:=\sup_{t\in \mathbb{R}}|D_{ij}^{kl}(t)|. \end{gather*} We will use the following assumptions: \begin{itemize} \item[(H1)] For every $ij\in J$, $a_{ij}$, $C_{ij}^{kl}$, $D_{ij}^{kl}$ and $L_{ij}$ are both almost periodic functions, and $a^-_{ij}>0$. \item[(H2)] There exist four functions $f_1, f_2,g_1,g_2:\mathbb{R}\to\mathbb{R}$ and four positive constants $L_{f_1},L_{f_2},L_{g_1},L_{g_2}$ such that $f=f_1f_2$, $g=g_1g_2$ and for all $u,v \in \mathbb{R}$, there holds $$ |f_i(u)-f_i(v)|\leq L_{f_i}|u-v|,\quad |g_i(u)-g_i(v)|\leq L_{g_i}|u-v|, \quad i=1,2. $$ \item[(H3)] There exists a constant $\lambda_0>0$ such that $$ \int_0^{\infty}|K_{ij}(u)|e^{\lambda_0 u}du<+\infty, \quad\int_0^{\infty}|J_{ij}(u)|e^{\lambda_0 u}du<+\infty,\quad ij\in J. $$ \item[(H4)] There exists a constant $d>0$ such that \begin{gather*} \max\Big\{\max_{ij\in J}\big\{\frac{A_{ij}+L_{ij}^+}{a_{ij}^-}\big\} , \max_{ij\in J}\big\{\frac{A_{ij}+L_{ij}^+}{a_{ij}^-}(a_{ij}^++a_{ij}^-)\big\} \Big\}\leq d , \\ \max\Big\{\max_{ij\in J}\big\{\frac{B_{ij}(0)}{a_{ij}^-}\big\}, {\max _{ij\in J}}\big\{\frac{B_{ij}(0)}{a_{ij}^-}(a_{ij}^++a_{ij}^-)\big\} \Big\}<1, \end{gather*} where $M_{f_i}=\sup_{|x|\leq d}|f_i(x)|$, $M_{g_i}=\sup_{|x|\leq d}|g_i(x)|$, $i=1,2$, \begin{align*} A_{ij}&=\sum_{C_{kl}\in N_r(i,j)}\overline{C^{kl}_{ij}} (dM_{f_1}M_{f_2})\int_0^\infty |K_{ij}(u)|du\\ &\quad +\sum_{D_{kl}\in N_s(i,j)}\overline{D^{kl}_{ij}} (dM_{g_1}M_{g_2})\int_0^\infty |J_{ij}(u)|du, \end{align*} and \begin{align*} B_{ij}(0)=&\sum_{C_{kl}\in N_r(i,j)} \overline{C^{kl}_{ij}} \Big[(M_{f_1}M_{f_2})\int_0^\infty|K_{ij}(u)|du \\ &\quad + d(M_{f_1}L_{f_2}+M_{f_2}L_{f_1})\int_0^\infty|K_{ij}(u)|du\Big]\\ &\quad +\sum_{D_{kl}\in N_s(i,j)} \overline{D^{kl}_{ij}} \Big[(M_{g_1}M_{g_2})\int_0^\infty|J_{ij}(u)|du\\ &\quad +d(M_{g_1}L_{g_2}+M_{g_2}L_{g_1})\int_0^\infty|J_{ij}(u)|du\Big], \end{align*} \end{itemize} \begin{theorem}\label{dingli2.1} Under assumptions {\rm H1)--(H4)}, there exists a unique continuously differentiable almost periodic solution of \eqref{moxing} in the region $ \Omega=\{ \varphi \in X:\| \varphi \|_{X} \leq d \}$. \end{theorem} \begin{proof} For $\omega \in (0, \lambda_0]$, we denote \begin{align*} B_{ij}(\omega) &=\sum_{C_{kl}\in N_r(i,j)} \overline{C^{kl}_{ij}} \Big[(M_{f_1}M_{f_2})\int_0^\infty|K_{ij}(u)|du\\ &\quad + d(M_{f_1}L_{f_2}+M_{f_2}L_{f_1})\int_0^\infty|K_{ij}(u)| e^{\omega u}du\Big]\\ &\quad +\sum_{D_{kl}\in N_s(i,j)} \overline{D^{kl}_{ij}} \Big[(M_{g_1}M_{g_2})\int_0^\infty|J_{ij}(u)|du\\ &\quad +d(M_{g_1}L_{g_2}+M_{g_2}L_{g_1})\int_0^\infty|J_{ij}(u)| e^{\omega u}du\Big]. \end{align*} For each $\varphi \in X $, we consider the almost periodic differential equations \begin{equation}\label{moxing2} \begin{aligned} x'_{ij}(t)&= -a_{ij}(t)x_{ij}(t) -\sum_{C_{kl}\in N_r(i,j)}C^{kl}_{ij}(t)\int_0^\infty K_{ij}(u) f(\varphi_{kl}(t-u))du\varphi_{ij}(t) \\ &\quad -\sum_{D_{kl}\in N_s(i,j)}D^{kl}_{ij}(t)\int_0^\infty J_{ij}(u)g(\varphi'_{kl}(t-u))du\varphi_{ij}(t)+L_{ij}(t),\quad ij\in J. \end{aligned} \end{equation} Combining (H1) and Lemma \ref{ap-lemma}, we know that the inhomogeneous part of equation \eqref{moxing2} is an almost periodic function. Noting that $a^-_{ij}>0$, by \cite[Theorem 7.7]{Fink}, we conclude that \eqref{moxing2} has a unique almost periodic solution $x^{\varphi}$ satisfying \begin{align*} x^{\varphi}(t) &= \Big\{\int^t_{-\infty}e^{-\int^{t}_{s}a_{ij}(u)du} \Big[- \sum_{C_{kl}\in N_r(i,j)}C^{kl}_{ij}(s) \int_0^\infty K_{ij}(u)f(\varphi_{kl}(s-u))du\varphi_{ij}(s) \\ &\quad - \sum_{D_{kl}\in N_s(i,j)}D^{kl}_{ij}(s) \int_0^\infty J_{ij}(u)g(\varphi'_{kl}(s-u))du\varphi_{ij}(s) +L_{ij}(s)\Big] ds\Big\}_{ij\in J}. \end{align*} Now, define a mapping $T$ on $ \Omega=\{ \varphi \in X:\|\varphi \|_{X} \leq d \}$ by $$ (T \varphi)(t)=x^{\varphi}(t),\quad \forall \varphi \in \Omega. $$ It is easy to show that $T(\Omega)\subset X$. Next, let us check that $T(\Omega)\subset \Omega$. It suffices to prove that $\|T\varphi\|_X\leq d$ for all $\varphi\in \Omega$. By (H2) and (H3), we have \begin{align*} &\|T\varphi\|\\ &= \sup_{t\in \mathbb{R}}\max_{ij\in J} \Big\{ \Big|\int^t_{-\infty}e^{-\int^{t}_{s}a_{ij}(u)du}\\ &\quad\times \Big[ - \sum_{C_{kl}\in N_r(i,j)}C^{kl}_{ij}(s) \int_0^\infty K_{ij}(u)f(\varphi_{kl}(s-u))du\varphi_{ij}(s) \\ &\quad -\sum_{D_{kl}\in N_s(i,j)}D^{kl}_{ij}(s) \int_0^\infty J_{ij}(u)g(\varphi'_{kl}(s-u))du\varphi_{ij}(s) +L_{ij}(s)\Big]ds \Big| \Big\} \\ & \leq \sup_{t\in \mathbb{R}} \max_{ij\in J} \Big\{\int^t_{-\infty}e^{-\int^{t}_{s}a_{ij}(u)du}\\ &\quad\times \Big[ \sum_{C_{kl}\in N_r(i,j)}\overline{C^{kl}_{ij}} \int_0^\infty |K_{ij}(u)||f(\varphi_{kl}(s-u))|du|\varphi_{ij}(s)| \\ &\quad +\sum_{D_{kl}\in N_s(i,j)}\overline{D^{kl}_{ij}}\int_0^\infty |J_{ij}(u)||g(\varphi'_{kl}(s-u))|du|\varphi_{ij}(s)|+|L_{ij}(s)|\Big]ds\Big\} \\ & \leq \sup_{t\in \mathbb{R}} \max_{ij\in J} \Big\{\int^t_{-\infty}e^{a_{ij}^-(s-t)} \Big[\sum_{C_{kl}\in N_r(i,j)}\overline{C^{kl}_{ij}}(dM_{f_1}M_{f_2}) \int_0^\infty |K_{ij}(u)|du \\ &\quad +\sum_{D_{kl}\in N_s(i,j)}\overline{D^{kl}_{ij}}(dM_{g_1}M_{g_2}) \int_0^\infty |J_{ij}(u)|du+L_{ij}^+\Big]ds\Big\} \\ & \leq \max_{ij\in J}\Big\{ \Big[\sum_{C_{kl}\in N_r(i,j)}\overline{C^{kl}_{ij}} (dM_{f_1}M_{f_2})\int_0^\infty |K_{ij}(u)|du\\ &\quad +\sum_{D_{kl}\in N_s(i,j)}\overline{D^{kl}_{ij}}(dM_{g_1}M_{g_2}) \int_0^\infty |J_{ij}(u)|du+L_{ij}^+\Big]/ a_{ij}^- \Big\}\\ & = \max_{ij\in J}\bigg\{\frac{A_{ij}+L_{ij}^+}{a_{ij}^-} \bigg\}, \end{align*} and \begin{align*} \|(T\varphi)'\| & = \sup_{t\in \mathbb{R}}\max_{ij\in J} \Big\{ \Big|-a_{ij}(t)\int^t_{-\infty}e^{-\int^{t}_{s}a_{ij}(u)du}\\ &\quad\times \Big[ - \sum_{C_{kl}\in N_r(i,j)}C^{kl}_{ij}(t) \int_0^\infty K_{ij}(u)f(\varphi_{kl}(s-u))du\varphi_{ij}(s)\\ &\quad -\sum_{D_{kl}\in N_s(i,j)}D^{kl}_{ij}(t) \int_0^\infty J_{ij}(u)g(\varphi'_{kl}(s-u))du\varphi_{ij}(s) +L_{ij}(s)\Big]ds \\ &\quad +\Big[- \sum_{C_{kl}\in N_r(i,j)}C^{kl}_{ij}(t) \int_0^\infty K_{ij}(u)f(\varphi_{kl}(t-u))du\varphi_{ij}(t)\\ &\quad -\sum_{D_{kl}\in N_s(i,j)}D^{kl}_{ij}(t) \int_0^\infty J_{ij}(u)g(\varphi'_{kl}(t-u))du\varphi_{ij}(t)+L_{ij}(t)\Big] \Big| \Big\}\\ & \leq \sup_{t\in \mathbb{R}}\max_{ij\in J} \Big\{a_{ij}^+\cdot \frac{A_{ij}+L_{ij}^+}{a_{ij}^-}+ A_{ij}+L_{ij}^+\Big\}\\ & = \max_{ij\in J}\Big\{\frac{A_{ij}+L_{ij}^+}{a_{ij}^-}(a_{ij}^+ +a_{ij}^-)\Big\}. \end{align*} Then, from (H4) it follows that $$ \|(T\varphi)\|_X\leq \max\Big\{\max_{ij\in J} \big\{\frac{A_{ij}+L_{ij}^+}{a_{ij}^-}\big\} ,\max_{ij\in J} \big\{\frac{A_{ij}+L_{ij}^+}{a_{ij}^-}(a_{ij}^++a_{ij}^-)\big\}\Big\}\leq d, $$ which implies that $T( \Omega)\subset \Omega$. Let $\varphi,\psi\in \Omega$, and for $ij\in J$ denote \begin{align*} \alpha_{ij}(s) &=\sum_{C_{kl}\in N_r(i,j)}C^{kl}_{ij}(s) \Big(\int_0^\infty K_{ij}(u)f(\varphi_{kl}(s-u))du\varphi_{ij}(s)\\ &\quad -\int_0^\infty K_{ij}(u)f(\psi_{kl}(s-u))du\psi_{ij}(s)\Big), \end{align*} and \begin{align*} \beta_{ij}(s) &=\sum_{D_{kl}\in N_s(i,j)}D^{kl}_{ij}(s) \Big(\int_0^\infty J_{ij}(u)g(\varphi'_{kl}(s-u))du\varphi_{ij}(s)\\ &\quad -\int_0^\infty J_{ij}(u)g(\psi'_{kl}(s-u))du\psi_{ij}(s)\Big). \end{align*} By (H2), for each $ij\in J$, we obtain \begin{align*} & |\alpha_{ij}(s)| \\ & \leq \sum_{C_{kl}\in N_r(i,j)}\overline{C^{kl}_{ij}} \Big\{\Big|\int_0^\infty K_{ij}(u)f(\varphi_{kl}(s-u))du \varphi_{ij}(s)\\ &\quad -\int_0^\infty K_{ij}(u)f(\varphi_{kl}(s-u))du\psi_{ij}(s)\Big|\\ &\quad +\Big|\int_0^\infty K_{ij}(u)f(\varphi_{kl}(s-u))du\psi_{ij}(s) -\int_0^\infty K_{ij}(u)f(\psi_{kl}(s-u))du\psi_{ij}(s)\Big|\Big\}\\ & \leq \sum_{C_{kl}\in N_r(i,j)}\overline{C^{kl}_{ij}} \Big|\Big[\int_0^\infty K_{ij}(u)f_1(\varphi_{kl}(s-u)) f_2(\varphi_{kl}(s-u))du\varphi_{ij}(s) \\ &\quad -\int_0^\infty K_{ij}(u)f_1(\varphi_{kl}(s-u)) f_2(\varphi_{kl}(s-u))du\psi_{ij}(s)\Big] \\ &\quad +\Big[\int_0^\infty K_{ij}(u)f_1(\varphi_{kl}(s-u)) f_2(\varphi_{kl}(s-u))du\psi_{ij}(s)\\ &\quad -\int_0^\infty K_{ij}(u)f_1(\varphi_{kl}(s-u)) f_2(\psi_{kl}(s-u))du\psi_{ij}(s)\Big]\\ &\quad +\Big[\int_0^\infty K_{ij}(u)f_1(\varphi_{kl}(s-u)) f_2(\psi_{kl}(s-u))du\psi_{ij}(s)\\ &\quad -\int_0^\infty K_{ij}(u)f_1(\psi_{kl}(s-u)) f_2(\psi_{kl}(s-u))du\psi_{ij}(s)\Big]\Big|\\ & \leq \sum_{C_{kl}\in N_r(i,j)}\overline{C^{kl}_{ij}} [M_{f_1}M_{f_2}+d(M_{f_1}L_{f_2}+M_{f_2}L_{f_1})] \int_0^\infty |K_{ij}(u)|du\|\varphi-\psi\|_X. \end{align*} Similarly, for each $ij \in J$, we have $$ |\beta_{ij}(s)|\leq \sum_{D_{kl}\in N_s(i,j)}\overline{D^{kl}_{ij}} [M_{g_1}M_{g_2}+d(M_{g_1}L_{g_2}+M_{g_2}L_{g_1})] \int_0^\infty |J_{ij}(u)|du\|\varphi-\psi\|_X. $$ Thus, $$ |\alpha_{ij}(s)|+|\beta_{ij}(s)|\leq B_{ij}(0)||\varphi-\psi||_X. $$ It follows that \begin{align*} \|T\varphi-T\psi\| &=\sup_{t\in \mathbb{R}}\max_{ij\in J} \Big\{ \Big|\int^t_{-\infty}e^{-\int^{t}_{s}a_{ij}(u)du}[\alpha_{ij}(s) +\beta_{ij}(s)]ds \Big| \Big\}\\ &\leq \sup_{t\in \mathbb{R}}\max_{ij\in J} \int^t_{-\infty}e^{-\int^{t}_{s}a_{ij}(u)du} (|\alpha_{ij}(s)|+|\beta_{ij}(s)|)ds\\ &\leq \sup_{t\in \mathbb{R}}\max_{ij\in J} \Big\{\int^t_{-\infty}e^{-\int^{t}_{s}a_{ij}(u)du}ds\Big\} B_{ij}(0) \|\varphi-\psi\|_X\\ &\leq \max_{ij\in J}\Big\{\frac{B_{ij}(0)}{a_{ij}^-}\Big\}\|\varphi-\psi\|_X, \end{align*} and \begin{align*} &\|(T\varphi-T\psi)'\|\\ &=\sup_{t\in \mathbb{R}}\max_{ij\in J} \Big\{ \Big|-a_{ij}(t)\int^t_{-\infty}e^{-\int^{t}_{s}a_{ij}(u)ds} (\alpha_{ij}(s)+\beta_{ij}(s))ds+(\alpha_{ij}(t)+\beta_{ij}(t)) \Big| \Big\}\\ &\leq \sup_{t\in \mathbb{R}}\max_{ij\in J} \Big\{ a_{ij}^+\Big|\int^t_{-\infty}e^{-\int^{t}_{s}a_{ij}(u)du} (\alpha_{ij}(s)+\beta_{ij}(s))ds\Big|+(|\alpha_{ij}(t)|+|\beta_{ij}(t)|) \Big\}\\ &\leq \sup_{t\in \mathbb{R}}\max_{ij\in J} \Big\{a_{ij}^+\frac{B_{ij}(0)}{a_{ij}^-}\|\varphi-\psi\|_X+B_{ij}(0) \|\varphi-\psi\|_X\Big\}\\ &\leq \max_{ij\in J}\Big\{\frac{B_{ij}(0)}{a_{ij}^-}(a_{ij}^++a_{ij}^-)\Big\} \|\varphi-\psi\|_X. \end{align*} Combining the above two inequalities, we obtain $$ \|T\varphi-T\psi\|_{X}\leq \max\Big\{\max_{ij\in J} \big\{\frac{B_{ij}(0)}{a_{ij}^-}\big\}, {\max _{ij\in J}}\big\{\frac{B_{ij}(0)}{a_{ij}^-}(a_{ij}^++a_{ij}^-)\big\}\Big\} \|\varphi-\psi\|_{X}. $$ Noticing that $$\ max\Big\{\max_{ij\in J}\big\{\frac{B_{ij}(0)}{a_{ij}^-}\big\}, {\max _{ij\in J}}\big\{\frac{B_{ij}(0)}{a_{ij}^-}(a_{ij}^++a_{ij}^-)\big\}\Big\} <1, $$ By the Banach contraction principle, $T$ has a unique fixed point $x$ in $\Omega$, which is just a continuously differentiable almost periodic solution of Equation \eqref{moxing}. \end{proof} \section{Stability of almost periodic solutions} In this section, we will establish some results about the locally exponential stability of the almost periodic solution for Equation \eqref{moxing}. \begin{theorem}\label{dingli3.1} Assume {\rm (H1)--(H4)} hold. Let $x(t)=\{x_{ij}(t)\}$ be the unique continuously differentiable almost periodic solution of \eqref{moxing} in $\Omega$, and $y(t)=\{y_{ij}(t)\}$ be an arbitrary continuously differentiable solution of Equation \eqref{moxing} in the region $\Omega$. Then, there exist two constants $\lambda,M>0$ such that $$ \|x(t)-y(t)\|_1\leq M e^{-\lambda t}, \quad \forall t\in \mathbb{R}, $$ where $$ \|x(t)-y(t)\|_1 :=\max\{\max_{ij\in J}|x_{ij}(t)-y_{ij}(t)|, \max_{ij\in J}|x'_{ij}(t)-y'_{ij}(t)|\}. $$ \end{theorem} \begin{proof} For $\omega\in [0,\lambda_0]$, we denote $$ T_{ij}(\omega)=a_{ij}^--\omega-B_{ij}(\omega), \quad S_{ij}(\omega)=a_{ij}^--\omega-(a_{ij}^++a_{ij}^-)B_{ij}(\omega). $$ By (H4), we have $T_{ij}(0)>0$ and $S_{ij}(0)>0$ for all $ij\in J$. Then, due to the continuity of $T_{ij}(\omega)$ and $S_{ij}(\omega)$, there exists a sufficiently small positive constant $\lambda<\min\big\{\min_{ij\in J}\{a_{ij}^-\},\lambda_0\big\}$ such that $$ T_{ij}(\lambda)>0,\quad S_{ij}(\lambda)>0,\quad ij\in J, $$ which means that \begin{equation}\label{bds3.1} \frac{B_{ij}(\lambda)}{a^{-}_{ij}-\lambda}<1, \quad \frac{B_{ij}(\lambda)}{a^{-}_{ij}-\lambda}(a_{ij}^++a_{ij}^-)<1,\quad ij\in J. \end{equation} for all $ij\in J$. Setting $M_0=\max_{ij\in J}\big\{\frac{a_{ij}^-}{B_{ij}(0)}\big\}$, the following three inequalities hold: \begin{equation}\label{three equations} M_0>1,\quad \frac{1}{M_0}-\frac{B_{ij}(\lambda)}{a_{ij}^--\lambda}\leq0 ,\quad B_{ij}(\lambda)(\frac{a_{ij}^+}{a^{-}_{ij}-\lambda}+1)<1,\quad ij\in J. \end{equation} Now, we denote \begin{gather*} z(t)=\big\{z_{ij}(t):z_{ij}(t)=x_{ij}(t)-y_{ij}(t)\big\}, \\ \begin{aligned} R_{ij}(s)&=\sum_{C_{kl}\in N_r(i,j)}C^{kl}_{ij}(s) \Big[\int_0^\infty K_{ij}(u)f(y_{kl}(s-u))duy_{ij}(s)\\ &\quad -\int_0^\infty K_{ij}(u)f(x_{kl}(s-u))dux_{ij}(s)\Big], \end{aligned}\\ \begin{aligned} Q_{ij}(s)&=\sum_{D_{kl}\in N_s(i,j)}D^{kl}_{ij}(s) \Big[\int_0^\infty J_{ij}(u)g(y'_{kl}(s-u))duy_{ij}(s)\\ &\quad -\int_0^\infty J_{ij}(u)g(x'_{kl}(s-u))dux_{ij}(s)\Big]. \end{aligned} \end{gather*} Since $x(t)$ and $y(t)$ are both solutions to equation \eqref{moxing}, we have \begin{equation} \label{3.1} z'_{ij}(s)+a_{ij}(s)z_{ij}(s)=R_{ij}(s)+Q_{ij}(s). \end{equation} Multiplying by $e^{\int_0^sa_{ij}(u)du}$ and integrating on $[0,t]$, we obtain \begin{equation}\label{3.2} z_{ij}(t)=z_{ij}(0)e^{-\int_0^ta_{ij}(u)du}+\int_0^te^{-\int_s^ta_{ij}(u)du}(R_{ij}(s)+Q_{ij}(s))ds \end{equation} Let $$ M:=M_0\cdot \max\big\{\sup_{t\leq 0}\max_{ij\in J}|x_{ij}(t)-y_{ij}(t)|, \sup_{t\leq 0}\max_{ij\in J}|x'_{ij}(t)-y'_{ij}(t)|\big\}. $$ Without loss for generality, we can assume that $M>0$. Then, for all $t\leq 0$, noting that $M_0>1$, we have $$ \|z(t)\|_1= \max\big\{\max_{ij\in J}|x_{ij}(t)-y_{ij}(t)|,\max_{ij\in J}|x'_{ij}(t)-y'_{ij}(t)|\big\}0, $$ by contradiction. If the above inequality is not true, then $$ V:=\{t>0: \|z(t)\|_1 > Me^{-\lambda t} \}\neq \emptyset. $$ Letting $t_1=\inf V$, then $t_1>0$ and \begin{align}\label{maodun} \|z(t)\|_1&\leq M e^{-\lambda t}, \quad \forall t\in(-\infty,t_{1}),\quad \|z(t_1)\|_1= M e^{-\lambda t_1}. \end{align} For $s\in [0, t_1]$ and $ij\in J$, by the assumptions and \eqref{maodun}, we have \begin{align*} &|R_{ij}(s)|\\ &=\sum_{C_{kl}\in N_r(i,j)}|C^{kl}_{ij}(s)| \Big|\int_0^\infty K_{ij}(u)f(y_{kl}(s-u))duy_{ij}(s)\\ &\quad -\int_0^\infty K_{ij}(u)f(x_{kl}(s-u))dux_{ij}(s)\Big|\\ &\leq \sum_{C_{kl}\in N_r(i,j)}\overline{C^{kl}_{ij}} \Big\{\Big|\int_0^\infty K_{ij}(u)f(y_{kl}(s-u))duy_{ij}(s)\\ &\quad -\int_0^\infty K_{ij}(u)f(y_{kl}(s-u))dux_{ij}(s)\Big|\\ &\quad +\Big|\int_0^\infty K_{ij}(u)f(y_{kl}(s-u))dux_{ij}(s) -\int_0^\infty K_{ij}(u)f(x_{kl}(s-u))dux_{ij}(s)\Big|\Big\}\\ &\leq \sum_{C_{kl}\in N_r(i,j)}\overline{C^{kl}_{ij}} \Big\{\Big|\int_0^\infty K_{ij}(u)f_1(y_{kl}(s-u))f_2(y_{kl}(s-u))duy_{ij}(s) \Big|\\ &\quad -\int_0^\infty K_{ij}(u)f_1(y_{kl}(s-u))f_2(y_{kl}(s-u))dux_{ij}(s)\Big|\\ &\quad +\Big|\int_0^\infty K_{ij}(u)f_1(y_{kl}(s-u))f_2(y_{kl}(s-u))dux_{ij}(s)\\ &\quad -\int_0^\infty K_{ij}(u)f_1(x_{kl}(s-u))f_2(y_{kl}(s-u))dux_{ij}(s)\Big|\\ &\quad +\Big|\int_0^\infty K_{ij}(u)f_1(x_{kl}(s-u))f_2(y_{kl}(s-u))dux_{ij}(s)\\ &\quad -\int_0^\infty K_{ij}(u)f_1(x_{kl}(s-u))f_2(x_{kl}(s-u))dux_{ij}(s)\Big|\Big\}\\ &\leq \sum_{C_{kl}\in N_r(i,j)}\overline{C^{kl}_{ij}} \Big\{(M_{f_1}M_{f_2})\int_0^\infty|K_{ij}(u)|du|z_{ij}(s)|\\ &\quad + d(M_{f_1}L_{f_2}+M_{f_2}L_{f_1})\int_0^\infty|K_{ij}(u)||z_{kl}(s-u)|du\Big\}\\ &\leq \sum_{C_{kl}\in N_r(i,j)}\overline{C^{kl}_{ij}} \Big\{(M_{f_1}M_{f_2})\int_0^\infty|K_{ij}(u)|du\\ &\quad + d(M_{f_1} L_{f_2}+M_{f_2}L_{f_1})\int_0^\infty|K_{ij}(u)|e^{\lambda u}du\Big\} Me^{-\lambda s}. \end{align*} Similarly, for $s\in [0, t_1]$ and $ij\in J$, we have \begin{align*} |Q_{ij}(s)| &\leq \sum_{D_{kl}\in N_s(i,j)}\overline{D^{kl}_{ij}} \Big\{(M_{g_1}M_{g_2})\int_0^\infty|J_{ij}(u)|du|z_{ij}(s)|\\ &\quad + d(M_{g_1}L_{g_2}+M_{g_2}L_{g_1})\int_0^\infty|J_{ij}(u)||z'_{kl}(s-u)|du\Big\}\\ &\leq \sum_{D_{kl}\in N_s(i,j)}\overline{D^{kl}_{ij}} \Big\{(M_{g_1}M_{g_2})\int_0^\infty|J_{ij}(u)|du\\ &\quad + d(M_{g_1}L_{g_2}+M_{g_2}L_{g_1}) \int_0^\infty|J_{ij}(u)|e^{\lambda u}du\Big\} Me^{-\lambda s}. \end{align*} Then we have \begin{equation}\label{er} |R_{ij}(s)|+|Q_{ij}(s)|\leq Me^{-\lambda s}B_{ij}(\lambda),\quad s\in [0,t_1],\ ij\in J. \end{equation} Combining \eqref{3.2} and \eqref{er}, we have \begin{equation}\label{3.8} \begin{aligned} |z_{ij}(t_1)| &= \big|z_{ij}(0)e^{-\int_0^{t_1}a_{ij}(u)du} +\int_0^{t_1}e^{-\int_s^{t_1}a_{ij}(u)du}(R_{ij}(s)+Q_{ij}(s))ds\big| \\ &\leq \frac{M}{M_0}e^{-a_{ij}^-t_1}+\int_0^{t_1} e^{(a_{ij}^{-}-\lambda)s-a_{ij}^{-}t_1}ds\cdot MB_{ij}(\lambda) \\ &= \frac{M}{M_0}e^{-a_{ij}^-t_1}+\frac{(e^{-\lambda t_1} -e^{-a_{ij}^- t_1})B_{ij}(\lambda)}{a_{ij}^--\lambda}\cdot M \\ &\leq Me^{-\lambda t_1}\Big\{\frac{e^{(\lambda-a_{ij}^-)t_1}}{M_0} +\frac{[1-e^{(\lambda-a_{ij}^-) t_1}]B_{ij}(\lambda))}{a_{ij}^--\lambda}\Big\}\\ &= Me^{-\lambda t_1}\Big\{\Big(\frac{1}{M_0}-\frac{B_{ij}(\lambda)}{a_{ij}^- -\lambda}\Big)e^{(\lambda-a_{ij}^-)t_1} +\frac{B_{ij}(\lambda)}{a_{ij}^--\lambda}\Big\}. \end{aligned} \end{equation} Then, by \eqref{bds3.1} and \eqref{three equations}, we deduce that \begin{equation}\label{3.9} |z_{ij}(t_1)|< Me^{-\lambda t_1},\quad ij\in J. \end{equation} Recalling that $$ z'_{ij}(t) = -a_{ij}(t)z_{ij}(t)+R_{ij}(t)+Q_{ij}(t), $$ by \eqref{er} and \eqref{3.8}, we have \begin{align*} |z'_{ij}(t_1)| & = |-a_{ij}(t_1)z_{ij}(t_1)+R_{ij}(t_1)+Q_{ij}(t_1)|\\ &\leq a_{ij}^+|z_{ij}(t_1)|+|R_{ij}(t_1)|+|Q_{ij}(t_1)|\\ &< a_{ij}^+ Me^{-\lambda t_1}\Big\{\Big(\frac{1}{M_0} -\frac{B_{ij}(\lambda)}{a_{ij}^--\lambda}\Big)e^{(\lambda-a_{ij}^-)t_1} +\frac{B_{ij}(\lambda)}{a_{ij}^--\lambda}\Big\} +M e^{-\lambda t_1}B_{ij}(\lambda)\\ &= Me^{-\lambda t_1}\Big\{a_{ij}^+\Big(\frac{1}{M_0} -\frac{B_{ij}(\lambda)}{a_{ij}^--\lambda}\Big)e^{(\lambda-a_{ij}^-)t_1} +B_{ij}(\lambda) (\frac{a_{ij}^ +}{a^{-}_{ij}-\lambda}+1)\Big\} \end{align*} Then, from \eqref{three equations} it follows that \begin{equation}\label{3.10} |z'_{ij}(t_1)|< M e^{-\lambda t_1},\quad ij\in J. \end{equation} Combining \eqref{3.9} and \eqref{3.10}, we obtain \begin{align*} \|z(t_1)\|_1