\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 230, pp. 1--18.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/230\hfil Existence of infinitely many radial solutions] {Existence of infinitely many radial solutions for quasilinear Schr\"odinger equations} \author[G. Bao, Z.-Q. Han \hfil EJDE-2014/230\hfilneg] {Gui Bao, Zhi-Qing Han} % in alphabetical order \address{Gui Bao \newline School of Mathematics and Statistics Science, Ludong University, Yantai, Shandong 264025, China} \email{baoguigui@163.com} \address{Zhiqing Han \newline School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China} \email{hanzhiq@dlut.edu.cn} \thanks{Submitted September 1, 2014. Published October 27, 2014.} \subjclass[2000]{37J45, 58E05, 34C37,70H05} \keywords{Quasilinear elliptic equations; variational methods; radial solutions} \begin{abstract} In this article we prove the existence of radial solutions with arbitrarily many sign changes for quasilinear Schr\"odinger equation $$ -\sum_{i,j=1}^{N}\partial_j(a_{ij}(u)\partial_iu) +\frac{1}{2}\sum_{i,j=1}^{N}a'_{ij}(u)\partial_iu\partial_ju+V(x)u =|u|^{p-1}u,~x\in\mathbb{R}^N, $$ where $N\geq3$, $p\in(1,\frac{3N+2}{N-2})$. The proof is accomplished by using minimization under a constraint. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction} We consider the quasilinear elliptic problem \begin{equation}\label{1.1} -\sum_{i,j=1}^{N}\partial_j(a_{ij}(u)\partial_iu) +\frac{1}{2}\sum_{i,j=1}^{N}a'_{ij}(u)\partial_iu\partial_ju+V(x)u =|u|^{p-1}u, \quad x\in\mathbb{R}^N, \end{equation} where $N\geq3$, $10$. Colin and Jeanjean \cite{ML} also used the change variables but work in the Sobolev space $H^1(\mathbb{R}^N)$, they proved the existence of positive solution for \eqref{1.2} with a Lagrange multiplier appears in the equation. The same method of changing variables was also used recently to obtain the existence of infinitely many solutions of problem \eqref{1.2} in \cite{FS}. See also \cite{JM2} for the existence of positive solutions of problem \eqref{1.2} for the case of critical growth. The main mathematical difficulties with problem \eqref{1.2} are caused by the term $\int_{\mathbb{R}^N}u^2|\nabla u|^2\,{\rm d}x$ which is not convex. A further problem is caused by usual lack of compactness since these problems are dealt with in the whole $\mathbb{R}^N$. In this article, we consider a general problem \eqref{1.1}. Under a certain constraint, we prove that \eqref{1.1} possess infinitely many sign-changing solutions for $p\in(1,\frac{3N+2}{N-2})$. As far as we know, besides \cite{LWW}, there are very few results for the existence of sign-changing solutions for \eqref{1.1}. However, we point out that in \cite{LWW}, solutions are founded in the case $p\geq3$. Throughout this article, we denote the positive constants (possibly different) by $C, C_1, C_2, \dots$. First we state the following assumptions. \begin{itemize} \item[(V1)] $V(x)\in C^{\alpha}(\mathbb{R^N})$ is a radially symmetric function and satisfies $$ 00,C_2>0$, such that for all $\xi\in\mathbb{R}^N$ and $ s\in\mathbb{R}$, $$ C_1(1+s^2)|\xi|^2\leq\sum_{i,j=1}^N a_{ij}(s)\xi_i\xi_j\leq C_2(1+s^2)|\xi|^2. $$ \item[(A2)] There exists constant $b>0$ such that for all $\xi\in\mathbb{R}^N$ and $s\in\mathbb{R}$ such that $$ (b-2)\sum_{i,j=1}^Na_{ij}(s)\xi_i\xi_j\leq s\sum_{i,j=1}^Na'_{ij}(s)\xi_i\xi_j \leq(p-1)\sum_{i,j=1}^Na_{ij}(s)\xi_i\xi_j-b|\xi|^2. $$ \item[(A3)] $|s|^{N-1}\sum_{i,j=1}^N(a_{ij}(s) +\frac{1}{N}sa'_{ij}(s))\xi_i\xi_j$ is decreasing in $s\in(0,+\infty)$ and increasing in $s\in(-\infty,0)$. \end{itemize} Here is our main result. \begin{theorem}\label{Th} Assume {\rm (V1)--(V3), (A1)--(A3)}. Then for any $k\in\{0,1,2,\dots\}$, there exists a pair of radial solutions $u_k^{\pm}$ of \eqref{1.1} with the following properties: \begin{itemize} \item[(i)] $u_k^-(0)<00$ such that \[ |u(x)|\leq C|x|^{\frac{1-N}{2}}\|u\|_{H^1}, \] for any $|x|\geq1$ and $u\in H_r^1(\mathbb{R}^N)$. \end{lemma} \begin{lemma} Let $\{u_n\}\subset H_r^1(\mathbb{R}^N)$ satisfy $u_n\rightharpoonup u$ in $H^1(\mathbb{R}^N)$. Then \[ \liminf_n\int_{\mathbb{R}^N}|\nabla u_n|^2|u_n|^2\,{\rm d}x \geq\int_{\mathbb{R}^N}|\nabla u|^2|u|^2\,{\rm d}x. \] \end{lemma} \begin{lemma}[\cite{St}] \label{imb} Let $N\geq2$ and $20\} . \end{gathered} \end{equation} Set \begin{gather*} H_{0,r}^1(\Omega)=\{u\in H_0^1(\Omega)|u(x)=u(|x|)\},\\ X(\Omega)=\{u\in H^1_{0,r}(\Omega)|\int_{\Omega} |\nabla u|^2u^2\,{\rm d}x<+\infty\}. \end{gather*} Now we consider the following equation on $\Omega$: \begin{equation}\label{e22} \begin{gathered} -\sum_{i,j=1}^{N}\partial_j(a_{ij}(u)\partial_iu) +\frac{1}{2}\sum_{i,j=1}^{N}a'_{ij}(u)\partial_iu\partial_ju+V(x)u=|u|^{p-1}u, \quad x\in\Omega,\\ u|_{\partial\Omega}=0. \end{gathered} \end{equation} The corresponding functional is \[ I_{\Omega}(u)=\frac{1}{2}\int_{\Omega} \Big(\sum_{i,j=1}^{N}a_{ij}(u)\partial_iu\partial_ju+V(x)u^2\Big)\,{\rm d}x -\frac{1}{p+1}\int_{\Omega}|u|^{p+1}\,{\rm d}x. \] Similarly we can define the G\^ateaux derivative of $I_{\Omega}$ at $u\in X(\Omega)$ and weak solution of problem \eqref{e22}. We extend any $u\in X(\Omega)$ to $X$ by setting $u\equiv0$ on $x\in\mathbb{R}^N\backslash{\Omega}$. Hereafter denote by $u_t$ the map: \[ \mathbb{R}^+\ni t\mapsto u_t\in X,~u_t(x)=tu(t^{-1}x), \] and consider \begin{align*} f_u(t):=I(u_t) &=\frac{t^N}{2}\int_{\mathbb{R}^N}\sum_{i,j=1}^{N}a_{ij}(tu) \partial_iu\partial_ju\,{\rm d}x\\ &\quad +\frac{t^{N+2}}{2}\int_{\mathbb{R}^N}V(tx)u^2\,{\rm d}x -\frac{t^{N+p+1}}{p+1}\int_{\mathbb{R}^N}|u|^{p+1}\,{\rm d}x. \end{align*} By conditions (V1) and (A1), and the fact that $p+1>2$, it is easy to see that $f_u(t)$ is positive for small $t$ and tends to $-\infty$ if $t\to+\infty$. This implies that $f_u(t)$ attains its maximum. Moreover, thanks to (V2), $f_u:\mathbb{R}^+\to\mathbb{R}$ is $C^1$, and \begin{align*} f'_u(t)&=\frac{N}{2}t^{N-1}\int_{\mathbb{R}^N}\sum_{i,j=1}^{N}a_{ij}(tu) \partial_iu\partial_ju\,{\rm d}x +\frac{t^N}{2}\int_{\mathbb{R}^N}u\sum_{i,j=1}^{N}a'_{ij}(tu)\partial_iu\partial_ju\,{\rm d}x\\ &\quad +\frac{{N+2}}{2}t^{N+1}\int_{\mathbb{R}^N}V(tx)u^2\,{\rm d}x +\frac{t^{N+2}}{2}\int_{\mathbb{R}^N}\nabla V(tx)\cdot xu^2\,{\rm d}x\\ &\quad -\frac{N+p+1}{p+1}t^{N+p}\int_{\mathbb{R}^N}|u|^{p+1}\,{\rm d}x. \end{align*} Let $$ M(\Omega)=\{u\in X(\Omega)\setminus\{0\}:J_{\Omega}(u)=0\}, $$ where $J_{\Omega}:X(\Omega)\to\mathbb{R}$ is defined as \begin{align*} J_{\Omega}(u) &= \frac{N}{2}\int_{\Omega}\sum_{i,j=1}^{N}a_{ij}(u)\partial_iu\partial_ju\,{\rm d}x +\frac{1}{2}\int_{\Omega}u\sum_{i,j=1}^{N}a'_{ij}(u)\partial_iu\partial_ju\,{\rm d}x\\ &\quad +\frac{{N+2}}{2}\int_{\Omega}V(x)u^2\,{\rm d}x+\frac{1}{2}\int_{\Omega} \nabla V(x)\cdot xu^2\,{\rm d}x-\frac{N+p+1}{p+1}\int_{\Omega}|u|^{p+1}\,{\rm d}x. \end{align*} In other words, $M(\Omega)$ is the set of functions $u\in X(\Omega)$ such that $f'_u(1)=0$. Moreover, $M(\Omega)\neq\emptyset$ (actually, given any $u\neq0$, there exists $t>0$ such that $u_t\in M(\Omega)$ (cf. \cite{RD1})). In the appendix of \cite{LWW}, by using Moser and De Giorgi iterations, the authors proved that weak solutions of \eqref{1.1} are bounded in $L^{\infty}(\mathbb{R}^N)$. Their arguments work also for $p\in(1,3)$. A density argument show that weak formulation \eqref{e20} holds also for test functions in $H^1(\mathbb{R}^N)\cap L^{\infty}(\mathbb{R}^N)$. By \cite[theorems 5.2 and 6.2 in chapter 4]{LU} it follows that $u\in C^{1,\alpha}$. From Schauder theory we conclude that $u\in C^{2,\alpha}$ is a classical solution of \eqref{1.1}. Moreover, if $u\in X$ is a solution, $u,Du,D^2u$ have an exponential decay as $|x|\to+\infty$ (see \cite{LWW}). By \cite{PPS}, assume that $u\in X$ is a $C^2$ solution of \eqref{1.1}. Then, for all $a\in\mathbb{R}$, we have the identity \begin{equation} \label{po} \begin{aligned} &(\frac{N-2}{2}-a)\int_{\mathbb{R}^N}\sum_{i,j=1}^Na_{ij}(u)\partial_iu\partial_ju\,{\rm d}x-\frac{a}{2}\int_{\mathbb{R}^N}u\sum_{i,j=1}^Na'_{ij}(u)\partial_iu\partial_ju\,{\rm d}x \\ &+(\frac{N}{2}-a)\int_{\mathbb{R}^N}V(x)u^2\,{\rm d}x+\frac{1}{2}\int_{\mathbb{R}^N}\nabla V(x)\cdot xu^2\,{\rm d}x \\ &+(a-\frac{N}{p+1})\int_{\mathbb{R}^N}|u|^{p+1}\,{\rm d}x=0. \end{aligned} \end{equation} Observe also that $M(\Omega)$ is nothing but the set of functions $u\in X(\Omega)$ such that the identity \eqref{po} holds for $a =-1$. Then, all solutions belong to $M(\Omega)$. \begin{lemma}\label{inf} For any $u\in X(\Omega)$, the map $f_u$ attains its maximum at exactly one point $t^u$. Moreover, $f_u$ is positive and increasing for $t\in[0,t^u]$ and decreasing for $t>t^u$. Also, \[ c:=\inf_{M(\Omega)}I_\Omega=\inf_{u\in X(\Omega),u\neq0}\max_{t>0}I(u_t). \] \end{lemma} \begin{proof} We employ a similar argument as in \cite[Lemma 3.1]{RD1}. Set \[ g(t)=\frac{t^N}{2}\int_{\mathbb{R}^N}\sum_{i,j=1}^{N}a_{ij}(tu) \partial_iu\partial_ju\,{\rm d}x-\frac{t^{N+p+1}}{p+1}\int_{\mathbb{R}^N}|u|^{p+1}\,{\rm d}x. \] Let $t_1\in\mathbb{R}^+$, $t_2\in\mathbb{R}^+$, $t_1\neq t_2$, then we have \begin{align*} g'(t_1)-g'(t_2) &=\frac{N}{2}\int_{\mathbb{R}^N}t^{N-1}_1 \Big(\sum_{i,j=1}^{N}a_{ij}(t_1u)+\frac{1}{N}t_1u\sum_{i,j=1}^{N}a'_{ij}(t_1u)\Big) \partial_iu\partial_ju \,{\rm d}x \\ &\quad -\frac{N}{2}\int_{\mathbb{R}^N}t_2^{N-1}\Big(\sum_{i,j=1}^{N}a_{ij}(t_2u)+\frac{1}{N}t_2u\sum_{i,j=1}^{N}a'_{ij}(t_2u)\Big)\partial_iu\partial_ju\,{\rm d}x \\ &\quad -\frac{N+p+1}{p+1}(t_1^{N+p}-t_2^{N+p})\int_{\mathbb{R}^N}|u|^{p+1}\,{\rm d}x. \end{align*} By using (A3) we obtain \[ (g'(t_1)-g'(t_2))(t_1-t_2)\leq0. \] This implies that $g(t)$ is a concave function. Then by assumption (V3), \begin{align*} f_u(t)=g(t)+\frac{t^{N+2}}{2}\int_{\mathbb{R}^N}V(tx)u^2\,{\rm d}x \end{align*} is a concave function. We already know that it attains its maximum. Let $t^u$ be the unique point at which this maximum is achieved. Then $t^u$ is the unique critical point of $f_u$ and $f_u$ is positive and increasing for $0t^u$. In particular, for any $u\in X(\Omega)\setminus\{0\}$, $t^u\in\mathbb{R}$ is the unique value such that $u_{t^u}$ belongs to $M(\Omega)$, and $I(u_t)$ reaches a global maximum for $t=t^u$. \end{proof} Similar to \cite[Proposition 3.3]{RD1}, we can prove the coercivity of $I_{\Omega}\mid_{M(\Omega)}$. \begin{proposition}\label{pro1} There exists $C>0$ such that for any $u\in M(\Omega)$, \[ I_{\Omega}(u)\geq C\int_{\Omega}(u^2+|\nabla u|^2+u^2|\nabla u|^2)\,{\rm d}x. \] \end{proposition} \begin{proof} Take $u\in M(\Omega)$ and extend $u$ to $X$ by setting $u\equiv0$ on $\mathbb{R}^N\setminus\Omega$. Choose $t\in(0,1)$, then \begin{align*} I(u_t)-t^{N+p+1}I(u) &=\int_{\mathbb{R}^N}\sum_{i,j=1}^{N}\Big(\frac{t^N}{2}a_{ij}(tu) \partial_iu\partial_ju-\frac{t^{N+p+1}}{2}a_{ij}(u)\partial_iu\partial_ju\Big)\,{\rm d}x\\ &\quad +\int_{\mathbb{R}^N}\Big(\frac{t^{N+2}}{2}V(tx)-\frac{t^{N+p+1}}{2} V(x)\Big)u^2\,{\rm d}x. \end{align*} Observe that $V(tx)\geq V_0\geq\delta V_{\infty}\geq\delta V(x)$, for some positive $\delta\in(0,1)$ depending only on $V_0$ and $V_{\infty}$. By choosing a smaller $t$, if necessary, we obtain \[ \frac{t^{N+2}}{2}V(tx)-\frac{t^{N+p+1}}{2}V(x) \geq\Big(\delta\frac{t^{N+2}}{2}-\frac{t^{N+p+1}}{2}\Big)V(x)\geq\gamma_0, \] for a fixed constant $\gamma_0>0$. Since $u\in M(\Omega)$, from Lemma \ref{inf} we obtain that $I(u_t)\leq I(u)$. By choosing $t\in\left(0,(\frac{C_1}{C_2})^{\frac{1}{p-1}}\right)$ small enough, from (A1) we have \begin{align*} &(1-t^{N+p+1})I(u)\\ &\geq I(u_t)-t^{N+p+1}I(u)\\ &\geq \int_{\mathbb{R}^N}\Big(\frac{t^N}{2}C_1(1+(tu)^2)|\nabla u|^2 -\frac{t^{N+p+1}}{2}C_2(1+u^2)|\nabla u|^2\Big)\,{\rm d}x +\gamma_0\int_{\mathbb{R}^N}u^2\,{\rm d}x\\ &= \frac{t^N}{2}\int_{\mathbb{R}^N}\Big((C_1-t^{p+1}C_2)+\big(C_1-C_2t^{p-1}\big) (tu)^2\Big)|\nabla u|^2\,{\rm d}x+\gamma_0\int_{\mathbb{R}^N}u^2\,{\rm d}x\\ &\geq \frac{t^N}{2}(C_1-C_2t^{p-1})\int_{\mathbb{R}^N}(1+t^2u^2)|\nabla u|^2 \,{\rm d}x+\gamma_0\int_{\mathbb{R}^N}u^2\,{\rm d}x\\ &\geq \frac{t^{N+2}}{2}(C_1-C_2t^{p-1})\int_{\mathbb{R}^N}(1+u^2)|\nabla u|^2 \,{\rm d}x+\gamma_0\int_{\mathbb{R}^N}u^2\,{\rm d}x. \end{align*} Note that $u\equiv0$ on $\mathbb{R}^N\setminus\Omega$, we conclude by defining \[ C=\min\big\{\frac{C_1 t^{N+2}-C_2t^{N+p+1}}{2 (1-t^{N+p+1})} \frac{\gamma_0}{1-t^{N+p+1}}\big\}. \] \end{proof} \begin{lemma}\label{le27} Suppose that the domain $\Omega$ is one of the forms of \eqref{e21}. Then $c=\inf_{M(\Omega)}I_{\Omega}(u)$ can be achieved by some positive function $u$ which is a solution of problem \eqref{e22}. Moreover, $\int_{\Omega}u^2|\nabla\phi|^2\,{\rm d}x<+\infty$, $\int_{\Omega}\phi^2|\nabla u|^2\,{\rm d}x<+\infty$. \end{lemma} \begin{proof} We divide the proof into three steps. \noindent\textbf{Step 1.} $c$ is attained. By the definition of $c$, there exists a sequence $\{u_n\}\subset M(\Omega)$ such that \[ I_{\Omega}(u_n)=c+o(1), \quad J_{\Omega}(u_n)=0. \] By Proposition \ref{pro1}, $\{u_n\}$ is bounded in $X(\Omega)$. Hence, by Lemma \ref{imb}, we can extract a subsequence of $\{u_n\}$ (still denoted by $\{u_n\}$), such that \begin{gather*} u_n\rightharpoonup u \quad\text{in } X(\Omega),\\ u_n\to u \quad \text{in } L^q(\Omega), \; 20$ such that $J_{\Omega}(u_t)=0$. Extend $u_n$ and $u$ to $X$ by setting $u_n\equiv0$ and $u\equiv0$ on $\mathbb{R}^N\setminus\Omega$. In the following we just need to recall the expression of $I((u_n)_t)$, \[ c=\lim_{n\to+\infty}I_{\Omega}(u_n) =\lim_{n\to+\infty}I(u_n)\geq\lim_{n\to+\infty}\inf I((u_n)_t) \geq I(u_t),\quad \forall t>0. \] So $\max_t I(u_t)=c$. Then, by Lemma \ref{inf}, there exists $t_0>0$ such that $u_{t_0}\in M(\Omega)$, which implies that $c$ is attained. \smallskip \noindent\textbf{Step 2.} $u$ is a radial solution of \eqref{e22}. We use an indirect argument which is based on a general idea used in \cite{LWW}. Suppose that $u\in M(\Omega)$, $I_{\Omega}(u)=c$ but $I'_{\Omega}(u)\neq0$. In such a case, we can find a function $\phi\in X(\Omega)$ with the property that $\int_{\Omega}u^2|\nabla\phi|^2\,{\rm d}x<+\infty$, $\int_{\Omega}\phi^2|\nabla u|^2\,{\rm d}x<+\infty$ but \[ \langle I'_{\Omega}(u),\phi\rangle\leq-1. \] Extend $u\in X(\Omega)$ to $X$ as above and choose $\varepsilon>0$ small enough such that \[ \langle I'(u_t+\sigma\phi),\phi\rangle\leq-\frac{1}{2},\quad \forall |t-1|+|\sigma|\leq\varepsilon. \] Let $\eta$ be a cut-off function, \[ \eta(t)=\begin{cases} 1, &|t-1|\leq\frac{1}{2}\varepsilon,\\ 0, &|t-1|\geq\varepsilon. \end{cases} \] Define \[ \gamma(t)=\begin{cases} u_t, &|t-1|\geq\varepsilon,\\ u_t+\varepsilon\eta(t)\phi, &|t-1|<\varepsilon. \end{cases} \] Next we estimate $\sup_tI(\gamma(t))$. If $|t-1|\leq\varepsilon$, then \begin{equation}\label{e23} \begin{split} I(\gamma(t)) &=I(u_t+\varepsilon\eta(t)\phi)\\ &=I(u_t)+\int_0^1\langle I'(u_t+\sigma\varepsilon\eta(t)\phi), \varepsilon\eta(t)\phi\rangle\,{\rm d}\sigma\\ & \leq I(u_t)-\frac{1}{2}\varepsilon\eta(t). \end{split} \end{equation} If $|t-1|\geq\varepsilon$, then $\eta(t)=0$, and the above estimate is trivial. Now since $u\in M(\Omega)$, for $t\neq1$ we get $I(u_t)0$ and $J(\gamma(1+\varepsilon))<0$. As a result, we can find $t_0\in(1-\varepsilon,1+\varepsilon)$ such that $J(\gamma(t_0))=0$, which implies that $\gamma(t_0)=u_{t_0}+\varepsilon\eta(t_0)\phi\in M(\Omega)$. However, it follows from \eqref{e24} that $I_{\Omega}(\gamma(t_0))0$. Consider $u\in M(\Omega)$ a minimizer of $I_{\Omega}|_{M(\Omega)}$. Then the absolute value $|u|\in M(\Omega)$ is also a minimizer. By the classical maximum principle and the fact that solutions are $C^2$, $|u|>0$. \end{proof} \section{Proof of Theorem \ref{Th}} For given $k+2$ numbers $r_l$ $(l=0,1,\dots,k+1)$ such that $0=r_00\\ 1\leq l\leq k+1}} I\Big(\sum_{l=1}^{k+1}(-1)^{l-1}(u_l)_{\alpha_l}\Big). \end{equation} Set \[ c_k=\inf_{M_k}I(u),\quad ~k=1,2,\dots. \] \begin{lemma}\label{le31} $c_k$ is attained, $k=0,1,2,\dots$. \end{lemma} \begin{proof} By induction we prove that for each $k$ there exists $u_k\in M_k$ such that \[ I(u_k)=c_k. \] The case that $k=0$ can be deduced by setting $\Omega=\mathbb{R}^N$ in Lemma \ref{le27}. We suppose the claim is true for $k-1$ and discuss the case $k\geq1$ in the following. For convenience, we divide the proof of the rest proof into four steps. \smallskip \noindent\textbf{Step 1.} $I$ is bounded from below on $M_k$ by a positive constant. Since \[ I(u)=I\Big(\sum_{l=1}^{k+1}(-1)^{l-1}u_l\Big) =\sum_{l=1}^{k+1}I_{\Omega^l}(u_l), \quad \forall u\in M_k. \] We just need to prove that, for $l=1,2,\dots,k+1$, $I_{\Omega^l}$ is bounded from below on $M(\Omega^l)$ by a positive constant. For any $u_l\in M(\Omega^l)$, we extend it to $X$ by setting $u_l\equiv0$ on $\mathbb{R}^N\setminus\Omega^l$. By (V1) and (A1) we have \[ I(u_l)\geq\frac{1}{2}\int_{\mathbb{R}^N}(C_1(1+u_l^2)|\nabla u_l|^2 +V_0u_l^2)\,{\rm d}x-\frac{1}{p+1}\int_{\mathbb{R}^N}|u_l|^{p+1}\,{\rm d}x. \] Let \[ \bar{I}(u_l) =\frac{1}{2}\int_{\mathbb{R}^N}(C_1(1+u_l^2)|\nabla u_l|^2 +V_0u_l^2)\,{\rm d}x-\frac{1}{p+1}\int_{\mathbb{R}^N}|u_l|^{p+1}\,{\rm d}x. \] Obviously, \[ \bar{c}:=\inf_{u_l\in X(\Omega^l),u_l\neq0}\max_{t>0}\bar{I}((u_l)_t) \leq\inf_{u_l\in X(\Omega^l),u_l\neq0}\max_{t>0}I((u_l)_t)=c. \] Let us define \[ \bar{M}(\Omega^l)=\{u_l\in X(\Omega^l)\setminus\{0\}:g'_{u_l}(1)=0\} \quad \text{ where }g_{u_l}(t)=\bar{I}((u_l)_t). \] Similar to Lemma \ref{inf}, we know that \[ \bar{c}=\inf_{u_l\in\bar{M}(\Omega^l)}\bar{I}_{\Omega^l}(u_l). \] For any $u_l\in\bar{M}(\Omega^l)$, \begin{align*} &\frac{N+2}{2}V_0\int_{\Omega^l}u_l^2\,{\rm d}x + \frac{C_1(N+2)}{2}\int_{\Omega^l}|\nabla u_l|^2u_l^2\,{\rm d}x\\ &\leq \frac{N+p+1}{p+1}\int_{\Omega^l}|u_l|^{p+1}\,{\rm d}x\\ &\leq \frac{N+2}{2}V_0\int_{\Omega^l}u_l^2\,{\rm d}x +C\int_{\Omega^l}|u_l|^{\frac{4N}{N+2}}\,{\rm d}x, \end{align*} for a suitable constant $C>0$. So, by using the Sobolev's inequality, \[ \frac{C_1(N+2)}{2}\int_{\Omega^l}|\nabla u_l|^2u_l^2\,{\rm d}x \leq C\int_{\Omega^l}|u_l|^{\frac{4N}{N+2}}\,{\rm d}x \leq C'\Big(\int_{\Omega^l}|\nabla u_l|^2u_l^2\,{\rm d}x\Big)^{\frac{N}{N-2}}, \] this shows that $\int_{\Omega^l}|\nabla u_l|^2u_l^2\,{\rm d}x$ is bounded away from zero on $\bar{M}(\Omega^l)$. Since the functional $\bar{I}_{\Omega^l}$ restricted to $\bar{M}(\Omega^l)$ has the expression \begin{align*} \bar{I}_{\Omega^l}(u_l) &=\frac{C_1}{2}\frac{p+1}{N+p+1}\int_{\Omega^l}|\nabla u_l|^2\,{\rm d}x +\frac{V_0}{2}\frac{p-1}{N+p+1}\int_{\Omega^l}u_l^2\,{\rm d}x\\ &\quad +\frac{C_1(p-1)}{N+p+1}\int_{\Omega^l}|\nabla u_l|^2|u_l|^{2}\,{\rm d}x. \end{align*} We obtain that $\bar{c}>0$, and hence $c>0$. This implies that $d_X(M(\Omega^l),0)>0$. Then by Proposition \ref{pro1}, we get that $I_{\Omega^l}$ is bounded from below on $M(\Omega^l)$ by a positive constant. \smallskip \noindent\textbf{Step 2.} We suppose $\{u_m\}_{m\geq1}$ be a minimizing sequence of $c_k$ in $M_k$; that is \[ \lim_{m\to+\infty}I(u_m)=c_k,\quad u_m\in M_k,\quad m=1,2,\dots. \] ${u_m}$ corresponds to $k$ nodes, $r_m^1,r_m^2,\dots,r_m^k$ with $00$. So by using Sobolev's inequality \begin{align*} \frac{C_1(N+b-2)}{2}\int_{\Omega_m^l}|u_m^l|^{2}|\nabla u_m^l|^2\,{\rm d}x &\leq C\int_{\Omega_m^l}|u_m^l|^{\frac{4N}{N+2}}\,{\rm d}x\\ &\leq C'\int_{\Omega_m^l}|u_m^l|^{2}|\nabla u_m^l|^2\,{\rm d}x. \end{align*} This shows that $\int_{\Omega_m^l}|u_m^l|^{2}|\nabla u_m^l|^2\,{\rm d}x$ is bounded away from zero on $M_k$. This implies that \[ \int_{\Omega_m^l}|u_m^l|^2\,{\rm d}x\geq\delta>0. \] Then from \eqref{32} we obtain \[ \int_{\Omega_m^l}|u_m^l|^{p+1}\,{\rm d}x \geq\Big(\int_{\Omega_m^l}|u_m^l|^2\,{\rm d}x\Big)^{\frac{p+1}{2}}|\Omega_m^l |^{\frac{1-p}{2}} \geq \delta^{\frac{p+1}{2}}|\Omega_m^l|^{\frac{1-p}{2}} . \] Note that $|\Omega_m^l|\to0$ as $m\to+\infty$ and $p>1$, we have $$ \int_{\Omega_m^l}|u_m^l|^{p+1}\,{\rm d}x\to+\infty, \quad {\rm as}~m\to+\infty. $$ This and \eqref{31'} implies that $I(u_m^l)\to-\infty$ as $m\to+\infty$, which contradicts Step 1. Thus $r^l\neq r^{l-1}, l=1,2,\dots,k$. \smallskip \noindent\textbf{Step 3.} $r^k<+\infty$. If $r^k=+\infty$, then $\lim_{m\to+\infty}r_m^k=+\infty$. Since $u_m^k\in M(\Omega_m^k)$, from (V1), (V2), (A1) and (A2) we have \begin{equation} \label{e32} \begin{aligned} &I(u_m^k) \\ &= \frac{1}{2}\int_{\Omega_m^k}\Big(\sum_{i,j=1}^{N}a_{ij}(u_m^k) \partial_iu_m^k\partial_ju_m^k+V(x)(u_m^k)^2\Big)\,{\rm d}x -\frac{1}{p+1}\int_{\Omega_m^k}|u_m^k|^{p+1}\,{\rm d}x \\ &= \frac{1}{2}\int_{\Omega_m^k}\Big(\sum_{i,j=1}^{N}a_{ij}(u_m^k) \partial_i u_m^k\partial_j u_m^k+V(x)(u_m^k)^2\Big)\,{\rm d}x \\ &\quad -\frac{1}{N+p+1}\Big(\frac{N}{2}\int_{\Omega_m^k} \sum_{i,j=1}^{N}a_{ij}(u_m^k)\partial_i u_m^k\partial_j u_m^k\,{\rm d}x \\ &\quad +\frac{1}{2}\int_{\Omega_m^k}u_m^k\sum_{i,j=1}^{N}a'_{ij} (u_m^k)\partial_iu_m^k\partial_ju_m^k\,{\rm d}x+\frac{N+2}{2} \int_{\Omega_m^k}V(x)(u_m^k)^2\,{\rm d}x \\ &\quad +\frac{1}{2}\int_{\Omega_m^k}\nabla V(x)\cdot x(u_m^k)^2\,{\rm d}x\Big) \\ &\geq \Big(\frac{1}{2}-\frac{N}{2(N+p+1)}-\frac{p-1}{2(N+p+1)}\Big) \int_{\Omega_m^k}\sum_{i,j=1}^{N}a_{ij}(u_m^k)\partial_iu_m^k\partial_ju_m^k\,{\rm d}x \\ &\quad +\Big(\Big(\frac{1}{2}-\frac{N+2}{2(N+p+1)}\Big)V_0-\frac{C_0}{2(N+p+1)}\Big) \int_{\Omega_m^k}(u_m^k)^2\,{\rm d}x \\ &\quad +\frac{b}{2(N+p+1)}\int_{\Omega_m^k}|\nabla u_m^k|^2\,{\rm d}x \\ &\geq \frac{1}{N+p+1}\int_{\Omega_m^k}C_1\big(1+(u_m^k)^2\big) |\nabla u_m^k|^2\,{\rm d}x+\frac{(p-1)V_0-C_0}{2(N+p+1)} \int_{\Omega_m^k}(u_m^k)^2\,{\rm d}x \\ &\quad +\frac{b}{2(N+p+1)}\int_{\Omega_m^k}|\nabla u_m^k|^2\,{\rm d}x \\ &\geq C\eta^2(u_m^k), \end{aligned} \end{equation} where \[ \eta^2(u_m^k)=\int_{\Omega_m^k}\big(1+(u_m^k)^2\big)|\nabla u_m^k|^2\,{\rm d}x +\int_{\Omega_m^k}(u_m^k)^2\,{\rm d}x. \] From Step 1 we know that $\int_{\Omega_m^k}|u_m^k|^{2}|\nabla u_m^k|^2\,{\rm d}x$ is bounded away from zero on $M(\Omega_m^k)$. Then there exists some $\delta_0>0$ such that \[ \int_{\Omega_m^k}|u_m^k|^2\,{\rm d}x\geq\delta_0>0. \] This and \eqref{3.4} imply that there exists some $\delta_1>0$ such that \[ \int_{\Omega_m^k}|u_m^k|^{p+1}\,{\rm d}x\geq\delta_1>0. \] Then from \eqref{31'}, we have \begin{equation}\label{e35'} \begin{aligned} I(u_m^k) &\leq C-\frac{1}{p+1}\int_{\Omega_m^k}|u_m^k|^{p+1}\,{\rm d}x \\ &\leq C+C\int_{\Omega_m^k}|u_m^k|^{p+1}\,{\rm d}x \\ &\leq C\int_{\Omega_m^k}|u_m^k|^{p+1}\,{\rm d}x \Big(\Big(\int_{\Omega_m^k}|u_m^k|^{p+1}\,{\rm d}x\Big)^{-1}+1\Big) \\ &\leq C\int_{\Omega_m^k}|u_m^k|^{p+1}\,{\rm d}x(\delta_1^{-1}+1) \\ &\leq C\int_{\Omega_m^k}|u_m^k|^{p+1}\,{\rm d}x, \end{aligned} \end{equation} for some suitable $C>0$. It follows from \eqref{e32},\eqref{e35'} and Lemma \ref{l21} that \begin{align*} \eta^2(u_m^k)&\leq I(u_m^k)\\ &\leq C\int_{\Omega_m^k}|u_m^k|^{p+1}\,{\rm d}x\\ &\leq C\int_{\Omega_m^k}|u_m^k|^2|u_m^k|^{p-1}\,{\rm d}x\\ &\leq C \|u_m^k\|^{p-1}\int_{\Omega_m^k}|u_m^k|^2|x|^{\frac{(1-N)(p-1)}{2}}\,{\rm d}x\\ &\leq C \Big(\eta^2(u_m^k)\Big)^{\frac{p+1}{2}}|r_m^k|^{\frac{(1-N)(p-1)}{2}}. \end{align*} Thus \begin{equation}\label{e36} \eta^2(u_m^k)\geq C|r_m^k|^{N-1}. \end{equation} From \eqref{e36} we have \[ \eta^2(u_m^k)\to+\infty\quad \text{as }m\to+\infty. \] So \eqref{e32} implies \begin{equation}\label{e35} I(u_m^k)\to+\infty \quad \text{as }m\to+\infty. \end{equation} By the inductive assumption and \eqref{e35}, for $\varepsilon>0$ fixed we choose $M>0$ such that \[ I(u_m^k)>c_k-c_{k-1}+\varepsilon,\quad |I(u_m)-c_k|<\varepsilon,\quad \text{as }m\geq M. \] Then we may define $\hat{u}(x)\in M_{k-1}$ by \[ \hat{u}(x)=\begin{cases} u_m^s(x), &x\in\Omega_m^s\text{ as } s0$, such that $\gamma(t_m^l)=0$, thus $(u_m^l)_{t_m^l}\in M(\Omega^l)$. Now we claim that \begin{equation}\label{e312} t_m^l\to1 \quad \text{as }m\to+\infty,\; l=1,2,\dots,k. \end{equation} Indeed, since $\gamma(t_m^l)=0$, we have \begin{equation}\label{e313} \begin{aligned} &\frac{N}{2}(t_m^l)^{N-1}\int_{\Omega^l} \sum_{i,j=1}^{N}a_{ij}(t_m^lu_m^l)\partial_iu_m^l\partial_ju_m^l\,{\rm d}y \\ &+\frac{(t_m^l)^N}{2}\int_{\Omega^l}u_m^l\sum_{i,j=1}^{N}a'_{ij} (t_m^lu_m^l)\partial_iu_m^l\partial_ju_m^l\,{\rm d}y \\ &+\frac{{N+2}}{2}(t_m^l)^{N+1}\int_{\Omega^l}V(t_m^ly)(u_m^l)^2\,{\rm d}y +\frac{(t_m^l)^{N+2}}{2}\int_{\Omega^l}\nabla V(t_m^ly)\cdot y(u_m^l)^2\,{\rm d}y \\ &-\frac{N+p+1}{p+1}(t_m^l)^{N+p}\int_{\Omega^l}|u_m^l|^{p+1}\,{\rm d}y=0. \end{aligned} \end{equation} We can prove that there exists a constant $\tilde{t}>0$ such that \[ 0