\documentclass[reqno]{amsart}
\usepackage{hyperref}
\AtBeginDocument{{\noindent\small
\emph{Electronic Journal of Differential Equations},
Vol. 2014 (2014), No. 230, pp. 1--18.\newline
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
\newline ftp ejde.math.txstate.edu}
\thanks{\copyright 2014 Texas State University - San Marcos.}
\vspace{9mm}}
\begin{document}
\title[\hfilneg EJDE-2014/230\hfil Existence of infinitely many radial solutions]
{Existence of infinitely many radial solutions for quasilinear Schr\"odinger equations}
\author[G. Bao, Z.-Q. Han \hfil EJDE-2014/230\hfilneg]
{Gui Bao, Zhi-Qing Han} % in alphabetical order
\address{Gui Bao \newline
School of Mathematics and Statistics Science,
Ludong University, Yantai, Shandong 264025, China}
\email{baoguigui@163.com}
\address{Zhiqing Han \newline
School of Mathematical Sciences, Dalian University of Technology,
Dalian 116024, China}
\email{hanzhiq@dlut.edu.cn}
\thanks{Submitted September 1, 2014. Published October 27, 2014.}
\subjclass[2000]{37J45, 58E05, 34C37,70H05}
\keywords{Quasilinear elliptic equations; variational methods; radial solutions}
\begin{abstract}
In this article we prove the existence of radial solutions with arbitrarily
many sign changes for quasilinear Schr\"odinger equation
$$
-\sum_{i,j=1}^{N}\partial_j(a_{ij}(u)\partial_iu)
+\frac{1}{2}\sum_{i,j=1}^{N}a'_{ij}(u)\partial_iu\partial_ju+V(x)u
=|u|^{p-1}u,~x\in\mathbb{R}^N,
$$
where $N\geq3$, $p\in(1,\frac{3N+2}{N-2})$. The proof is accomplished
by using minimization under a constraint.
\end{abstract}
\maketitle
\numberwithin{equation}{section}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\allowdisplaybreaks
\section{Introduction}
We consider the quasilinear elliptic problem
\begin{equation}\label{1.1}
-\sum_{i,j=1}^{N}\partial_j(a_{ij}(u)\partial_iu)
+\frac{1}{2}\sum_{i,j=1}^{N}a'_{ij}(u)\partial_iu\partial_ju+V(x)u
=|u|^{p-1}u, \quad x\in\mathbb{R}^N,
\end{equation}
where $N\geq3$, $1
0$.
Colin and Jeanjean \cite{ML} also used the change variables but work in
the Sobolev space $H^1(\mathbb{R}^N)$, they proved the existence of positive
solution for \eqref{1.2} with a Lagrange multiplier appears in the equation.
The same method of changing variables was also used recently to obtain
the existence of infinitely many solutions of problem \eqref{1.2} in \cite{FS}.
See also \cite{JM2} for the existence of positive solutions of problem \eqref{1.2}
for the case of critical growth.
The main mathematical difficulties with problem \eqref{1.2} are caused by
the term $\int_{\mathbb{R}^N}u^2|\nabla u|^2\,{\rm d}x$ which is not convex.
A further problem is caused by usual lack of compactness since these
problems are dealt with in the whole $\mathbb{R}^N$.
In this article, we consider a general problem \eqref{1.1}. Under a certain
constraint, we prove that \eqref{1.1} possess infinitely many sign-changing
solutions for $p\in(1,\frac{3N+2}{N-2})$. As far as we know, besides \cite{LWW},
there are very few results for the existence of sign-changing solutions for
\eqref{1.1}.
However, we point out that in \cite{LWW}, solutions are founded in the case
$p\geq3$.
Throughout this article, we denote the positive constants (possibly different)
by $C, C_1, C_2, \dots$.
First we state the following assumptions.
\begin{itemize}
\item[(V1)] $V(x)\in C^{\alpha}(\mathbb{R^N})$ is a radially symmetric function
and satisfies
$$
00,C_2>0$, such that for all
$\xi\in\mathbb{R}^N$ and $ s\in\mathbb{R}$,
$$
C_1(1+s^2)|\xi|^2\leq\sum_{i,j=1}^N a_{ij}(s)\xi_i\xi_j\leq C_2(1+s^2)|\xi|^2.
$$
\item[(A2)] There exists constant $b>0$ such that for all $\xi\in\mathbb{R}^N$
and $s\in\mathbb{R}$ such that
$$
(b-2)\sum_{i,j=1}^Na_{ij}(s)\xi_i\xi_j\leq s\sum_{i,j=1}^Na'_{ij}(s)\xi_i\xi_j
\leq(p-1)\sum_{i,j=1}^Na_{ij}(s)\xi_i\xi_j-b|\xi|^2.
$$
\item[(A3)] $|s|^{N-1}\sum_{i,j=1}^N(a_{ij}(s)
+\frac{1}{N}sa'_{ij}(s))\xi_i\xi_j$ is decreasing in $s\in(0,+\infty)$
and increasing in $s\in(-\infty,0)$.
\end{itemize}
Here is our main result.
\begin{theorem}\label{Th}
Assume {\rm (V1)--(V3), (A1)--(A3)}.
Then for any $k\in\{0,1,2,\dots\}$, there exists a pair of radial solutions
$u_k^{\pm}$ of \eqref{1.1} with the following properties:
\begin{itemize}
\item[(i)] $u_k^-(0)<00$ such that
\[
|u(x)|\leq C|x|^{\frac{1-N}{2}}\|u\|_{H^1},
\]
for any $|x|\geq1$ and $u\in H_r^1(\mathbb{R}^N)$.
\end{lemma}
\begin{lemma}
Let $\{u_n\}\subset H_r^1(\mathbb{R}^N)$ satisfy $u_n\rightharpoonup u$
in $H^1(\mathbb{R}^N)$. Then
\[
\liminf_n\int_{\mathbb{R}^N}|\nabla u_n|^2|u_n|^2\,{\rm d}x
\geq\int_{\mathbb{R}^N}|\nabla u|^2|u|^2\,{\rm d}x.
\]
\end{lemma}
\begin{lemma}[\cite{St}] \label{imb}
Let $N\geq2$ and $20\} .
\end{gathered}
\end{equation}
Set
\begin{gather*}
H_{0,r}^1(\Omega)=\{u\in H_0^1(\Omega)|u(x)=u(|x|)\},\\
X(\Omega)=\{u\in H^1_{0,r}(\Omega)|\int_{\Omega}
|\nabla u|^2u^2\,{\rm d}x<+\infty\}.
\end{gather*}
Now we consider the following equation on $\Omega$:
\begin{equation}\label{e22}
\begin{gathered}
-\sum_{i,j=1}^{N}\partial_j(a_{ij}(u)\partial_iu)
+\frac{1}{2}\sum_{i,j=1}^{N}a'_{ij}(u)\partial_iu\partial_ju+V(x)u=|u|^{p-1}u,
\quad x\in\Omega,\\
u|_{\partial\Omega}=0.
\end{gathered}
\end{equation}
The corresponding functional is
\[
I_{\Omega}(u)=\frac{1}{2}\int_{\Omega}
\Big(\sum_{i,j=1}^{N}a_{ij}(u)\partial_iu\partial_ju+V(x)u^2\Big)\,{\rm d}x
-\frac{1}{p+1}\int_{\Omega}|u|^{p+1}\,{\rm d}x.
\]
Similarly we can define the G\^ateaux derivative of $I_{\Omega}$ at
$u\in X(\Omega)$ and weak solution of problem \eqref{e22}.
We extend any $u\in X(\Omega)$ to $X$ by setting $u\equiv0$ on
$x\in\mathbb{R}^N\backslash{\Omega}$. Hereafter denote by $u_t$ the map:
\[
\mathbb{R}^+\ni t\mapsto u_t\in X,~u_t(x)=tu(t^{-1}x),
\]
and consider
\begin{align*}
f_u(t):=I(u_t)
&=\frac{t^N}{2}\int_{\mathbb{R}^N}\sum_{i,j=1}^{N}a_{ij}(tu)
\partial_iu\partial_ju\,{\rm d}x\\
&\quad +\frac{t^{N+2}}{2}\int_{\mathbb{R}^N}V(tx)u^2\,{\rm d}x
-\frac{t^{N+p+1}}{p+1}\int_{\mathbb{R}^N}|u|^{p+1}\,{\rm d}x.
\end{align*}
By conditions (V1) and (A1), and the fact that $p+1>2$,
it is easy to see that $f_u(t)$ is positive for small $t$ and tends to
$-\infty$ if $t\to+\infty$.
This implies that $f_u(t)$ attains its maximum. Moreover, thanks to (V2),
$f_u:\mathbb{R}^+\to\mathbb{R}$ is $C^1$, and
\begin{align*}
f'_u(t)&=\frac{N}{2}t^{N-1}\int_{\mathbb{R}^N}\sum_{i,j=1}^{N}a_{ij}(tu)
\partial_iu\partial_ju\,{\rm d}x
+\frac{t^N}{2}\int_{\mathbb{R}^N}u\sum_{i,j=1}^{N}a'_{ij}(tu)\partial_iu\partial_ju\,{\rm d}x\\
&\quad +\frac{{N+2}}{2}t^{N+1}\int_{\mathbb{R}^N}V(tx)u^2\,{\rm d}x
+\frac{t^{N+2}}{2}\int_{\mathbb{R}^N}\nabla V(tx)\cdot xu^2\,{\rm d}x\\
&\quad -\frac{N+p+1}{p+1}t^{N+p}\int_{\mathbb{R}^N}|u|^{p+1}\,{\rm d}x.
\end{align*}
Let
$$
M(\Omega)=\{u\in X(\Omega)\setminus\{0\}:J_{\Omega}(u)=0\},
$$
where $J_{\Omega}:X(\Omega)\to\mathbb{R}$ is defined as
\begin{align*}
J_{\Omega}(u)
&= \frac{N}{2}\int_{\Omega}\sum_{i,j=1}^{N}a_{ij}(u)\partial_iu\partial_ju\,{\rm d}x
+\frac{1}{2}\int_{\Omega}u\sum_{i,j=1}^{N}a'_{ij}(u)\partial_iu\partial_ju\,{\rm d}x\\
&\quad +\frac{{N+2}}{2}\int_{\Omega}V(x)u^2\,{\rm d}x+\frac{1}{2}\int_{\Omega}
\nabla V(x)\cdot xu^2\,{\rm d}x-\frac{N+p+1}{p+1}\int_{\Omega}|u|^{p+1}\,{\rm d}x.
\end{align*}
In other words, $M(\Omega)$ is the set of functions $u\in X(\Omega)$
such that $f'_u(1)=0$. Moreover, $M(\Omega)\neq\emptyset$
(actually, given any $u\neq0$, there exists $t>0$ such that $u_t\in M(\Omega)$
(cf. \cite{RD1})).
In the appendix of \cite{LWW}, by using Moser and De Giorgi iterations,
the authors proved that weak solutions of \eqref{1.1} are bounded
in $L^{\infty}(\mathbb{R}^N)$. Their arguments work also for $p\in(1,3)$.
A density argument show that weak formulation \eqref{e20} holds also for
test functions in $H^1(\mathbb{R}^N)\cap L^{\infty}(\mathbb{R}^N)$.
By \cite[theorems 5.2 and 6.2 in chapter 4]{LU} it follows that
$u\in C^{1,\alpha}$. From Schauder theory we conclude that $u\in C^{2,\alpha}$
is a classical solution of \eqref{1.1}. Moreover, if $u\in X$ is a solution,
$u,Du,D^2u$ have an exponential decay as $|x|\to+\infty$
(see \cite{LWW}). By \cite{PPS}, assume that $u\in X$ is a $C^2$ solution
of \eqref{1.1}.
Then, for all $a\in\mathbb{R}$, we have the identity
\begin{equation} \label{po}
\begin{aligned}
&(\frac{N-2}{2}-a)\int_{\mathbb{R}^N}\sum_{i,j=1}^Na_{ij}(u)\partial_iu\partial_ju\,{\rm d}x-\frac{a}{2}\int_{\mathbb{R}^N}u\sum_{i,j=1}^Na'_{ij}(u)\partial_iu\partial_ju\,{\rm d}x \\
&+(\frac{N}{2}-a)\int_{\mathbb{R}^N}V(x)u^2\,{\rm d}x+\frac{1}{2}\int_{\mathbb{R}^N}\nabla V(x)\cdot xu^2\,{\rm d}x \\
&+(a-\frac{N}{p+1})\int_{\mathbb{R}^N}|u|^{p+1}\,{\rm d}x=0.
\end{aligned}
\end{equation}
Observe also that $M(\Omega)$ is nothing but the set of functions
$u\in X(\Omega)$ such
that the identity \eqref{po} holds for $a =-1$. Then, all solutions belong
to $M(\Omega)$.
\begin{lemma}\label{inf}
For any $u\in X(\Omega)$, the map $f_u$ attains its maximum at exactly one
point $t^u$. Moreover, $f_u$ is positive and increasing for $t\in[0,t^u]$
and decreasing for $t>t^u$. Also,
\[
c:=\inf_{M(\Omega)}I_\Omega=\inf_{u\in X(\Omega),u\neq0}\max_{t>0}I(u_t).
\]
\end{lemma}
\begin{proof}
We employ a similar argument as in \cite[Lemma 3.1]{RD1}. Set
\[
g(t)=\frac{t^N}{2}\int_{\mathbb{R}^N}\sum_{i,j=1}^{N}a_{ij}(tu)
\partial_iu\partial_ju\,{\rm d}x-\frac{t^{N+p+1}}{p+1}\int_{\mathbb{R}^N}|u|^{p+1}\,{\rm d}x.
\]
Let $t_1\in\mathbb{R}^+$, $t_2\in\mathbb{R}^+$, $t_1\neq t_2$, then we have
\begin{align*}
g'(t_1)-g'(t_2)
&=\frac{N}{2}\int_{\mathbb{R}^N}t^{N-1}_1
\Big(\sum_{i,j=1}^{N}a_{ij}(t_1u)+\frac{1}{N}t_1u\sum_{i,j=1}^{N}a'_{ij}(t_1u)\Big)
\partial_iu\partial_ju \,{\rm d}x \\
&\quad -\frac{N}{2}\int_{\mathbb{R}^N}t_2^{N-1}\Big(\sum_{i,j=1}^{N}a_{ij}(t_2u)+\frac{1}{N}t_2u\sum_{i,j=1}^{N}a'_{ij}(t_2u)\Big)\partial_iu\partial_ju\,{\rm d}x \\
&\quad -\frac{N+p+1}{p+1}(t_1^{N+p}-t_2^{N+p})\int_{\mathbb{R}^N}|u|^{p+1}\,{\rm d}x.
\end{align*}
By using (A3) we obtain
\[
(g'(t_1)-g'(t_2))(t_1-t_2)\leq0.
\]
This implies that $g(t)$ is a concave function. Then by assumption (V3),
\begin{align*}
f_u(t)=g(t)+\frac{t^{N+2}}{2}\int_{\mathbb{R}^N}V(tx)u^2\,{\rm d}x
\end{align*}
is a concave function. We already know that it attains its maximum.
Let $t^u$ be the unique point at which this maximum is achieved.
Then $t^u$ is the unique critical point of $f_u$ and $f_u$ is positive and
increasing for $0t^u$.
In particular, for any $u\in X(\Omega)\setminus\{0\}$, $t^u\in\mathbb{R}$
is the unique value such that $u_{t^u}$ belongs to $M(\Omega)$,
and $I(u_t)$ reaches a global maximum for $t=t^u$.
\end{proof}
Similar to \cite[Proposition 3.3]{RD1}, we can prove the coercivity
of $I_{\Omega}\mid_{M(\Omega)}$.
\begin{proposition}\label{pro1}
There exists $C>0$ such that for any $u\in M(\Omega)$,
\[
I_{\Omega}(u)\geq C\int_{\Omega}(u^2+|\nabla u|^2+u^2|\nabla u|^2)\,{\rm d}x.
\]
\end{proposition}
\begin{proof}
Take $u\in M(\Omega)$ and extend $u$ to $X$ by setting $u\equiv0$ on
$\mathbb{R}^N\setminus\Omega$. Choose $t\in(0,1)$, then
\begin{align*}
I(u_t)-t^{N+p+1}I(u)
&=\int_{\mathbb{R}^N}\sum_{i,j=1}^{N}\Big(\frac{t^N}{2}a_{ij}(tu)
\partial_iu\partial_ju-\frac{t^{N+p+1}}{2}a_{ij}(u)\partial_iu\partial_ju\Big)\,{\rm d}x\\
&\quad +\int_{\mathbb{R}^N}\Big(\frac{t^{N+2}}{2}V(tx)-\frac{t^{N+p+1}}{2}
V(x)\Big)u^2\,{\rm d}x.
\end{align*}
Observe that $V(tx)\geq V_0\geq\delta V_{\infty}\geq\delta V(x)$,
for some positive $\delta\in(0,1)$ depending only on $V_0$ and $V_{\infty}$.
By choosing a smaller $t$, if necessary, we obtain
\[
\frac{t^{N+2}}{2}V(tx)-\frac{t^{N+p+1}}{2}V(x)
\geq\Big(\delta\frac{t^{N+2}}{2}-\frac{t^{N+p+1}}{2}\Big)V(x)\geq\gamma_0,
\]
for a fixed constant $\gamma_0>0$. Since $u\in M(\Omega)$, from Lemma \ref{inf}
we obtain that $I(u_t)\leq I(u)$. By choosing
$t\in\left(0,(\frac{C_1}{C_2})^{\frac{1}{p-1}}\right)$ small enough,
from (A1) we have
\begin{align*}
&(1-t^{N+p+1})I(u)\\
&\geq I(u_t)-t^{N+p+1}I(u)\\
&\geq \int_{\mathbb{R}^N}\Big(\frac{t^N}{2}C_1(1+(tu)^2)|\nabla u|^2
-\frac{t^{N+p+1}}{2}C_2(1+u^2)|\nabla u|^2\Big)\,{\rm d}x
+\gamma_0\int_{\mathbb{R}^N}u^2\,{\rm d}x\\
&= \frac{t^N}{2}\int_{\mathbb{R}^N}\Big((C_1-t^{p+1}C_2)+\big(C_1-C_2t^{p-1}\big)
(tu)^2\Big)|\nabla u|^2\,{\rm d}x+\gamma_0\int_{\mathbb{R}^N}u^2\,{\rm d}x\\
&\geq \frac{t^N}{2}(C_1-C_2t^{p-1})\int_{\mathbb{R}^N}(1+t^2u^2)|\nabla u|^2
\,{\rm d}x+\gamma_0\int_{\mathbb{R}^N}u^2\,{\rm d}x\\
&\geq \frac{t^{N+2}}{2}(C_1-C_2t^{p-1})\int_{\mathbb{R}^N}(1+u^2)|\nabla u|^2
\,{\rm d}x+\gamma_0\int_{\mathbb{R}^N}u^2\,{\rm d}x.
\end{align*}
Note that $u\equiv0$ on $\mathbb{R}^N\setminus\Omega$, we conclude by defining
\[
C=\min\big\{\frac{C_1 t^{N+2}-C_2t^{N+p+1}}{2 (1-t^{N+p+1})}
\frac{\gamma_0}{1-t^{N+p+1}}\big\}.
\]
\end{proof}
\begin{lemma}\label{le27}
Suppose that the domain $\Omega$ is one of the forms of \eqref{e21}.
Then $c=\inf_{M(\Omega)}I_{\Omega}(u)$ can be achieved by some positive
function $u$ which is a solution of problem \eqref{e22}.
Moreover, $\int_{\Omega}u^2|\nabla\phi|^2\,{\rm d}x<+\infty$,
$\int_{\Omega}\phi^2|\nabla u|^2\,{\rm d}x<+\infty$.
\end{lemma}
\begin{proof}
We divide the proof into three steps.
\noindent\textbf{Step 1.} $c$ is attained.
By the definition of $c$, there exists a sequence $\{u_n\}\subset M(\Omega)$
such that
\[
I_{\Omega}(u_n)=c+o(1), \quad J_{\Omega}(u_n)=0.
\]
By Proposition \ref{pro1}, $\{u_n\}$ is bounded in $X(\Omega)$.
Hence, by Lemma \ref{imb}, we can extract a subsequence of $\{u_n\}$
(still denoted by $\{u_n\}$), such that
\begin{gather*}
u_n\rightharpoonup u \quad\text{in } X(\Omega),\\
u_n\to u \quad \text{in } L^q(\Omega), \; 20$ such that $J_{\Omega}(u_t)=0$.
Extend $u_n$ and $u$ to $X$ by setting $u_n\equiv0$ and $u\equiv0$ on
$\mathbb{R}^N\setminus\Omega$.
In the following we just need to recall the expression of $I((u_n)_t)$,
\[
c=\lim_{n\to+\infty}I_{\Omega}(u_n)
=\lim_{n\to+\infty}I(u_n)\geq\lim_{n\to+\infty}\inf I((u_n)_t)
\geq I(u_t),\quad \forall t>0.
\]
So $\max_t I(u_t)=c$. Then, by Lemma \ref{inf}, there exists $t_0>0$
such that $u_{t_0}\in M(\Omega)$, which implies that $c$ is attained.
\smallskip
\noindent\textbf{Step 2.} $u$ is a radial solution of \eqref{e22}.
We use an indirect argument which is based on a general idea used
in \cite{LWW}. Suppose that $u\in M(\Omega)$, $I_{\Omega}(u)=c$ but
$I'_{\Omega}(u)\neq0$. In such a case, we can find a function
$\phi\in X(\Omega)$ with the property that
$\int_{\Omega}u^2|\nabla\phi|^2\,{\rm d}x<+\infty$,
$\int_{\Omega}\phi^2|\nabla u|^2\,{\rm d}x<+\infty$ but
\[
\langle I'_{\Omega}(u),\phi\rangle\leq-1.
\]
Extend $u\in X(\Omega)$ to $X$ as above and choose $\varepsilon>0$ small
enough such that
\[
\langle I'(u_t+\sigma\phi),\phi\rangle\leq-\frac{1}{2},\quad
\forall |t-1|+|\sigma|\leq\varepsilon.
\]
Let $\eta$ be a cut-off function,
\[
\eta(t)=\begin{cases}
1, &|t-1|\leq\frac{1}{2}\varepsilon,\\
0, &|t-1|\geq\varepsilon.
\end{cases}
\]
Define
\[
\gamma(t)=\begin{cases}
u_t, &|t-1|\geq\varepsilon,\\
u_t+\varepsilon\eta(t)\phi, &|t-1|<\varepsilon.
\end{cases}
\]
Next we estimate $\sup_tI(\gamma(t))$. If $|t-1|\leq\varepsilon$, then
\begin{equation}\label{e23}
\begin{split}
I(\gamma(t))
&=I(u_t+\varepsilon\eta(t)\phi)\\
&=I(u_t)+\int_0^1\langle I'(u_t+\sigma\varepsilon\eta(t)\phi),
\varepsilon\eta(t)\phi\rangle\,{\rm d}\sigma\\
& \leq I(u_t)-\frac{1}{2}\varepsilon\eta(t).
\end{split}
\end{equation}
If $|t-1|\geq\varepsilon$, then $\eta(t)=0$, and the above estimate is trivial.
Now since $u\in M(\Omega)$, for $t\neq1$ we get $I(u_t)0$ and $J(\gamma(1+\varepsilon))<0$.
As a result, we can find $t_0\in(1-\varepsilon,1+\varepsilon)$ such that $J(\gamma(t_0))=0$,
which implies that $\gamma(t_0)=u_{t_0}+\varepsilon\eta(t_0)\phi\in M(\Omega)$.
However, it follows from \eqref{e24} that $I_{\Omega}(\gamma(t_0))0$.
Consider $u\in M(\Omega)$ a minimizer of $I_{\Omega}|_{M(\Omega)}$.
Then the absolute value $|u|\in M(\Omega)$ is also a minimizer.
By the classical maximum principle and the fact that solutions are $C^2$, $|u|>0$.
\end{proof}
\section{Proof of Theorem \ref{Th}}
For given $k+2$ numbers $r_l$ $(l=0,1,\dots,k+1)$ such that
$0=r_00\\ 1\leq l\leq k+1}}
I\Big(\sum_{l=1}^{k+1}(-1)^{l-1}(u_l)_{\alpha_l}\Big).
\end{equation}
Set
\[
c_k=\inf_{M_k}I(u),\quad ~k=1,2,\dots.
\]
\begin{lemma}\label{le31}
$c_k$ is attained, $k=0,1,2,\dots$.
\end{lemma}
\begin{proof}
By induction we prove that for each $k$ there exists $u_k\in M_k$ such that
\[
I(u_k)=c_k.
\]
The case that $k=0$ can be deduced by setting $\Omega=\mathbb{R}^N$
in Lemma \ref{le27}. We suppose the claim is true for $k-1$ and discuss
the case $k\geq1$ in the following. For convenience, we divide the proof
of the rest proof into four steps.
\smallskip
\noindent\textbf{Step 1.}
$I$ is bounded from below on $M_k$ by a positive constant.
Since
\[
I(u)=I\Big(\sum_{l=1}^{k+1}(-1)^{l-1}u_l\Big)
=\sum_{l=1}^{k+1}I_{\Omega^l}(u_l), \quad \forall u\in M_k.
\]
We just need to prove that, for $l=1,2,\dots,k+1$, $I_{\Omega^l}$
is bounded from below on $M(\Omega^l)$ by a positive constant.
For any $u_l\in M(\Omega^l)$, we extend it to $X$ by setting $u_l\equiv0$
on $\mathbb{R}^N\setminus\Omega^l$. By (V1) and (A1) we have
\[
I(u_l)\geq\frac{1}{2}\int_{\mathbb{R}^N}(C_1(1+u_l^2)|\nabla u_l|^2
+V_0u_l^2)\,{\rm d}x-\frac{1}{p+1}\int_{\mathbb{R}^N}|u_l|^{p+1}\,{\rm d}x.
\]
Let
\[
\bar{I}(u_l) =\frac{1}{2}\int_{\mathbb{R}^N}(C_1(1+u_l^2)|\nabla u_l|^2
+V_0u_l^2)\,{\rm d}x-\frac{1}{p+1}\int_{\mathbb{R}^N}|u_l|^{p+1}\,{\rm d}x.
\]
Obviously,
\[
\bar{c}:=\inf_{u_l\in X(\Omega^l),u_l\neq0}\max_{t>0}\bar{I}((u_l)_t)
\leq\inf_{u_l\in X(\Omega^l),u_l\neq0}\max_{t>0}I((u_l)_t)=c.
\]
Let us define
\[
\bar{M}(\Omega^l)=\{u_l\in X(\Omega^l)\setminus\{0\}:g'_{u_l}(1)=0\} \quad
\text{ where }g_{u_l}(t)=\bar{I}((u_l)_t).
\]
Similar to Lemma \ref{inf}, we know that
\[
\bar{c}=\inf_{u_l\in\bar{M}(\Omega^l)}\bar{I}_{\Omega^l}(u_l).
\]
For any $u_l\in\bar{M}(\Omega^l)$,
\begin{align*}
&\frac{N+2}{2}V_0\int_{\Omega^l}u_l^2\,{\rm d}x
+ \frac{C_1(N+2)}{2}\int_{\Omega^l}|\nabla u_l|^2u_l^2\,{\rm d}x\\
&\leq \frac{N+p+1}{p+1}\int_{\Omega^l}|u_l|^{p+1}\,{\rm d}x\\
&\leq \frac{N+2}{2}V_0\int_{\Omega^l}u_l^2\,{\rm d}x
+C\int_{\Omega^l}|u_l|^{\frac{4N}{N+2}}\,{\rm d}x,
\end{align*}
for a suitable constant $C>0$. So, by using the Sobolev's inequality,
\[
\frac{C_1(N+2)}{2}\int_{\Omega^l}|\nabla u_l|^2u_l^2\,{\rm d}x
\leq C\int_{\Omega^l}|u_l|^{\frac{4N}{N+2}}\,{\rm d}x
\leq C'\Big(\int_{\Omega^l}|\nabla u_l|^2u_l^2\,{\rm d}x\Big)^{\frac{N}{N-2}},
\]
this shows that $\int_{\Omega^l}|\nabla u_l|^2u_l^2\,{\rm d}x$ is bounded away
from zero on $\bar{M}(\Omega^l)$. Since the functional $\bar{I}_{\Omega^l}$
restricted to $\bar{M}(\Omega^l)$ has the expression
\begin{align*}
\bar{I}_{\Omega^l}(u_l)
&=\frac{C_1}{2}\frac{p+1}{N+p+1}\int_{\Omega^l}|\nabla u_l|^2\,{\rm d}x
+\frac{V_0}{2}\frac{p-1}{N+p+1}\int_{\Omega^l}u_l^2\,{\rm d}x\\
&\quad +\frac{C_1(p-1)}{N+p+1}\int_{\Omega^l}|\nabla u_l|^2|u_l|^{2}\,{\rm d}x.
\end{align*}
We obtain that $\bar{c}>0$, and hence $c>0$. This implies that
$d_X(M(\Omega^l),0)>0$. Then by Proposition \ref{pro1}, we get that
$I_{\Omega^l}$ is bounded from below on $M(\Omega^l)$ by a positive constant.
\smallskip
\noindent\textbf{Step 2.}
We suppose $\{u_m\}_{m\geq1}$ be a minimizing sequence of $c_k$ in $M_k$; that is
\[
\lim_{m\to+\infty}I(u_m)=c_k,\quad u_m\in M_k,\quad m=1,2,\dots.
\]
${u_m}$ corresponds to $k$ nodes, $r_m^1,r_m^2,\dots,r_m^k$ with
$00$. So by using Sobolev's inequality
\begin{align*}
\frac{C_1(N+b-2)}{2}\int_{\Omega_m^l}|u_m^l|^{2}|\nabla u_m^l|^2\,{\rm d}x
&\leq C\int_{\Omega_m^l}|u_m^l|^{\frac{4N}{N+2}}\,{\rm d}x\\
&\leq C'\int_{\Omega_m^l}|u_m^l|^{2}|\nabla u_m^l|^2\,{\rm d}x.
\end{align*}
This shows that $\int_{\Omega_m^l}|u_m^l|^{2}|\nabla u_m^l|^2\,{\rm d}x$
is bounded away from zero on $M_k$. This implies that
\[
\int_{\Omega_m^l}|u_m^l|^2\,{\rm d}x\geq\delta>0.
\]
Then from \eqref{32} we obtain
\[
\int_{\Omega_m^l}|u_m^l|^{p+1}\,{\rm d}x
\geq\Big(\int_{\Omega_m^l}|u_m^l|^2\,{\rm d}x\Big)^{\frac{p+1}{2}}|\Omega_m^l
|^{\frac{1-p}{2}}
\geq \delta^{\frac{p+1}{2}}|\Omega_m^l|^{\frac{1-p}{2}} .
\]
Note that $|\Omega_m^l|\to0$ as $m\to+\infty$ and $p>1$, we have
$$
\int_{\Omega_m^l}|u_m^l|^{p+1}\,{\rm d}x\to+\infty, \quad {\rm as}~m\to+\infty.
$$
This and \eqref{31'} implies that $I(u_m^l)\to-\infty$ as $m\to+\infty$,
which contradicts Step 1. Thus $r^l\neq r^{l-1}, l=1,2,\dots,k$.
\smallskip
\noindent\textbf{Step 3.}
$r^k<+\infty$.
If $r^k=+\infty$, then $\lim_{m\to+\infty}r_m^k=+\infty$.
Since $u_m^k\in M(\Omega_m^k)$, from (V1), (V2), (A1) and (A2) we have
\begin{equation} \label{e32}
\begin{aligned}
&I(u_m^k) \\
&= \frac{1}{2}\int_{\Omega_m^k}\Big(\sum_{i,j=1}^{N}a_{ij}(u_m^k)
\partial_iu_m^k\partial_ju_m^k+V(x)(u_m^k)^2\Big)\,{\rm d}x
-\frac{1}{p+1}\int_{\Omega_m^k}|u_m^k|^{p+1}\,{\rm d}x \\
&= \frac{1}{2}\int_{\Omega_m^k}\Big(\sum_{i,j=1}^{N}a_{ij}(u_m^k)
\partial_i u_m^k\partial_j u_m^k+V(x)(u_m^k)^2\Big)\,{\rm d}x \\
&\quad -\frac{1}{N+p+1}\Big(\frac{N}{2}\int_{\Omega_m^k}
\sum_{i,j=1}^{N}a_{ij}(u_m^k)\partial_i u_m^k\partial_j u_m^k\,{\rm d}x \\
&\quad +\frac{1}{2}\int_{\Omega_m^k}u_m^k\sum_{i,j=1}^{N}a'_{ij}
(u_m^k)\partial_iu_m^k\partial_ju_m^k\,{\rm d}x+\frac{N+2}{2}
\int_{\Omega_m^k}V(x)(u_m^k)^2\,{\rm d}x \\
&\quad +\frac{1}{2}\int_{\Omega_m^k}\nabla V(x)\cdot x(u_m^k)^2\,{\rm d}x\Big) \\
&\geq \Big(\frac{1}{2}-\frac{N}{2(N+p+1)}-\frac{p-1}{2(N+p+1)}\Big)
\int_{\Omega_m^k}\sum_{i,j=1}^{N}a_{ij}(u_m^k)\partial_iu_m^k\partial_ju_m^k\,{\rm d}x \\
&\quad +\Big(\Big(\frac{1}{2}-\frac{N+2}{2(N+p+1)}\Big)V_0-\frac{C_0}{2(N+p+1)}\Big)
\int_{\Omega_m^k}(u_m^k)^2\,{\rm d}x \\
&\quad +\frac{b}{2(N+p+1)}\int_{\Omega_m^k}|\nabla u_m^k|^2\,{\rm d}x \\
&\geq \frac{1}{N+p+1}\int_{\Omega_m^k}C_1\big(1+(u_m^k)^2\big)
|\nabla u_m^k|^2\,{\rm d}x+\frac{(p-1)V_0-C_0}{2(N+p+1)}
\int_{\Omega_m^k}(u_m^k)^2\,{\rm d}x \\
&\quad +\frac{b}{2(N+p+1)}\int_{\Omega_m^k}|\nabla u_m^k|^2\,{\rm d}x \\
&\geq C\eta^2(u_m^k),
\end{aligned}
\end{equation}
where
\[
\eta^2(u_m^k)=\int_{\Omega_m^k}\big(1+(u_m^k)^2\big)|\nabla u_m^k|^2\,{\rm d}x
+\int_{\Omega_m^k}(u_m^k)^2\,{\rm d}x.
\]
From Step 1 we know that
$\int_{\Omega_m^k}|u_m^k|^{2}|\nabla u_m^k|^2\,{\rm d}x$ is bounded away from
zero on $M(\Omega_m^k)$.
Then there exists some $\delta_0>0$ such that
\[
\int_{\Omega_m^k}|u_m^k|^2\,{\rm d}x\geq\delta_0>0.
\]
This and \eqref{3.4} imply that there exists some $\delta_1>0$ such that
\[
\int_{\Omega_m^k}|u_m^k|^{p+1}\,{\rm d}x\geq\delta_1>0.
\]
Then from \eqref{31'}, we have
\begin{equation}\label{e35'}
\begin{aligned}
I(u_m^k)
&\leq C-\frac{1}{p+1}\int_{\Omega_m^k}|u_m^k|^{p+1}\,{\rm d}x \\
&\leq C+C\int_{\Omega_m^k}|u_m^k|^{p+1}\,{\rm d}x \\
&\leq C\int_{\Omega_m^k}|u_m^k|^{p+1}\,{\rm d}x
\Big(\Big(\int_{\Omega_m^k}|u_m^k|^{p+1}\,{\rm d}x\Big)^{-1}+1\Big) \\
&\leq C\int_{\Omega_m^k}|u_m^k|^{p+1}\,{\rm d}x(\delta_1^{-1}+1) \\
&\leq C\int_{\Omega_m^k}|u_m^k|^{p+1}\,{\rm d}x,
\end{aligned}
\end{equation}
for some suitable $C>0$.
It follows from \eqref{e32},\eqref{e35'} and Lemma \ref{l21} that
\begin{align*}
\eta^2(u_m^k)&\leq I(u_m^k)\\
&\leq C\int_{\Omega_m^k}|u_m^k|^{p+1}\,{\rm d}x\\
&\leq C\int_{\Omega_m^k}|u_m^k|^2|u_m^k|^{p-1}\,{\rm d}x\\
&\leq C \|u_m^k\|^{p-1}\int_{\Omega_m^k}|u_m^k|^2|x|^{\frac{(1-N)(p-1)}{2}}\,{\rm d}x\\
&\leq C \Big(\eta^2(u_m^k)\Big)^{\frac{p+1}{2}}|r_m^k|^{\frac{(1-N)(p-1)}{2}}.
\end{align*}
Thus
\begin{equation}\label{e36}
\eta^2(u_m^k)\geq C|r_m^k|^{N-1}.
\end{equation}
From \eqref{e36} we have
\[
\eta^2(u_m^k)\to+\infty\quad \text{as }m\to+\infty.
\]
So \eqref{e32} implies
\begin{equation}\label{e35}
I(u_m^k)\to+\infty \quad \text{as }m\to+\infty.
\end{equation}
By the inductive assumption and \eqref{e35}, for $\varepsilon>0$ fixed we
choose $M>0$ such that
\[
I(u_m^k)>c_k-c_{k-1}+\varepsilon,\quad |I(u_m)-c_k|<\varepsilon,\quad \text{as }m\geq M.
\]
Then we may define $\hat{u}(x)\in M_{k-1}$ by
\[
\hat{u}(x)=\begin{cases}
u_m^s(x), &x\in\Omega_m^s\text{ as } s0$, such that $\gamma(t_m^l)=0$,
thus $(u_m^l)_{t_m^l}\in M(\Omega^l)$. Now we claim that
\begin{equation}\label{e312}
t_m^l\to1 \quad \text{as }m\to+\infty,\; l=1,2,\dots,k.
\end{equation}
Indeed, since $\gamma(t_m^l)=0$, we have
\begin{equation}\label{e313}
\begin{aligned}
&\frac{N}{2}(t_m^l)^{N-1}\int_{\Omega^l}
\sum_{i,j=1}^{N}a_{ij}(t_m^lu_m^l)\partial_iu_m^l\partial_ju_m^l\,{\rm d}y \\
&+\frac{(t_m^l)^N}{2}\int_{\Omega^l}u_m^l\sum_{i,j=1}^{N}a'_{ij}
(t_m^lu_m^l)\partial_iu_m^l\partial_ju_m^l\,{\rm d}y \\
&+\frac{{N+2}}{2}(t_m^l)^{N+1}\int_{\Omega^l}V(t_m^ly)(u_m^l)^2\,{\rm d}y
+\frac{(t_m^l)^{N+2}}{2}\int_{\Omega^l}\nabla V(t_m^ly)\cdot y(u_m^l)^2\,{\rm d}y \\
&-\frac{N+p+1}{p+1}(t_m^l)^{N+p}\int_{\Omega^l}|u_m^l|^{p+1}\,{\rm d}y=0.
\end{aligned}
\end{equation}
We can prove that there exists a constant $\tilde{t}>0$ such that
\[
0