\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 239, pp. 1--17.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/239\hfil Pohozaev-type inequalities] {Pohozaev-type inequalities and nonexistence results for non $C^2$ solutions of $p(x)$-Laplacian equations} \author[G. L\'opez \hfil EJDE-2014/239\hfilneg] {Gabriel L\'opez} % in alphabetical order \address{Gabriel L\'opez G. \newline Universidad Aut\'onoma Metropolitana, M\'exico D.F., M\'exico} \email{gabl@xanum.uam.mx} \thanks{Submitted September 6, 2014. Published November 14, 2014.} \subjclass[2000]{35D05, 35J60, 58E05} \keywords{Pohozaev-type inequality; $p(x)$-Laplace operator; \hfill\break\indent Sobolev spaces with variable exponents} \begin{abstract} In this article we obtain a Pohozaev-type inequality for Sobolev spaces with variable exponents. This inequality is used for proving the nonexistence of nontrivial weak solutions for the Dirichlet problem \begin{gather*} -\Delta_{p(x)} u = |u|^{q(x)-2}u ,\quad x\in \Omega\\ u(x)=0,\quad x\in\partial\Omega, \end{gather*} with non-standard growth. Our results extend those obtained by \^{O}tani \cite{o1}. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction} Let $\Omega$ be a bounded domain in $\mathbb{R}^N$ with smooth boundary $\partial \Omega$. The domain $\Omega$ is said to be \emph{star shaped} (respectively \emph{strictly star shaped}) if $(x\cdot\nu(x))\geqslant 0$ (respectively if $(x\cdot \nu(x))\geqslant \rho>0$) holds for all $x\in\partial \Omega$ with a suitable choice of the origin, where $\nu(x)=(\nu_1(x),\dots,\nu_N(x))$ denotes the outward unit normal at $x\in\partial \Omega$. Consider the problem \begin{equation} \label{DI} \begin{gathered} -\Delta_{p(x)} u = f(u) ,\quad x\in \Omega\\ u(x)=0,\quad x\in\partial\Omega, \end{gathered} \end{equation} where $\Delta_{p(x)}u=\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)$, and $f$ is a non-linear function. In \cite{di}, to obtain nonexistence results for \eqref{DI} for star shaped domains $\Omega$, Po\-hozaev-type identities are stated and applied to the case in which $f$ does not depend on $p(x)$ and $u\in C^2(\Omega)$. For $f(u)=|u|^{q-2}u$, $10;\;\int_\Omega |\frac{u(x)}{\mu}|^{p(x)}\,dx\leq 1\}, $$ which is a separable and reflexive Banach space if $11)\;\Leftrightarrow\;\rho_{p(\cdot)}(u) <1\;(=1;\,>1)\\ \label{L4} \|u\|_{p(\cdot)}>1 \;\Rightarrow\; \|u\|_{p(\cdot)}^{p^-}\leq\rho_{p(\cdot)}(u) \leq \|u\|_{p(\cdot)}^{p^+}\\ \label{L5} \|u\|_{p(\cdot)}<1 \;\Rightarrow\; \|u\|_{p(\cdot)}^{p^+}\leq \rho_{p(\cdot)}(u)\leq \|u\|_{p(\cdot)}^{p^-}\\ \label{L6} \|u_n-u\|_{p(\cdot)}\to 0\;\Leftrightarrow\;\rho_{p(\cdot)} (u_n-u)\to 0, \end{gather} since $p^+<\infty$. For a proof of these facts see \cite{ko}. The set $W_0^{1,p(x)}(\Omega)$ is defined as the closure of $C_0^{\infty}(\Omega)$ under the norm \[ \| u\|=\|\nabla u\|_{p(x)}. \] The space $(W_0^{1,p(x)}(\Omega),\| \cdot \|_{p(x)})$ is a separable and reflexive Banach space if $10$ such that \begin{equation}\label{logh} |p(x)-p(y)|\leqslant \frac{C}{-\log (|x-y|)} \end{equation} for all $x,y \in \mathbb{R}^{N}$, such that $|x-y|\le 1/2$. A bounded exponent $p$ is Log-H\"older continuous in $\Omega$ if and only if there exists a con\-stant $C>0$ such that \begin{equation}\label{logh1} |B|^{p^{-}_{B}-p^{+}_{B}}\le C \end{equation} for every ball $B\subset\Omega$ \cite[ Lemma 4.1.6, page 101]{dhhr}, where $|B|$ is the Lebesgue measure of $B$. Under the Log-H\"older condition smooth functions are dense in Sobolev Spaces with Variable Exponents \cite[Proposition 11.2.3, page 346]{dhhr}. Finally, the compact embedding results, as many other facts, are a very delicate and interesting matters in spaces with variable exponents. For instance, in \cite[prop 3.1]{moss} is shown that, for certain exponents with $p^*(x)> q(x)>p^*(x)-\epsilon $ (in our notation) with $x$ in some subset of $\Omega$, the embedding from $W_0^{1,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is not compact. On the other hand, if $q(x)=p^*(x)$ at some point $x\in\Omega$, it is known that the embedding is compact in $\mathbb{R}^N$ (see \cite[Theorem 8.4.6]{dhhr} and references therein). In this paper, we will use \cite[Proposition 3.3]{moss} which, in our notation, can be stated as the following proposition. \begin{proposition}[Mizuta et al \cite{moss}] \label{rkt} Let $p(\cdot)$ satisfying the log-H\"older condition on the open and bounded set $\Omega\subset \mathbb{R}^N$. Suppose that $\partial\Omega\in C^1$ or $\Omega$ satisfies the cone condition, and $p^+0. \end{equation} Then $W_0^{1,p(\cdot)}(\Omega)\hookrightarrow\hookrightarrow L^{q(\cdot)}(\Omega)$, i. e. $W_0^{1,p(\cdot)}(\Omega)$ is compactly embedded in $L^{q(\cdot)}(\Omega)$. \end{proposition} For a definition of the cone condition used in the above theorem, see \cite[p. 159]{gt}. In the next section we also require the following Lemma. \begin{lemma}\label{OTNOT} Let $1N_o$, $|u_n-u|<1$, a.e. in $\Omega$. Therefore, up to a subsequence, $|u_n-u|^{q(x)}<|u_n-u|^{q^-}$, a.e. in $\Omega$, so that the inequality \eqref{re10n} holds. Hence, for some $\theta\in (0,1)$ satisfying $1/q^-=\theta/p^-+(1-\theta)/q^+$ \[ \rho_{q(\cdot)}(u_n-u)\leqslant \Big(\int_\Omega |u_n-u|^{p^-}\,dx\Big)^{\theta q^-/p^-} \Big(\int_\Omega |u_n-u|^{q^+}\,dx\Big)^{(1-\theta) q^-/q^+}. \] Using the fact that $u_n\to u$ in $L^{p^-}(\Omega)$ and \cite[Theorem 2.11]{A} it follows that \begin{equation} \rho_{q(\cdot)}(u_n-u) \leqslant C\Big(\int_\Omega |u_n-u|^{p^-}\,dx\Big)^{\theta q^-/p^-}\to 0, \quad \text{as }n\to\infty, \end{equation} and the proof is complete. \end{proof} \section{Pohozaev-type inequalitiy} \label{ptis} In this section, we state a Pohozaev-type inequality for weak solutions $u$ (defined in \eqref{ws121} below) belonging to the class $\mathcal{P}$ defined as \begin{equation} \label{P} \mathcal{P}=\big\{u\in \big(W_0^{1,p(\cdot)}\cap L^{q(\cdot)}\big) (\Omega):x_i|u|^{q(x)-2}u\in L^{p'(\cdot)}(\Omega),\; i=1,2,\dots,N\big\} \end{equation} where $p'(x)=p(x)/(p(x)-1)$ and $p^+0$. It is possible to show that \eqref{En} and \eqref{Ene} have unique solutions and that \eqref{Ene} and \eqref{En} provide good approximations for \eqref{En} and \eqref{E}, respectively. This fact is stated in the following lemma. \begin{lemma}\label{lem3.1} Let $p(\cdot)$ satisfying the log-H\"older condition on the open and bounded set $\Omega\subset \mathbb{R}^N$. Suppose that $\partial\Omega\in C^1$ or $\Omega$ satisfies the cone condition and $p^+1. \end{cases} \] Hence we can obtain an a priori bound for $\|w_n\|_{L^{q(x)+r-2}}$ independent of $r$. Letting $r\to\infty$ we get an $L^\infty$-estimate for $w_n$. Therefore, using \cite[Theorem 1.2, p. 400]{f}, we conclude $w_n\in C^{1,\alpha}(\overline{\Omega})$. (iii) With a similar argumentation as in (ii) we obtain \begin{equation}\label{11o} \|w_n^\varepsilon\|_{L^\infty(\Omega)}\leqslant C_n\quad\text{for all } \varepsilon>0. \end{equation} Multiply \eqref{Ene} by $w_n^\epsilon$ to obtain $$ \int_{\Omega}|w_n^\varepsilon|^{q(x)}\,dx +\int_{\Omega}(|\nabla w_n^\varepsilon|^2+\varepsilon)^{(p(x)-2)/2} |\nabla w_n^\varepsilon|^2\,dx=\int_{\Omega}v_n^\varepsilon w_n^\varepsilon \,dx. $$ On the other hand, note that \begin{align*} \int_{\Omega}|\nabla w_n^\varepsilon|^{p(x)}\,dx &=\int_{\Omega}(|\nabla w_n^\varepsilon|^2)^{(p(x)-2)/2}|\nabla w_n^\varepsilon|^2\,dx\\ &\leqslant\int_{\Omega}(|\nabla w_n^\varepsilon|^2+\varepsilon)^{(p(x)-2)/2} |\nabla w_n^\varepsilon|^2\,dx. \end{align*} Hence, it follows that $$ \int_{\Omega}|\nabla w_n^\varepsilon|^{p(x)}\,dx \leqslant \int_{\Omega}v_n^\varepsilon w_n^\varepsilon \,dx. $$ Next, use Young's inequality and the fact that $q(x),q'(x)>1$ to obtain $$ \int_{\Omega}|\nabla w_n^\varepsilon|^{p(x)}\,dx \leqslant \int_{\Omega}|v_n^\varepsilon|^{q'(x)}\,dx +\int_{\Omega}|w_n^\varepsilon|^{q(x)} \,dx. $$ Therefore, by \eqref{11o} and the fact that $v_n\in C_0^\infty(\Omega)$, we obtain \begin{equation} \label{12o} \|\nabla w_n^\varepsilon\|_{L^{p(x)}(\Omega)} \leqslant C_n\quad\text{ for all }\quad\varepsilon>0. \end{equation} Combining \eqref{11o}, \eqref{12o}, Proposition \ref{rkt}, and Lemma, \ref{OTNOT} it follows that there exists a sequence $\{w_n^{\varepsilon_k}\}$ such that for $p^+1$ imply that $\|w_n\|^{q^{\pm}}_{L^{q(x)}(\Omega)},\|\nabla w_n\|^{p^\pm}_{L^{p(x)}(\Omega)} \leqslant C$. We use again Proposition \ref{rkt} and Lemma \ref{OTNOT} to obtain that, up to a subsequence $\{n_k\}$, \begin{gather} \label{23o} \nabla w_{n_k}\rightharpoonup \nabla w\quad\text{weakly in }L^{p(x)}(\Omega),\\ \label{24o} w_{n_k}\rightharpoonup w\quad\text{ weakly in }L^{q(x)}(\Omega). \end{gather} And, moreover, $ w_{n_k}\to w$ strongly in $L^{q(x)}(\Omega)$ for all $q$ such that $ 1\leqslant q^-0$ does not depend on $a,b$ (a proof of this inequality is in \cite[Lemma A.0.5, p. 80]{PER}). Since the above argument does not depend on the choice of subsequences, then \eqref{23o}, \eqref{24o} and \eqref{25o} hold for $n_k=n$. Taking into account \eqref{21o}, \eqref{22o}, \eqref{23o} and \eqref{24o} we obtain \begin{align*} 2\int_\Omega |u|^{q(x)}\,dx &=\int _\Omega |u|^{q(x)}\,dx+\int_\Omega |\nabla u|^{p(x)}\,dx\\ &\leqslant \liminf_{n\to\infty} \Big(\int _\Omega |w_n|^{q(x)}\,dx+\int_\Omega |\nabla w_n|^{p(x)}\,dx \Big)\\ & = \lim_{n\to\infty} \Big(\int _\Omega |w_n|^{q(x)}\,dx+\int_\Omega |\nabla w_n|^{p(x)}\,dx \Big)\\ &\leqslant 2\int_\Omega |u|^{q(x)}\,dx. \end{align*} Consequently, $$ \lim_{n\to\infty}\Big(\int _\Omega |w_n|^{q(x)}\,dx +\int_\Omega |\nabla w_n|^{p(x)}\,dx \Big) =\int _\Omega |u|^{q(x)}\,dx+\int_\Omega |\nabla u|^{p(x)}\,dx $$ Moreover, notice that \begin{align*} &\int_\Omega |u|^{q(x)}\,dx\\ & \leqslant \liminf_{n\to\infty} \int_\Omega |w_n|^{q(x)}\,dx \leqslant \limsup_{n\to\infty}\int_\Omega |w_n|^{q(x)}\,dx\\ &= \limsup_{n\to\infty}\Big( \int_\Omega |w_n|^{q(x)}\,dx +\int_\Omega \frac{|\nabla w_n|^{p(x)}}{p(x)}\,dx -\int_\Omega \frac{|\nabla w_n|^{p(x)}}{p(x)}\,dx\Big)\\ &\leqslant \limsup_{n\to\infty}\Big( \int_\Omega |w_n|^{q(x)}\,dx +\int_\Omega \frac{|\nabla w_n|^{p(x)}}{p(x)}\,dx\Big) -\liminf_{n\to\infty}\int_\Omega \frac{|\nabla w_n|^{p(x)}}{p(x)}\,dx\\ &\leqslant \int_\Omega |u|^{q(x)}\,dx. \end{align*} Therefore, \begin{gather*} \lim_{n\to\infty}\int_\Omega |w_n|^{q(x)}\,dx =\int_\Omega |u|^{q(x)}\,dx, \\ \lim_{n\to\infty} \int_\Omega |\nabla w_n|^{p(x)}\,dx =\int_\Omega |\nabla u|^{p(x)}\,dx. \end{gather*} This completes the proof. \end{proof} To obtain a Pohozaev-type inequality, we introduce the function \begin{equation} \label{psformula} \mathcal{F}(x,u,s):=\frac{|u(x)|^{q(x)}}{q(x)} +\frac{(|s|^2+\varepsilon)^{p(x)/2}}{p(x)}-v_n^\varepsilon (x)u(x) \end{equation} where $s=(s_1,\dots,s_N)$, which will be used in the context of a Pucci-Serrin formula in \cite{ps}. \begin{theorem}[Pohozaev-type inequality] \label{thm3.2} Let $u$ be a weak solution of \eqref{E} belonging to $\mathcal{P}$. Then $u$ satisfies \begin{equation} \label{poho2} \begin{aligned} &-\int_\Omega\frac{N}{q(x)}|u|^{q(x)}\,dx +\int_\Omega\frac{N-p(x)}{p(x)}|\nabla u|^{p(x)}\,dx\\ &+\int_\Omega x\cdot\nabla p(x)\frac{|\nabla u|^{p(x)}}{p(x)^2} \log\left( e^{-1}|\nabla u|^{p(x)}\right)\,dx\\ &-\int_\Omega x\cdot\nabla q(x)\frac{|u|^{q(x)}}{q(x)^2} \log\left( e^{-1}|u|^{q(x)}\right)\,dx +R\leq 0, \end{aligned} \end{equation} where $$ R=\frac{p^\dag-1}{p^+}\limsup_{n\to\infty} \limsup_{\varepsilon\to 0}\int_{\partial \Omega} \left(|\nabla w_n^\varepsilon|^2+\varepsilon\right)^{p(x)/2}(x\cdot\nu(x))\,dS, $$ $p^\dag=\min_{x\in \Omega}\{2,p(x)\}$, and $w_n^\varepsilon$ is the solution of \eqref{Ene} uniquely determined by $u$. \end{theorem} \begin{proof} Denote by $\mathcal{F}_s(x,u,s)=(\partial _{s_1}\mathcal{F},\dots,\partial_{s_N}\mathcal{F})$, where $\mathcal{F}$ is defined in \eqref{psformula}. Then \begin{equation} \label{ar345}\partial_{s_i} \mathcal{F}(x,u,s) = (|s|^2+\varepsilon)^{p(x)/2-1}s_i\quad \text{for }i=1,2,\dots,N. \end{equation} Hence, we denote \begin{equation} \label{ar3456} \partial_{s_i} \mathcal{F}(x,u,\nabla u)= (|\nabla u|^2 +\varepsilon)^{p(x)/2-1}\partial_iu\quad \text{for }i=1,2,\dots,N, \end{equation} and $$ \mathcal{F}_s(x,u,\nabla u)=(|\nabla u|^2+\varepsilon)^{(p(x)-2)/2}\nabla u. $$ It follows from \eqref{ar345} and \eqref{ar3456} that $$ \operatorname{div}\,\mathcal{F}(x,u,\nabla u)=-A_\varepsilon u. $$ Finally, we denote by \[ \nabla \mathcal{F}(x,u,\nabla u) =(\partial_{x_1}\mathcal{F},\dots,\partial_{x_N}\mathcal{F}) =(\partial_{1}\mathcal{F},\dots,\partial_{N}\mathcal{F}) \] with \begin{align*} \partial_i \mathcal{F} &= \partial_i\Big(\frac{|u(x)|^{q(x)}}{q(x)}+\frac{(|s|^2 +\varepsilon)^{p(x)/2}}{p(x)}-v_n^\varepsilon (x)u(x)\Big)\\ &= \frac{|u|^{q(x)}}{(q(x))^2}\big(\log |u|^{q(x)}-1\big)\partial_iq(x) +|u|^{q(x)-2} u\partial_i u\\ &\quad +\frac{(|\nabla u|^2+\varepsilon)^{p(x)/2}}{2(p(x))^2}\big(\log(|\nabla u|^2 +\varepsilon)^{p(x)}-1\big)\partial_ip(x)\\ &\quad +(|\nabla u|^2+\varepsilon)^{p(x)/2-1}\partial_i(|\nabla u|^2) -\big[ (\partial_iv_n^\varepsilon)u+v_n^\varepsilon\partial_iu\big]\quad \text{for }i=1,\dots,N. \end{align*} We shall use the Pucci-Serrin formula \cite[Proposition 1, p. 683]{ps} in the form \begin{equation} \label{psf} \begin{aligned} &\int_{\partial \Omega}\Big[\mathcal{F}(x,0,\nabla u)-\nabla u\cdot \mathcal{F}_s(x,0,\nabla u)\Big](h\cdot \nu)\,dS\\ &=\int_\Omega \Big[\mathcal{F}(x,u,\nabla u)\operatorname{div} h +h\cdot\nabla \mathcal{F}(x,u,\nabla u) -(h\cdot \nabla u)\operatorname{div}\mathcal{F}_s(x,u,\nabla u)\\ &\quad -\mathcal{F}_s(x,u,\nabla u)\cdot\nabla (h\cdot\nabla u) -au\operatorname{div}\mathcal{F}_s(x,u,\nabla u)\\ &\quad -\nabla (au)\cdot\mathcal{F}_s(x,u,\nabla u)\Big]\,dx, \end{aligned} \end{equation} where $a$ and $h$ are respectively scalar and vector-valued functions of class $C^1(\Omega)$. Taking $a$ constant, $h=x=(x_1,\dots,x_n)$, and $u=w_n^\varepsilon$, equation \eqref{psf} becomes \begin{equation} \label{4.20-4.21} \begin{aligned} &\int_{\partial \Omega}\frac{(|\nabla w_n^\varepsilon|^2 +\varepsilon)^{p(x)/2}}{p(x)}(x\cdot\nu)\,dS\\ &-\int_{\partial\Omega}(|\nabla w_n^\varepsilon|^2+\varepsilon)^{p(x)/2-1} |\nabla w_n^\varepsilon|^2(x\cdot\nu )\,dS \\ &=\int_{\Omega}N\Big(\frac{|w_n^\varepsilon|^{q(x)}}{q(x)} +\frac{(|\nabla w_n^\varepsilon|^2+\varepsilon)^{p(x)/2}}{p(x)} -v_n^\varepsilon w_n^\varepsilon\Big)\,dx\\ &\quad +\int_{\Omega}(x\cdot\nabla q(x)) \frac{|w_n^\varepsilon|^{q(x)}}{(q(x))^2}\big(\log|w_n^\varepsilon|^{q(x)}-1\big)\,dx\\ &\quad +\int_{\Omega}(x\cdot\nabla p(x))\frac{(|\nabla w_n^\varepsilon|^2 +\varepsilon)^{p(x)/2}}{(p(x))^2}\big(\log(|\nabla w_n^\varepsilon|^2 +\varepsilon)^{p(x)/2}-1\big)\,dx\\ &\quad -\int_{\Omega}w_n^\varepsilon (x\cdot\nabla v_n^\varepsilon)\,dx -\int_{\Omega}(|\nabla w_n^\varepsilon|^2+\varepsilon)^{(p(x)-2)/2} |\nabla w_n^\varepsilon|^2\,dx\\ &\quad +\int_{\Omega}a w_n^\varepsilon A_\varepsilon w_n^\varepsilon \,dx -\int_{\Omega}(\nabla (a w_n^\varepsilon)\cdot\nabla w_n^\varepsilon) (|\nabla w_n^\varepsilon|^2+\varepsilon)^{(p(x)-2)/2}\,dx. \end{aligned} \end{equation} For the surface integrals in \eqref{4.20-4.21}, by adding and subtracting $\varepsilon\int_{\partial\Omega}(|\nabla w_n^\varepsilon|^2 +\varepsilon)^{p(x)/2-1}(x\cdot\nu )\,dS$ we have \begin{equation} \label{ds} \begin{aligned} &\int_{\partial \Omega}\frac{(|\nabla w_n^\varepsilon|^2 +\varepsilon)^{p(x)/2}}{p(x)}(x\cdot\nu)\,dS -\int_{\partial\Omega}(|\nabla w_n^\varepsilon|^2 +\varepsilon)^{p(x)/2-1}|\nabla w_n^\varepsilon|^2(x\cdot\nu )\,dS \\ & =\int_{\partial\Omega}\big(\frac{1}{p(x)}-1 \big) \big(|\nabla w_n^\varepsilon|^2+\varepsilon\big)^{p(x)/2}(x\cdot\nu )\,dS\\ &\quad +\varepsilon\int_{\partial\Omega}(|\nabla w_n^\varepsilon|^2 +\varepsilon)^{p(x)/2-1}(x\cdot\nu )\,dS. \end{aligned} \end{equation} On the other hand, since $(x\cdot\nu(x))\geqslant 0$ for all $x\in\partial \Omega$, it follows that \begin{equation} \label{4.22o} \begin{aligned} &\varepsilon\int_{\partial\Omega}(|\nabla w_n^\varepsilon|^2 +\varepsilon)^{p(x)/2-1}(x\cdot\nu )\,dS \\ &\leqslant \begin{cases} \int_{\partial \Omega}\varepsilon^{p(x)/2} (x\cdot\nu(x))\,dS, &\text{if } 1 < p(x)\leqslant 2,\\[4pt] \int_{\partial\Omega}\frac{p(x)-2}{p(x)}(|\nabla w_n^\varepsilon|^2 +\varepsilon)^{p(x)/2}(x\cdot\nu )\,dS\\ +\int_{\partial\Omega}\frac{2}{p(x)}\varepsilon^{p(x)/2} (x\cdot\nu(x))\,dS, &\text{if } 2 1$. Notice that the relations \begin{gather}\label{e3} \sup_{0\leq t\leq 1}t^{\eta}|\log t|<\infty,\\ \label{e4} \sup_{t>1}t^{-\eta}\log t<\infty \end{gather} hold for $\eta >0$. Set ${\Omega}_{1}:=\{x \in \Omega: |w_n^\varepsilon(x)|\leq 1 \} $ and ${\Omega}_{2}:=\{x \in \Omega: |w_n^\varepsilon (x)|>1 \}$. We can choose $k\in\mathbb{N}$ such that $p(x)-1/k\geq p^-$. Since $w_n^\varepsilon\in L^{p^-}(\Omega)$ and $|w_n^\varepsilon(x)|\leq 1$, in ${\Omega}_1$, we have \begin{equation} \label{Leb1} \big|(x\cdot\nabla q(x))\frac{|w_n^\varepsilon|^{q(x)}}{(q(x))^2} \log|w_n^\varepsilon|^{q(x)}\big| \leq C|w_n^\varepsilon(x)|^{p(x)-1/m}\leq C|w_n^\varepsilon(x)|^{p^-}, \end{equation} for $m>k$. For $x\in\Omega_2$, we can choose $k'$ such that $p(x)+1/k'\leq (p(x))^*=Np(x)/(N-p(x))$. So \begin{equation}\label{Leb2} \big|(x\cdot\nabla q(x))\frac{|w_n^\varepsilon|^{q(x)}}{(q(x))^2} \log|w_n^\varepsilon|^{q(x)}\big| \leq C|w_n^\varepsilon(x)|^{p(x)+1/m}\leq C|w_n^\varepsilon(x)|^{(p(x))^*}, \end{equation} for $m>k'$, and $x\in{\Omega}_2$. Therefore \eqref{Leb1}, \eqref{Leb2}, and the convergence of $w_n^\varepsilon$ in Lemma \ref{lem3.1} imply that there exists $h(x)\in L^1(\Omega)$ such that \begin{equation}\label{acot} \big|(x\cdot\nabla q(x))\frac{|w_n^\varepsilon|^{q(x)}}{(q(x))^2} \log|w_n^\varepsilon|^{q(x)}\big|\leq h(x). \end{equation} On the other hand, given the convergence Lemma \ref{lem3.1}, assertion \eqref{7o} and the continuity of the log function, we conclude that \begin{equation} \label{ult} (x\cdot\nabla q(x))\frac{|w_n^\varepsilon|^{q(x)}}{(q(x))^2} \log|w_n^\varepsilon|^{q(x)} \to(x\cdot\nabla q(x))\frac{|w_n|^{q(x)}}{(q(x))^2}\log|w_n|^{q(x)} \end{equation} a.e. in $\Omega$ as $\varepsilon \to 0$. With \eqref{acot}, \eqref{ult}, and the Lebesgue Convergence Theorem the claims \eqref{lognograd} and {loggrad} follow. Finally, \begin{equation} \label{item6} \int_{\Omega}N\Big(\frac{|w_n^\varepsilon|^{q(x)}}{q(x)} +\frac{(|\nabla w_n^\varepsilon|^2+\varepsilon)^{p(x)/2}}{p(x)}\Big)\,dx \to \int_{\Omega} N\Big(\frac{|w_n|^{q(x)}}{q(x)} +\frac{|\nabla w_n|^{p(x)}}{p(x)}\Big)\,dx \end{equation} as $\varepsilon\to 0$ by \eqref{18o} and \eqref{7o}. Considering items \eqref{item1}--\eqref{item6}, identities \eqref{4.20-4.21}, \eqref{ds}, and inequality \eqref{4.22o}, we obtain \begin{equation} \label{inl4.2} \begin{aligned} &N\int_\Omega\frac{|w_n|^{q(x)}}{q(x)}\,dx +\int_\Omega\frac{N-p(x)}{p(x)}|\nabla w_n|^{p(x)}\,dx \\ &+\int_\Omega x\cdot\nabla p(x)\frac{|\nabla w_n|^{p(x)}}{p(x)^2} \big(\log |\nabla w_n|^{p(x)}-1\big)\,dx\\ &+\int_\Omega x\cdot\nabla q(x)\frac{|w_n|^{q(x)}}{q(x)^2} \big(\log |w_n|^{q(x)}-1\big)\,dx +2\int_\Omega|u_n|^{q(x)-2}u_nx\cdot \nabla w_n\,dx\\ &+a\Big(\int_\Omega 2|u_n|^{q(x)-2}u_n w_n\,dx-\int_\Omega|w_n|^{q(x)}\,dx -\int_\Omega |\nabla w_n|^{p(x)}\,dx\Big) +R_n\\ &\leq 0, \end{aligned} \end{equation} where \[ R_n=\frac{p^\dag-1}{p^+}\limsup_{\varepsilon\to 0} \int_{\partial \Omega}\big(|\nabla w_n^\varepsilon|^2+\varepsilon\big)^{p(x)/2} (x\cdot\nu(x))\,dS, \] and $p^\dag=\min_{x\in \Omega}\{2,p(x)\}$. Next let $n\to\infty$ in \eqref{inl4.2} and take into account \eqref{8o}, and \eqref{9o} to obtain \begin{equation} \label{poho1} \begin{aligned} &N\int_\Omega\frac{|u|^{q(x)}}{q(x)}\,dx\\ &+\int_\Omega\frac{N-p(x)}{p(x)}|\nabla u|^{p(x)}\,dx +\int_\Omega x\cdot\nabla p(x)\frac{|\nabla u|^{p(x)}}{p(x)^2} \big(\log |\nabla u|^{p(x)}-1\big)\,dx\\ &+\int_\Omega x\cdot\nabla q(x)\frac{|u|^{q(x)}}{q(x)^2} \big(\log |u|^{q(x)}-1\big)\,dx +2\int_\Omega|u|^{q(x)-2}u (x\cdot \nabla u )\,dx\\ &+a\Big(\int_\Omega |u|^{q(x)}\,dx-\int_\Omega |\nabla u|^{p(x)}\,dx\Big) +R\leq 0, \end{aligned} \end{equation} where \[ R=\frac{p^\dag-1}{p^+}\limsup_{n\to\infty}\limsup_{\varepsilon\to 0} \int_{\partial \Omega}\left(|\nabla w_n^\varepsilon|^2+\varepsilon\right) ^{p(x)/2}(x\cdot\nu(x))\,dS. \] Further, notice that since $u$ is a weak solution of \eqref{E}, \begin{equation}\label{a0} \int_\Omega |u|^{q(x)}\,dx-\int_\Omega |\nabla u|^{p(x)}\,dx=0. \end{equation} In fact, multiplying \eqref{E} by $\varphi\in W^{1,p(\cdot)}_0(\Omega)$, and integrating by parts, we have $$ \int_\Omega |\nabla u|^{p(x)-2}\nabla u \,dx =\int_\Omega |u|^{q(x)-2}u\varphi \,dx. $$ Taking $\varphi=u$ we obtain \eqref{a0}, as wanted. On the other hand, \begin{equation} \label{C2} \begin{aligned} \int_{\Omega} \frac{x\cdot \nabla |u|^{q(x)}}{q(x)}\,dx &= \int_{\Omega} |u|^{q(x)-2}u(x\cdot \nabla u)\,dx\\ &\quad +\int_{\Omega}\frac{1}{q(x)^2}|u|^{q(x)}\log |u|^{q(x)}(x\cdot\nabla q(x))\,dx, \end{aligned} \end{equation} so that \begin{equation}\label{C3} \begin{aligned} \int_{\Omega} \frac{x\cdot \nabla |u|^{q(x)}}{q(x)}\,dx &=-\int_{\Omega} \operatorname{div}\big(\frac{x}{q(x)}\big)|u|^{q(x)}\,dx +\int_{\partial\Omega}|u|^{q(x)}\frac{\partial}{\partial \nu} \big(\frac{x}{q(x)}\big)\,dS\\ &\quad -N\int_{\Omega} \frac{|u|^{q(x)}}{q(x)}\,dx +\int_{\Omega}\frac{|u|^{q(x)}x\cdot\nabla q(x)}{q(x)^2}\,dx. \end{aligned} \end{equation} Hence, from \eqref{C2}, and \eqref{C3}, we obtain \begin{equation} \label{C4} \begin{aligned} &\int_{\Omega} |u|^{q(x)-2}u(x\cdot \nabla u)\,dx\\ &= -N\int_{\Omega} \frac{|u|^{q(x)}}{q(x)}\,dx +\int_{\Omega} \frac{|u|^{q(x)}x\cdot\nabla q(x)}{q(x)^2} \big(1-\log |u|^{q(x)} \big)\,dx \end{aligned} \end{equation} We obtain \eqref{poho2} by substituting \eqref{a0} and \eqref{C4} in \eqref{poho1}. \end{proof} \section{Nonexistence of nontrivial solutions}\label{NES} Now we can state a nonexistence theorem which is a generalization to the case of Sobolev Spaces with variable exponents of \cite[Theorem III, p. 142]{o1}. The proofs are similar to those in \cite{o1}, but are included here for the reader's convenience. \begin{theorem}\label{pti} Consider Problem \eqref{E}, where $\Omega\subset \mathbb{R}^N$ is a bounded domain of class $C^1$, $p(\cdot)$ is a log-H\"older exponent with $1(p^+)^*$ then Problem \eqref{E} has no nontrivial weak solution belonging to $\mathcal{P}\cap\mathcal{E}$ where $$ \mathcal{E}=\Big\{u:\int_\Omega \log \Big(\frac{(|\nabla u|^{p(x)}e^{-1})^{\frac{x\cdot\nabla p}{p^2}|\nabla u|^{p(x)}}} {(|u|^{q(x)}e^{-1})^{\frac{x\cdot\nabla q}{q^2}|u|^{q(x)} }} \Big)\,dx \geqslant 0 \Big\}. $$ \item[(ii)] If $\Omega$ is strictly star-shaped and $q^-=(p^+)^*$ then Problem \eqref{E} has no nontrivial weak solution of definite sign belonging to $\mathcal{P}\cap\mathcal{E}$. \end{itemize} \end{theorem} \begin{proof} (i) If $\Omega$ is star-shaped, then $R\geqslant 0$ in \eqref{poho2}. Then it follows that $$ \Big(\frac{N- p^+}{p^+}-\frac{N}{q^-}\Big)\int_\Omega |u|^{q(x)}\,dx\leqslant 0. $$ So $u\equiv 0$. (ii) If $\Omega$ is strictly star-shaped, then $R=0$ in \eqref{poho2}. It follows that $$ 0=R\geqslant \rho\limsup_{n\to\infty}\limsup_{\varepsilon\to 0} \int_{\partial\Omega}\big(|\nabla w_n^\varepsilon|^2+\varepsilon\big)^{p(x) /2}\,dS . $$ Since $\rho>0$ we have $$ 0=\limsup_{n\to\infty}\limsup_{\varepsilon\to 0}\int_{\partial\Omega} \big(|\nabla w_n^\varepsilon|^2+\varepsilon\big)^{p(x) /2}\,dS . $$ Multiplying \eqref{Ene} by $v(x)\equiv 1$, integrating by parts, and taking $\limsup$ as $\varepsilon\to 0$ and $n\to \infty$ we obtain $$ \big|\int_\Omega |u|^{q(x)-2}u\,dx\big| \leqslant C\limsup_{n\to\infty}\limsup_{\varepsilon\to 0} \int_{\partial\Omega}\big(|\nabla w_n^\varepsilon|^2+\varepsilon\big)^{p(x) /2}\,dS=0, \quad C\geqslant 0. $$ Therefore, $\int_\Omega |u|^{q(x)-2}u\,dx=0$. \end{proof} \subsection*{Acknowledgements} The author appreciates the corrections, observations, and suggestions made by the anonymous referee of this paper. \begin{thebibliography}{99} \bibitem{A} Adams, R. A.; Fournier, J. J. F; \emph{Sobolev Spaces}, 2nd edition, Academic Press 2003. \bibitem{B} Brezis, H.; \emph{Analyse fonctional th\'eorie et applications}, Dunod, Paris, 1999. \bibitem{dhhr} Diening, L.; Harjulehto ,P.; H\"ast\"o, P.; Ru\v{z}i\v{c}ka, M.; \emph{Lebesgue and Sobolev Spaces with Variable Exponents,} Lecture Notes in Mathematics 2017, Springer-Verlag Berlin Heidelberg 2011. \bibitem{di} Dinca, G.; Isia, F.; \emph{Generalizad Pohozaev and Pucci-Serrin identities and nonexistence results for $p(x)$-laplacian type equations,} Rendiconti del circolo Matematico di Palermo 59, 1-46 (2010). \bibitem{f} Fan, X.; \emph{Global $C^{1,\alpha}$ regularity for variable exponent elliptic equations in divergence form,} Journal of Differential Equations 235 (2007) 397-417. \bibitem{fa} Fan, X.; Shen, J.; Zhao, D.; \emph{Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$.} J. Math. Anal. Appl. 262 (2001), 749-760. \bibitem{fzh} Fan, X.; Zhang, Q.-H.; \emph{Existence of solutions for p(x)-Laplacian Dirichlet problem,} Nonlinear Analysis 52 (2003), No. 8, 1843-1852. \bibitem{fz} Fan, X.; Zhao, D.; \emph{On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,} Journal of Mathematical Analysis and Applications 263, 424-446 (2001). \bibitem{ha} H\"{a}st\"{o}, Peter A.; \emph{The $p(x)$-Laplacian and applications}, Proceedings of the international conference on Geometric Function Theory, Special Functions and Applications (ICGFT) J. Analysis, Volume 15 (2007), 53-62. \bibitem{h} Hashimoto, T.; \emph{Pohozaev-type inequalities for weak solutions of elliptic equations,} Kyoto University Research Information Repository, 951, 1996, 126-135. \bibitem{ho} Hasimoto, T.; \^{O}tani, M.; \emph{Nonexistence of Weak Solutions of Nonlinear Elliptic Equations in Exterior Domains,} Houston Journal of Mathematics, Vol.23, No. 2, 1997, 267-290. \bibitem{ko} Kov\'{a}\v{c}ik, O.; R\'{a}kosnik, J.; \emph{On spaces $L^{p(x)}$ and $W^{1,p(x)}$.} Czech. Math. J. 41(1991), 592-618. \bibitem{kk} Kusraev, A. G.; Kutateladze, S. S.; \emph{Subdifferentials: Theory and Applications,} Kluwer Academic Publishers 1995. \bibitem{lin} Lindqvist, P.; \emph{Some remarkable sine and cosine functions,} Ricerche di Matematica Vol XLIV, fasc 2$^o$, (1995), 269-290. \bibitem{moss} Mizuta, Y.; Ohno, T.; Shimomura, T.; Shioji, N.; \emph{Compact Embeddings for Sobolev Spaces of variable Expopnent and existence of solutions for Nonlinear Elliptic Problems involving the p(x)-laplacian and its Critical Expopnent,} Annales Academiae Scienciarum Fennicae Mathematica Vol. 35, 2010, 115-130. \bibitem{o1} \^{O}tani, M.; \emph{Existence and Nonexistence of Nontrivial Solutions of Some Nonlinear Degenerate Elliptic Equations,} Journal of Functional Analysis, 76, 140-159 (1988). \bibitem{PER} Peral, I.; \emph{Multiplicity of solutions for the $p$-Laplacian,} International Center for Theoretical Physics Trieste, Second School of Nonlinear Functional Analysis and Applications to Differential Equations 21 April -9 May, 1997. \bibitem{ps} Pucci, P.; Serrin, J.; \emph{A General Variational Identity,} Indiana University Mathematics Journal, Vol. 35, No. 3 (1986), 681-703. \bibitem{gt} Gilbarg, D.; Trudinger, N. S.; \emph{Elliptic Partial Differential Equations of Second Order,} Springer-Verlag Berlin Heidelberg 2001. \end{thebibliography} \end{document}