\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 247, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/247\hfil Invariant regions and global solutions] {Invariant regions and global solutions for reaction-diffusion systems with a tridiagonal symmetric Toeplitz matrix of diffusion coefficients} \author[Salem Abdelmalek \hfil EJDE-2014/247\hfilneg] {Salem Abdelmalek} % in alphabetical order \address{Salem Abdelmalek \newline Department of Mathematics, College of Sciences, Yanbu, Taibah University, Saudi Arabia} \email{sallllm@gmail.com} \thanks{Submitted June 20, 2014. Published November 21, 2014.} \subjclass[2000]{35K45, 35K57} \keywords{Reaction-diffusion systems; invariant regions; global solution} \begin{abstract} In this article we construct the invariant regions for $m$-component reaction-diffusion systems with a tridiagonal symmetric Toeplitz matrix of diffusion coefficients and with nonhomogeneous boundary conditions. We establish the existence of global solutions, and use Lyapunov functional methods. The nonlinear reaction term is assumed to be of polynomial growth. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} In recent years, the existence of global solutions for nonlinear parabolic systems has received considerable attention. Among valuable works is the one by Morgan \cite{Morgan1}, where where all the components satisfy the same boundary conditions (Neumann or Dirichlet), and the reaction terms are polynomially bounded and satisfy certain inequalities. Hollis, later, completed the work of Morgan and established global existence in the presence of mixed boundary conditions subject to certain structure requirements of the system. In 2007, Abdelmalek and Kouachi \cite{Abdelmalek3} show that solutions of $m$-component reaction-diffusion systems with a diagonal diffusion matrix exist globally (for $m\geq2$) and reaction terms of polynomial growth. In the case of $2\times2$-systems, Haraux and Youkana \cite{Haraux} using a judicious Lyapunov functional, succeeded in considering sub-exponential non-linearities. Kouachi and Youkana \cite{Kouachi5} generalized the results of Haraux and Youkana \cite{Haraux} to the triangular case. Then, Kanel and Kirane \cite{kanel1,kanel2} proved the global existence for a full matrix of diffusion coefficients under certain restrictions. The results obtained in this work prove the existence of global solutions with nonhomogeneous Neumann, Dirichlet, or Robin conditions. The reaction terms are again assumed to be of polynomial growth and satisfy a mere single inequality. The diffusion matrix is a tri-diagonal symmetric Toeplitz matrix. In this article, we use the following notation and assumptions: we denote by $m\geq2$ the number of equations of the system (i.e. an $m$-component system): \begin{equation} \label{1.1} \begin{gathered} \frac{\partial u_{1}}{\partial t}-a\Delta u_{1}-b\Delta u_{2}=f_{1}(U) , \\ \frac{\partial u_{\ell}}{\partial t}-b\Delta u_{\ell-1}-a\Delta u_{\ell }-b\Delta u_{\ell+1}=f_{\ell}( U),\quad \ell=2,\dots,m-1,\\ \frac{\partial u_{m}}{\partial t}-b\Delta u_{m-1}-a\Delta u_{m}=f_{m}(U) , \end{gathered} \end{equation} with the boundary conditions \begin{equation} \alpha u_{\ell}+( 1-\alpha) \partial_{\eta}u_{\ell}=\beta_{\ell },\quad \ell=1,\dots,m,\text{ on }\partial\Omega\times\{ t>0\},\label{1.2} \end{equation} and the initial data \begin{equation} u_{\ell}(0,x)=u_{\ell}^{0}(x),\quad \ell=1,\dots,m,\text{ on } \Omega,\label{1.3} \end{equation} where \begin{itemize} \item[(i)] for nonhomogeneous Robin boundary conditions, we use $0<\alpha<1$, $\beta_{\ell}\in\mathbb{R}$, $\ell=1,\dots,m$; \item[(ii)] for homogeneous Neumann boundary conditions, we use $\alpha=\beta_{\ell}=0$, $\ell=1,\dots,m$; \item[(iii)] for homogeneous Dirichlet boundary conditions, we use $1-\alpha=\beta_{\ell}=0$, $\ell=1,\dots,m$. \end{itemize} Here $\Omega$ is an open bounded domain of class $C^{1}$ in $\mathbb{\mathbb{R}}^{n}$ with boundary $\partial\Omega$, $\frac{\partial}{\partial\eta}$ denotes the outward normal derivative on $\partial\Omega$, and $U=(u_{\ell}) _{\ell=1}^{m}$. The constants $a$ and $b$ are supposed to be strictly positive and satisfy the condition \begin{equation} 2b\cos\frac{\pi}{m+1}n/2$. Our aim is to construct polynomial Lyapunov functionals allowing us to obtain $L^{p}$-bounds on the components, which leads to global existence. Since the reaction terms are continuously differentiable on $\mathbb{R}_{+}^{m}$, it follows that for any initial data in $C(\overline{\Omega})$, it is easy to check directly their Lipschitz continuity on bounded subsets of the domain of a fractional power of the operator \begin{equation} \mathfrak{D}=-\begin{pmatrix} \lambda_{1}\Delta & 0 & \dots & 0\\ 0 & \lambda_{2}\Delta & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & \lambda_{m}\Delta \end{pmatrix} . \label{3.2} \end{equation} Under these assumptions, the local existence result is well known (see Friedman \cite{Friedman} and Pazy \cite{Pazy}). Assumption (A1) contains smoothness and quasi-positivity conditions that guarantee local existence and nonnegativity of solutions as long as they exist, via the maximum principle (see Smoller \cite{Smoller}). Assumption (A3) is the usual polynomial growth condition necessary to obtain uniform bounds from $p$-dependent $L^{P}$ estimates. (see\ Abdelmalek and Kouachi \cite{Abdelmalek3}, and Hollis and Morgan \cite{Hollis4}). \section{Some properties of the diffusion matrix} \begin{lemma} \label{lem1} Considering the reaction-diffusion system in \eqref{1.1}, the resulting $m\times m$ diffusion matrix is given by \begin{equation} A=\begin{pmatrix} a & b & 0 & \cdots & 0 & 0\\ b & a & b & \ddots & 0 & 0\\ 0 & b & a & \ddots & \vdots & \vdots\\ \vdots & \ddots & \ddots & \ddots & b & 0\\ 0 & \cdots & 0 & b & a & b\\ 0 & \cdots & 0 & 0 & b & a \end{pmatrix}. \label{2.1} \end{equation} This matrix is said to be positive definite if the condition in \eqref{1.4} is satisfied. \end{lemma} \begin{proof} The proof of this lemma can be found in \cite{Johnson}. Note that if the matrix is positive definite, it follows that $\det A>0$. \end{proof} \begin{lemma} \label{Lemma0} The eigenvalues $( \lambda_{\ell}<\lambda_{\ell-1};\text{ }\ell=2,\dots,m) $ of $A$ are positive and are given by \begin{equation} \lambda_{\ell}=a+2b\cos( \frac{\ell\pi}{m+1}) ,\label{2.2} \end{equation} with the corresponding eigenvectors \[ v_{\ell}=\big( \sin\frac{\ell\pi}{m+1},\sin\frac{2\ell\pi}{m+1} ,\dots,\sin\frac{m\ell\pi}{m+1}\Big) ^{t}, \] for $\ell=1,\dots,m$. Hence, we conclude that $A$ is diagonalizable. For simplicity, we write \begin{equation} \bar{\lambda}_{\ell}=\lambda_{m+1-\ell}=a+2b\cos( \frac{(m+1-\ell)\pi }{m+1}),\quad \ell=1,\dots,m;\label{2.3} \end{equation} thus $\bar{\lambda}_{\ell}<\bar{\lambda}_{\ell+1}$, $\ell=2,\dots,m$. \end{lemma} \begin{proof} Recall that the diffusion matrix is positive definite, hence its eigenvalues are necessarily positive. For an eigenpair $(\lambda,X) $, the components in $( A-\lambda I) X=0$ are \[ bx_{k-1}+( a-\lambda) x_{k}+bx_{k+1}=0,\quad k=1,\dots,m, \] with $x_{0}=x_{m+1}=0$, or equivalently, \[ x_{k+2}+( \frac{a-\lambda}{b}) x_{k+1}+x_{k}=0,\quad k=0,\dots,m-1. \] We seek solutions in the form $x_{k}=\xi r^{k}$ for constants $\xi$ and $r$. This leads to the quadratic equation \[ r^{2}+\big( \frac{a-\lambda}{b}\big) r+1=0, \] with roots $r_{1}$ and $r_{2}$. The general solution of $x_{k+2}+( \frac{a-\lambda}{b}) x_{k+1}+x_{k}=0$ is \[ x_{k}=\begin{cases} \alpha r_{1}^{k}+\beta r^{k}, & \text{if }r_{1}\neq r_{2},\\ \alpha\rho^{k}+\beta k\rho^{k}, & \text{if }r_{1}=r_{2}=\rho, \end{cases} \] where $\alpha$ and $\beta$ are arbitrary constants. For the eigenvalue problem at hand, $r_{1}$ and $r_{2}$ must be distinct -otherwise $x_{k}=\alpha\rho^{k}+\beta k\rho^{k}$, and $x_{0}=x_{m+1}=0$ implies that each $x_{k}=0$, which is impossible because $X$ is an eigenvector. Hence, $x_{k}=\alpha r_{1}^{k}+\beta r^{k}$, and $x_{0} =x_{m+1}=0$ yields \[ \left\{\begin{array}[c]{l} 0=\alpha+\beta\\ 0=\alpha r_{1}^{m+1}+\beta r_{2}^{m+1} \end{array} \right\} \Rightarrow( \frac{r_{1}}{r_{2}}) ^{m+1}=\frac{-\beta }{\alpha}=1\Rightarrow\frac{r_{1}}{r_{2}}=e^{\frac{2i\pi\ell}{m+1}}; \] therefore, $r_{1}=r_{2}e^{\frac{2i\pi\ell}{m+1}}$ for some $1\leq\ell\leq m$. This coupled with \[ r^{2}+( \frac{a-\lambda}{b}) r+1=( r-r_{1}) ( r-r_{2}) \Rightarrow\{ \begin{array}[c]{l} r_{1}r_{2}=1,\\ r_{1}+r_{2}=-( \frac{a-\lambda}{b}) , \end{array} \] leads to $r_{1}=e^{\frac{i\pi\ell}{m+1}}$, $r_{2}=e^{-\frac{i\pi\ell}{m+1}}$, and \[ \lambda=a+b\big( e^{\frac{i\pi\ell}{m+1}}+e^{-\frac{i\pi\ell}{m+1}}\big) =a+2b\cos( \frac{\ell\pi}{m+1}) \text{.} \] The eigenvalues of $A$ can, therefore, be given by \[ \lambda_{\ell}=a+2b\cos( \frac{\ell\pi}{m+1}) ,\text{ for } \ell=1,\dots,m. \] Since these $\lambda_{\ell}$'s are all distinct ($\cos\theta$ is a strictly decreasing function of $\theta$ on $( 0,\pi) $, and $b\neq0$), $A$ is necessarily diagonalizable. Finally, the $\ell^{th}$ component of any eigenvector associated with $\lambda_{\ell}$ satisfies $x_{k}=\alpha r_{1}^{k}+\beta r_{2}^{k}$ with $\alpha+\beta=0$, thus \[ x_{k}=\alpha\big( e^{\frac{2i\pi k}{m+1}}-e^{-\frac{2i\pi k}{m+1}}\big) =2i\alpha\sin\big( \frac{k}{m+1}\pi\big) . \] Setting $\alpha=1/(2i)$ yields a particular eigenvector associated with $\lambda_{\ell}$ given by \[ v_{\ell}=\Big( \sin( \frac{1\ell\pi}{m+1}) ,\sin( \frac{2\ell\pi}{m+1}) ,\dots,\sin( \frac{m\ell\pi}{m+1}) \Big) ^{t}. \] Because the $\lambda_{\ell}$'s are distinct, $\{ v_{1},v_{2} ,\dots,v_{m}\} $, is a complete linearly independent set, so $(v_{1} | v_{2}|\dots| v_{m}) $ is the diagonal form of $A$. Now, let us prove that \[ \lambda_{\ell}<\lambda_{\ell-1},\text{ }\ell=2,\dots,m. \] We have $\ell>\ell-1$, whereupon \[ \frac{\ell\pi}{m+1}>\frac{( \ell-1) \pi}{m+1}, \] The function $\cos\theta$ is strictly decreasing in $\theta$ on $( 0,\pi) $, thus we have \[ \cos\big( \frac{\ell\pi}{m+1}\big) <\cos\big( \frac{( \ell-1) \pi}{m+1}\big) . \] Finally, multiplying both sides of the inequality by $2b$ and adding $a$ yields \[ \lambda_{\ell}=a+2b\cos\big( \frac{\ell\pi}{m+1}\big) 0\} , \label{5.2} \end{gather} where the reaction term $F_{\ell}$, and $w_{\ell}$ are given in \eqref{1.7} and \eqref{1.8}, respectively. \end{proposition} Note that condition \eqref{1.4} guarantees the parabolicity of the proposed reaction-diffusion system in \eqref{1.1}--\eqref{1.3}, which implies it is equivalent to \eqref{5.1}--\eqref{5.2} in the region \[ \Sigma_{\mathfrak{L},\emptyset}=\big\{ ( u_{1}^{0},\dots,u_{m} ^{0}) \in\mathbb{R}^{m}:w_{\ell}^{0}=\sum_{k=1}^{m}u_{k}^{0}\sin\frac{( m+1-\ell) k\pi}{m+1}\geq0,\text{ }\ell\in\mathfrak{L}\} \] with \[ \rho_{\ell}^{0}=\sum_{k=1}^{m}\beta_{k}\sin\frac{( m+1-\ell) k\pi}{m+1}\geq0,\quad \ell\in\mathfrak{L}. \] This implies that the components $w_{\ell}$ are necessarily positive. \begin{proposition} \label{prop2} System \eqref{5.1}--\eqref{5.2} admits a unique classical solution $(w_{1},w_{2},\\ \dots,w_{m})$ on $(0,T_{\rm max})\times\Omega$. \begin{equation} \text{If $T_{\rm max}<\infty$ then }\lim_{t\nearrow T_{\rm max}} \sum_{\ell=1}^m \| w_{\ell}( t,.) \| _{\infty}=\infty, \label{3.3} \end{equation} where $T_{\rm max}$ $( \| w_{1}^{0}\| _{\infty },\| w_{2}^{0}\| _{\infty},\dots,\| w_{m} ^{0}\| _{\infty}) $ denotes the eventual blow-up time. \end{proposition} Before we present the main result of this paper, let us define \begin{equation} K_{l}^{r}=K_{r-1}^{r-1}\times K_{l}^{r-1}-[ H_{l}^{r-1}] ^{2},\quad r=3,\dots,l, \label{mycond} \end{equation} where \begin{gather*} H_{l}^{r}=\underset{1\leq\ell,\kappa\leq l}{\det}\Big( ( a_{\ell,\kappa}) _{\substack{\ell\neq l,\dots r+1\\ \kappa\neq l-1,\dots,r}}\Big) \prod_{k=1}^{k=r-2} \big( \det[ k] \big) ^{2^{( r-k-2) }},\quad r=3,\dots,l-1, \\ K_{l}^{2}=\underset{\text{positive value}}{\underbrace{\bar{\lambda}_{1} \bar{\lambda}_{l} \prod^{l-1}_{k=1} \theta_{k}^{2(p_{k}+1) ^{2}} \prod^{m-1}_{k=l} \theta_{k}^{2( p_{k}+2) ^{2}}}} \Big[ \prod^{l-1}_{k=1} \theta_{k}^{2}-A_{1l}^{2}\Big] , \\ H_{l}^{2}=\underset{\text{positive value}}{\underbrace{\bar{\lambda}_{1} \sqrt{\bar{\lambda}_{2}\bar{\lambda}_{l}}\theta_{1}^{2( p_{1}+1) ^{2}} \prod^{l-1}_{k=2} \theta_{k}^{( p_{k}+2) ^{2}+( p_{k}+1) ^{2}}\prod^{m-1}_{k=l} \theta _{k}^{2( p_{k}+2) ^{2}}}}\big[ \theta_{1}^{2}A_{2l} -A_{12}A_{1l}\big] . \end{gather*} The expression $\underset{1\leq\ell,\kappa\leq l}{\det}( ( a_{\ell,\kappa }) _{\substack{\ell\neq l,\dots r+1\\ \kappa\neq l-1,\dots r}}) $ denotes the determinant of $r$ square symmetric matrix obtained from $(a_{\ell,\kappa}) _{1\leq\ell,\kappa\leq m}$ by removing the $(r+1) ^{\text{th}},(r+2) ^{\text{th}},\dots,l^{\text{th}}$ rows and the $r^{\text{th}},( r+1) ^{\text{th}},\dots,( l-1) ^{\text{th}}$ columns. where $\det[1] ,\dots,\det [ m] $ \ are the minors of the matrix $( a_{\ell,\kappa }) _{1\leq\ell,\kappa\leq m}$. The elements of the matrix are: \begin{equation} a_{\ell\kappa}=\frac{\bar{\lambda}_{\ell}+\bar{\lambda}_{\kappa}}{2}\theta _{1}^{p_{1}^{2}}\dots\theta_{( \ell-1) }^{p_{( \ell-1) }^{2}}\theta_{\ell}^{( p_{\ell}+1) ^{2}}\dots\theta_{\kappa -1}^{( p_{( \kappa-1) }+1) ^{2}}\theta_{\kappa }^{( p_{\kappa}+2) ^{2}}\dots\theta_{( m-1) }^{( p_{( m-1) }+2) ^{2}}. \label{1.13} \end{equation} where $\bar{\lambda}_{\ell}$ in \eqref{2.2}--\eqref{2.3}. Note that $A_{\ell\kappa}=\frac{\bar{\lambda}_{\ell}+\bar{\lambda}_{\kappa}} {2\sqrt{\bar{\lambda}_{\ell}\bar{\lambda}_{\kappa}}}$ for all $\ell ,\kappa=1,\dots,m$. and $\theta_{\ell};\ell=1,\dots,( m-1) $ are positive constants. \begin{theorem}\label{thm1} Suppose that the functions $F_{\ell}$, $\ell=1,\dots,m$, are of polynomial growth and satisfy condition \eqref{1.11} for some positive constants $D_{\ell}$, $\ell=1,\dots,m$, sufficiently large. Let $(w_{1}(t,\cdot),w_{2}(t,\cdot) ,\dots,w_{m}(t,\cdot))$ be the solution of \eqref{5.1}--\eqref{5.2} and \begin{equation} L(t)=\int_{\Omega}H_{p_{m}}( w_{1}( t,x) ,w_{2}( t,x) ,\dots,w_{m}( t,x) ) dx, \label{5.3} \end{equation} where \begin{align*} &H_{p_{m}}( w_{1},\dots,w_{m})\\ &=\sum^{p_{m}}_{p_{m-1}=0} \dots \sum^{p_{2}}_{p_{1}=0} C_{p_{m}}^{p_{m-1} }\dots C_{p_{2}}^{p_{1}}\theta_{1}^{p_{1}^{2}}\dots\theta_{( m-1) }^{p_{( m-1) }^{2}}w_{1}^{p_{1}}w_{2}^{p_{2}-p_{1}} \dots w_{m}^{p_{m}-p_{m-1}}, \end{align*} with $p_{m}$ a positive integer and $C_{p_{\kappa}}^{p_{\ell}}=\frac{p_{\kappa}!}{p_{\ell}!( p_{\kappa}-p_{\ell})!}$. Also suppose that the following condition is satisfied \begin{equation} K_{l}^{l}>0;\quad l=2,\dots,m, \label{1.12} \end{equation} where $K_{l}^{l}$ was defined in \eqref{mycond}. Then, the functional $L$ is uniformly bounded on the interval $[ 0,T^{\ast}] ,T^{\ast}\frac{Nn}{2}$. \end{proposition} \section{Proofs of main results} For the proof of Theorem \ref{thm1}, we first need to define some preparatory Lemmas. \begin{lemma}\label{Lemma1} With\ $H_{p_{m}}$ being the homogeneous polynomial defined by \eqref{5.3}, differentiating in $w_{1}$ yields \begin{equation} \begin{aligned} \partial_{w_{1}}H_{p_{m}} & =p_{m}\sum^{p_{m}-1}_{p_{m-1}=0} \dots \sum^{p_{2}}_{p_{1}=0} C_{p_{m}-1}^{p_{m-1}}\dots C_{p_{2}}^{p_{1}}\theta_{1}^{( p_{1}+1) ^{2}}\dots\theta _{( m-1) }^{( p_{( m-1) }+1) ^{2}} \\ &\quad\times w_{1}^{p_{1}}w_{2}^{p_{2}-p_{1}}w_{3}^{p_{3}-p_{2}}\dots w_{m}^{( p_{m}-1) -p_{m-1}}\,. \end{aligned}\label{5.4} \end{equation} Similarly for $\ell=2,\dots,m-1$, we have \begin{equation} \begin{aligned} \partial_{w_{\ell}}H_{p_{m}} & =p_{m}\sum^{p_{m}-1}_{p_{m-1}=0} \dots \sum^{p_{2}}_{p_{1}=0} C_{p_{m}-1}^{p_{m-1}}\dots C_{p_{2}}^{p_{1}}\theta_{1}^{p_{1}^{2}}\dots\theta_{\ell-1}^{p_{( \ell-1) }^{2}}\theta_{\ell}^{( p_{\ell}+1) 2} \dots\theta_{( m-1) }^{( p_{( m-1) }+1)^{2}} \\ &\quad\times w_{1}^{p_{1}}w_{2}^{p_{2}-p_{1}}w_{3}^{p_{3}-p_{2}}\dots w_{m}^{( p_{m}-1) -p_{m-1}}. \label{5.5} \end{aligned} \end{equation} Finally, differentiating in $w_{m}$ yields \begin{equation} \begin{aligned} \partial_{w_{m}}H_{p_{m}} & =p_{m}\sum^{p_{m}-1}_{p_{m-1}=0} \dots \sum^{p_{2}}_{p_{1}=0} C_{p_{m}-1}^{p_{m-1}}\dots C_{p_{3}}^{p_{2}}C_{p_{2}}^{p_{1}}\theta_{1}^{p_{1}^{2}}\theta_{2} ^{p_{2}^{2}}\dots\theta_{( m-1) }^{p_{( m-1) }^{2}} \\ &\quad\times w_{1}^{p_{1}}w_{2}^{p_{2}-p_{1}}w_{3}^{p_{3}-p_{2}}\dots w_{m}^{( p_{m}-1) -p_{m-1}}. \end{aligned} \label{5.6} \end{equation} \end{lemma} \begin{lemma} \label{Lemma2} The second partial derivative of $H_{p_{m}}$ in $w_{1}$ is \begin{equation} \begin{aligned} \partial_{w_{1}^{2}}H_{n} & =p_{m}( p_{m}-1) \sum^{p_{m}-2}_{p_{m-1}=0} \dots \sum^{p_{3}}_{p_{2}=0} \sum^{p_{2}}_{p_{1}=0} C_{p_{m}-2}^{p_{m-1}}\dots C_{p_{2} }^{p_{1}} \\ &\times \theta_{1}^{( p_{1}+2) ^{2}}\dots\theta_{( m-1) }^{( p_{( m-1) }+2) ^{2}}w_{1}^{p_{1}}w_{2} ^{p_{2}-p_{1}}\dots w_{m}^{( p_{m}-2) -p_{m-1}}. \end{aligned} \label{5.7} \end{equation} Similarly, we obtain \begin{equation} \begin{aligned} \partial_{w_{\ell}^{2}}H_{n} & =p_{m}( p_{m}-1) \sum^{p_{m}-2}_{p_{m-1}=0} \dots \sum^{p_{2}}_{p_{1}=0} C_{p_{m}-2}^{p_{m-1}}\dots C_{p_{2}}^{p_{1}} \\ &\quad \times \theta_{1}^{p_{1}^{2}}\theta_{2}^{p_{2}^{2}}\dots\theta_{\ell-1}^{p_{\ell -1}^{2}}\theta_{\ell}^{( p_{\ell}+2) ^{2}}\dots\theta_{( m-1) }^{( p_{( m-1) }+2) ^{2}} w_{1}^{p_{1}}w_{2}^{p_{2}-p_{1}}\dots w_{m}^{( p_{m}-2) -p_{m-1}}. \end{aligned} \label{5.8} \end{equation} for all\ $\ell=2,\dots,m-1$, \begin{equation} \begin{aligned} \partial_{w_{\ell}w_{\kappa}}H_{n} & =p_{m}( p_{m}-1) \sum^{p_{m}-2}_{p_{m-1}=0} \dots \sum^{p_{2}}_{p_{1}=0} C_{p_{m}-2}^{p_{m-1}}\dots C_{p_{2}}^{p_{1}} \\ &\quad\times \theta_{1}^{p_{1}^{2}}\dots\theta_{\ell-1}^{p_{\ell-1}^{2}}\theta_{\ell }^{( p_{\ell}+1) ^{2}}\dots\theta_{\kappa-1}^{( p_{\kappa -1}+1) ^{2}}\theta_{\kappa}^{( p_{\kappa}+2) ^{2} }\dots\theta_{( m-1) }^{( p_{( m-1) }+2) ^{2}} \\ &\quad\times w_{1}^{p_{1}}w_{2}^{p_{2}-p_{1}}\dots w_{m}^{( p_{m}-2) -p_{m-1}} \end{aligned}\label{5.9} \end{equation} for all $1\leq\ell<\kappa\leq m$. Finally, the second derivative in $w_{m}$ is \begin{equation} \begin{aligned} \partial_{w_{m}^{2}}H_{n} & =p_{m}( p_{m}-1) \sum^{p_{m}-2}_{p_{m-1}=0} \dots \sum^{p_{2}}_{p_{1}=0} C_{p_{m}-2}^{p_{m-1}}\dots C_{p_{2}}^{p_{1}}\theta_{1}^{p_{1}^{2}} \dots\theta_{( m-1) }^{p_{( m-1) }^{2}} \\ & w_{1}^{p_{1}}w_{2}^{p_{2}-p_{1}}\dots w_{m}^{( p_{m}-2) -p_{m-1}}. \end{aligned}\label{5.10} \end{equation} \end{lemma} \begin{lemma}[\cite{Abdelmalek3}] \label{Lemma3} Let $A$ be the $m$-square symmetric matrix defined by $A=( a_{\ell\kappa})$, with $1\leq\ell,\kappa\leq m$, then \begin{equation} \begin{gathered} K_{m}^{m}=\det[m] \prod^{k=m-2}_{k=1} (\det[ k] ) ^{2^{( m-k-2) }},\quad m>2,\\ K_{2}^{2}=\det[2] , \end{gathered} \label{5.11} \end{equation} where \begin{gather*} K_{m}^{l} =K_{l-1}^{l-1}K_{m}^{l-1}-( H_{m}^{l-1}) ^{2},\quad l=3,\dots,m,\\ H_{m}^{l} =\underset{1\leq\ell,\kappa\leq m}{\det} \Big( (a_{\ell,\kappa}) _{\substack{\ell\neq m,\dots l+1\\\kappa\neq m-1,\dots l}}\Big) \prod^{k=l-2}_{k=1} \Big( \det[ k] \Big) ^{2^{( l-k-2) }},\quad l=3,\dots,m-1,\\ K_{m}^{2} =a_{11}a_{mm}-( a_{1m}) ^{2},\text{ }H_{m} ^{2}=a_{11}a_{2m}-a_{12}a_{1m}. \end{gather*} \end{lemma} \begin{proof}[Proof of Theorem \ref{thm1}] The aim is to prove that $L(t)$ is uniformly bounded on the interval $[ 0,T^{\ast}] ,T^{\ast}0 \] is trivial for $p_{1}=0,\dots,p_{2}$, $p_{2}=0,\dots,p_{3}$ \dots $p_{m-1} =0,\dots,p_{m}-2$. For the second minor $\det[ 2] $,\ according to Lemma \ref{Lemma3}, we obtain \[ \det[ 2] =K_{2}^{2}=\lambda_{1}\lambda_{2}\theta_{1}^{2( p_{1}+1) ^{2}}\overset{m-1}{\underset{k=2}{\Pi}}\theta_{k}^{2( p_{k}+2) ^{2}}[ \theta_{1}^{2}-A_{12}^{2}] . \] Using \eqref{1.12}\ for $l=2$\ we get $\det[ 2] >0$. Similarly, for the third minor $\det[3] $, and again using Lemma \ref{Lemma3}, we have \[ K_{3}^{3}=\det[ 3] \det[ 1] . \] Since $\det[ 1] >0$, we conclude that \[ \operatorname*{sign}(K_{3}^{3})=\operatorname*{sign}(\det[ 3] ). \] Again, using \eqref{1.12}\ for $l=3$, we obtain $\det[3] >0$. To conclude the proof, let us suppose $\det[ k] >0$ for $k=1,2,\dots,l-1$ and show that $\det[l]$ is necessarily positive. We have \begin{equation} \det[ k] >0,\;k=1,\dots,( l-1) ,\Rightarrow \prod^{k=l-2}_{k=1} ( \det[ k] ) ^{2^{( l-k-2) }}>0. \label{5.20} \end{equation} From Lemma \ref{Lemma3}, we obtain \[ K_{l}^{l}=\det[ l] \prod^{k=l-2}_{k=1} ( \det[ k] ) ^{2^{( l-k-2) }}, \] and from \eqref{5.20}, we obtain $\operatorname*{sign}(K_{l}^{l})=\operatorname*{sign}( \det[ l] )$. Since $K_{l}^{l}>0$ according to \eqref{1.12} then $\det[ l] >0$ and the proof of \eqref{5.17} is finished. It follows from \eqref{5.16} and \eqref{5.17} that $I$ is bounded. Now, let us prove that $J$ in \eqref{5.12} is bounded. Substituting the expressions of the partial derivatives given by \ref{Lemma1} in the second integral of \eqref{5.12} yields \begin{align*} J & =\int_{\Omega} \Big[ p_{m}\sum^{p_{m}-1}_{p_{m-1}=0} \dots\sum^{p_{2}}_{p_{1}=0} C_{p_{m}-1}^{p_{m-1}}\dots C_{p_{2} }^{p_{1}}w_{1}^{p_{1}}w_{2}^{p_{2}-p_{1}}\dots w_{m}^{p_{m}-1-p_{m-1}}\Big] \\ &\quad \times \Big( \prod^{m-1}_{\ell=1}\theta_{\ell}^{( p_{\ell}+1) ^{2}}F_{1}+\sum^{m-1}_{\kappa=2} \prod^{\kappa-1}_{k=1}\theta_{k}^{p_{k}^{2}} \prod^{m-1}_{\ell=\kappa} \theta_{\ell}^{( p_{\ell}+1) ^{2}}F_{\kappa}+\prod^{m-1}_{\ell=1}\theta_{\ell}^{p_{\ell }^{2}}F_{m}\Big) dx\\ & =\int_{\Omega}\Big[ p_{m}\sum^{p_{m}-1}_{p_{m-1}=0} \dots\sum^{p_{2}}_{p_{1}=0} C_{p_{m}-1}^{p_{m-1}}\dots C_{p_{2} }^{p_{1}}w_{1}^{p_{1}}w_{2}^{p_{2}-p_{1}}\dots w_{m}^{p_{m}-1-p_{m-1}}\Big] \\ & \quad\times \Big( \frac{\prod^{m-1}_{\ell=1}\theta_{\ell}^{( p_{\ell}+1) ^{2}}}{\prod^{m-1}_{\ell=1}\theta_{\ell }^{p_{\ell}^{2}}}F_{1}+\sum^{m-1}_{\kappa=2} \frac {\prod^{\kappa-1}_{k=1}\theta_{k}^{p_{k}^{2}} \prod^{m-1}_{\ell=\kappa} \theta_{\ell}^{( p_{\ell}+1) ^{2}}}{\prod^{m-1}_{\ell=1}\theta_{\ell}^{p_{\ell}^{2}} }F_{\kappa}+F_{m}\Big) \prod^{m-1}_{\ell=1}\theta_{\ell}^{p_{\ell}^{2}}dx\\ & =\int_{\Omega}\Big[ p_{m}\overset{p_{m}-1}{\underset{p_{m-1}=0}{\sum} }\dots\sum^{p_{2}}_{p_{1}=0} C_{p_{m}-1}^{p_{m-1}}\dots C_{p_{2} }^{p_{1}}w_{1}^{p_{1}}w_{2}^{p_{2}-p_{1}}\dots w_{m}^{p_{m}-1-p_{m-1}}\Big] \\ &\quad\times\Big( \prod^{m-1}_{\ell=1}\frac{\theta_{\ell}^{( p_{\ell}+1) ^{2}}}{\theta_{\ell}^{p_{\ell}^{2}}}F_{1} +\sum^{m-1}_{\kappa=2} \prod^{\kappa-1}_{k=1}\theta_{k}^{p_{k}^{2}} \prod^{m-1}_{\ell=\kappa} \frac{\theta_{\ell}^{( p_{\ell}+1) ^{2}}}{\theta_{\ell} ^{p_{\ell}^{2}}}F_{\kappa}+F_{m}\Big) \prod^{m-1}_{\ell=1} \theta_{\ell}^{p_{\ell}^{2}}dx. \end{align*} Hence, using condition \eqref{1.11}, we deduce that \[ J\leq C_{5}\int_{\Omega}\Big[ \sum^{p_{m}-1}_{p_{m-1}=0} \dots \sum^{p_{2}}_{p_{1}=0} C_{p_{2}}^{p_{1}}\dots C_{p_{m} -1}^{p_{m-1}}w_{1}^{p_{1}}w_{2}^{p_{2}-p_{1}}\dots w_{m}^{p_{m}-1-p_{m-1}}( 1+\sum_{\ell=1}^m w_{\ell}) \Big] dx. \] To prove that the functional $L$ is uniformly bounded on the interval $[0,T^{\ast}] $, let us first write \begin{align*} & \sum^{p_{m}-1}_{p_{m-1}=0}\dots \sum^{p_{2}}_{p_{1}=0} C_{p_{2}}^{p_{1}}\dots C_{p_{m}-1}^{p_{m-1}} w_{1}^{p_{1}}w_{2}^{p_{2}-p_{1}}\dots w_{m}^{p_{m}-1-p_{m-1}} \Big(1+\sum_{\ell=1}^m w_{\ell}\Big) \\ & =R_{p_{m}}( W) +S_{p_{m}-1}( W) , \end{align*} where $R_{p_{m}}( W) $ and $S_{p_{m}-1}( W) $ are two homogeneous polynomials of degrees $p_{m}$ and $p_{m}-1$, respectively. Since all of the polynomials $H_{p_{m}}$ and $R_{p_{m}}$ are of degree $p_{m}$, there exists a positive constant $C_{6}$ such that \begin{equation} \int_{\Omega}R_{p_{m}}( W) dx\leq C_{6}\int_{\Omega}H_{p_{m}}( W) dx. \label{5.21} \end{equation} Applying H\"{o}lder's inequality to the following integral one obtains \[ \int_{\Omega}S_{p_{m}-1}( W) dx\leq( \operatorname{meas}\Omega) ^{\frac{1}{p_{m}}}\Big( \int_{\Omega}( S_{p_{m}-1}( W) ) ^{\frac{p_{m}}{p_{m}-1}}dx\Big) ^{\frac{p_{m}-1}{p_{m}}}. \] Since for all $w_{1},w_{2,\dots},w_{m-1}\geq0$ and $w_{m}>0$, \[ \frac{( S_{p_{m}-1}( W) ) ^{\frac{p_{m}}{p_{m}-1}} }{H_{p_{m}}( W) }=\frac{( S_{p_{m}-1}( x_{1} ,x_{2},\dots,x_{m-1},1) ) ^{\frac{p_{m}}{p_{m}-1}}}{H_{p_{m} }( x_{1},x_{2},\dots,x_{m-1},1) }, \] where for all $\ell\in\{1,2,\dots,m-1\} $, $x_{\ell}=\frac{w_{\ell }}{w_{\ell+1}}$ and \[ \lim_{x_{\ell}\to+\infty} \frac{( S_{p_{m}-1}( x_{1},x_{2},\dots,x_{m-1},1) ) ^{\frac{p_{m}}{p_{m}-1}}}{H_{p_{m} }( x_{1},x_{2},\dots,x_{m-1},1) }<+\infty, \] one asserts that there exists a positive constant $C_{7}$ such that \begin{equation} \frac{( S_{p_{m}-1}( W) ) ^{\frac{p_{m}}{p_{m}-1}} }{H_{p_{m}}( W) }\leq C_{7},\quad \text{for all }w_{1},w_{2} ,\dots,w_{m}\geq0. \label{5.22} \end{equation} Hence, the functional $L$ satisfies the differential inequality \[ L'( t) \leq C_{6}L( t) +C_{8}L^{\frac{p_{m}-1}{p_{m}}}( t) , \] which for $Z=L^{\frac{1}{p_{m}}}$ can be written as \begin{equation} p_{m}Z'\leq C_{6}Z+C_{8}. \label{5.23} \end{equation} A simple integration gives the uniform bound of the functional $L$ on the interval $[ 0,T^{\ast}]$. This completes the proof. \end{proof} \begin{proof}[Proof of Corollary \ref{coro1}] The proof of is an immediate consequence of Theorem \ref{thm1} and the inequality \begin{equation} \int_{\Omega}\Big( \sum_{\ell=1}^m w_{\ell}( t,x) \Big) ^{p}dx\leq C_{9}L( t) \quad \text{on }[0,T^{\ast}] . \label{5.24} \end{equation} for some $p\geq1$. \end{proof} \begin{proof}[Proof of Proposition \ref{prop2}] From Corollary \ref{coro1}, there exists a positive constant $C_{10}$ such that \begin{equation} \int_{\Omega}\Big( \sum_{\ell=1}^m w_{\ell}( t,x) +1\Big) ^{p}dx\leq C_{10}\quad \text{on }[ 0,T_{\rm max}). \label{5.25} \end{equation} From \eqref{1.10}, we have that for all $\ell \in\{ 1,2,\dots,m\}$, \begin{equation} | F_{\ell}( W) | ^{\frac{p}{N}} \leq C_{11}( W) \Big( \sum_{\ell=1}^m W_{\ell }( t,x) \Big) ^{p}\quad \text{on }[ 0,T_{\rm max})\times\Omega. \label{5.26} \end{equation} Since $w_{1},w_{2},\dots,w_{m}$ are in $L^{\infty}( 0,T^{\ast} ;L^{p}( \Omega) ) $ and $\frac{p}{N}>\frac{n}{2}$, the solution is global. \end{proof} \section{Final remarks} Recall that the eigenvectors of the diffusion matrix associated with the eigenvalue $\overline{\lambda}_{\ell}$ is defined as $\overline{v}_{\ell}=( \overline{v}_{\ell 1},\overline{v}_{\ell2}, \dots,\overline{v}_{\ell m}) ^{t}$. It is important to note that if $\overline{v}_{\ell}$ is an eigenvector then so is $(-1)\overline{v}_{\ell}$. In the region considered in previous sections, we only used the positive $\overline{v}_{\ell}$. The remainder of the $2^{m}$ regions can be formed using negative versions of the eigenvectors. In each region, the reaction-diffusion system with a diagonalized diffusion matrix is formed by multiplying each of the $m$ equations in \eqref{1.1} by the corresponding element of either $\overline {v}_{\ell}$ or $(-1)\overline{v}_{\ell}$ and then adding the $m$ equations together. The equations multiplied by elements of $\overline{v}_{\ell}$ form a set $\mathfrak{L}$, whereas the equations multiplied by elements of $(-1)\overline{v}_{\ell}$ form a set $\mathfrak{Z}$. Hence, we can define the region in the form \begin{align*} \Sigma_{\mathfrak{L},\mathfrak{Z}} =\Big\{& ( u_{1}^{0},u_{2} ^{0},\dots,u_{m}^{0}) \in\mathbb{R}^{m}: w_{\ell}^{0}=\sum_{k=1}^{m}u_{k}^{0}\overline{v}_{\ell k}\geq0,\\ &\ell \in\mathfrak{L}, \; w_{z}^{0}=( -1) \sum_{k=1}^{m}u_{k}^{0}\overline{v}_{zk} \geq0,\; z\in\mathfrak{Z} \Big\} \end{align*} with \begin{gather*} \rho_{\ell}^{0}=\sum_{k=1}^{m}\beta_{k}v_{( m+1-\ell) k}\geq0, \quad \ell\in\mathfrak{L,}\\ \rho_{\ell}^{0}=( -1) \sum_{k=1}^{m}\beta_{k}v_{(m+1-z) k}\geq0, \quad z\in\mathfrak{Z}. \end{gather*} Using Lemma \ref{Lemma0} we obtain \begin{align*} \Sigma_{\mathfrak{L},\mathfrak{Z}} =\Big\{& ( u_{1}^{0},u_{2}^{0},\dots,u_{m}^{0}) \in \mathbb{R}^{m}: w_{\ell}^{0}=\sum_{k=1}^{m}u_{k}^{0}\sin\frac{( m+1-\ell) k\pi }{m+1}\geq0,\\ &\ell\in\mathfrak{L}, \; w_{z}^{0}=(-1) \sum_{k=1}^{m}u_{k}^{0}\sin\frac{(m+1-z) k\pi}{m+1}\geq0,\; z\in\mathfrak{Z}\Big\}, \end{align*} with \begin{gather*} \rho_{\ell}^{0}=\sum_{k=1}^{m}\beta_{k}\sin\frac{( m+1-\ell) k\pi}{m+1}\geq0, \quad \ell\in\mathfrak{L}\\ \rho_{z}^{0}=(-1) \sum_{k=1}^{m}\beta_{k}\sin\frac{( m+1-z) k\pi}{m+1}\geq0, \quad z\in\mathfrak{Z}, \\ \mathfrak{L}\cap\mathfrak{Z}=\emptyset,\quad \mathfrak{L}\cup \mathfrak{Z}=\{ 1,2,\dots,m\}. \end{gather*} \subsection*{Acknowledgements} The author wants to thank Prof. M. Kirane and the anonymous referee for their suggestions that improved the quality of this article. \begin{thebibliography}{99} \bibitem{Abdelmalek3} S. Abdelmalek, S. Kouachi; \emph{Proof of existence of global solutions for m-component reaction-diffusion systems with mixed boundary conditions via the Lyapunov functional method}, Journal of Physics A, (2007) vol. 40, 12335-12350. \bibitem{Friedman} A. Friedman; \emph{Partial Differential Equations of Parabolic Type}, Prentice Hall Englewood Chiffs. N. J. 1964. \bibitem{Haraux} A. Haraux, A. Youkana; \emph{On a Result of K. Masuda Concerning Reaction-Diffusion Equations}, T\^{o}hoku. Math. J. 40 (1988), pp. 159-163. \bibitem{Henry} D. Henry; \emph{Geometric Theory of Semi-linear Parabolic Equations}, Lecture Notes in Mathematics 840, Springer-Verlag, New-York, 1984. \bibitem{Hollis3} S. L. Hollis, J. J. Morgan; \emph{On the Blow-up of Solutions to some Semilinear and Quasilinear Reaction-diffusion Systems}, Rocky Moutain J. Math. vol 14. (1994), 1447-1465. \bibitem{Hollis4} S. L. Hollis, J. J. Morgan; \emph{Partly dissipative reaction-di usion systems and a model of phosphorus diffusion in silicon}, Nonlinear Anal. T. M. A., 19 (1992), 427-440. \bibitem{Johnson} C. R. Johnson, M. Neumann, M. J. Tsatsomeros; \emph{Conditions for the positivity of determinants}, Linear and Multilinear Algebra, (1996), Vol 40, 241-248. \bibitem{kanel1} J. I. Kanel, M. Kirane; \emph{Pointwise a priori bounds for a strongly coupled system of reaction-diffusion equations with a balance law}, Math. Methods Appl. Sci. 21 (1998), No. 13, 1227--1232. \bibitem{kanel2} J. I. Kanel, M. Kirane, N.-E. Tatar; \emph{Pointwise a priori bounds for a strongly coupled system of reaction-diffusion equations}, Int. J. Differ. Equ. Appl. 1 (2000), No. 1, 77--97. \bibitem{Kouachi5} S. Kouachi, A. Youkana; \emph{Global existence for a class of reaction-diffusion systems}, Bulletin of the Polish Academy of Sciences, Vol. 49, Number 3, (2001). \bibitem{Masuda} K. Masuda; \emph{On the Global Existence and Asymptotic Behavior of Solutions of Reaction-Diffusion Equations}, Hokkaido. Math. J. 12 (1983), pp. 360-370. \bibitem{Morgan1} J. Morgan; \emph{Global Existence for Semilinear Parabolic Systems}, SIAM J. Math. Anal. 20, 1128-1144 (1989). \bibitem{Pazy} A. Pazy; \emph{Semigroups of Linear Operators and Applications to Partial Differential Equations}, Applied Math. Sciences 44, Springer-Verlag, New York (1983). \bibitem{Rothe} F. Rothe; \emph{Global Solutions of Reaction-Diffusion Systems}, Lecture Notes in Math. 1072, Springer-Verlag, Berlin (1984). \bibitem{Smoller} J. Smoller; \emph{Shock Waves and Reaction-Diffusion Equations}, Springer-Verlag, New York (1983). \end{thebibliography} \end{document}