\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 28, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/28\hfil Existence of solutions] {Existence of solutions for cross critical exponential $N$-Laplacian systems} \author[X. Wang \hfil EJDE-2014/28\hfilneg] {Xiaozhi Wang} \address{Xiaozhi Wang \newline College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China} \email{yuanshenran@yeah.net} \thanks{Submitted October 26, 2013. Published January 15, 2014.} \subjclass[2000]{35J50, 35B33} \keywords{$N$-Laplacian system; critical exponential growth; \hfill\break\indent Ekeland variational principle} \begin{abstract} In this article we consider cross critical exponential $N$-Laplacian systems. Using an energy estimate on a bounded set and the Ekeland variational principle, we prove the existence of a nontrivial weak solution, for a parameter large enough. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction} Let $\Omega$ be a bounded smooth domain in $\mathbb{R}^{N}$ and $N\geq2$. Firstly we consider the problem \begin{equation} \label{eP1} \begin{gathered} \begin{aligned} -\Delta_{N}u &=au|u|^{N-2}+bu|u|^{\frac{N-4}{2}}|v|^{N/2} +du(N|u|^{N-2}\\ &\quad +\frac{\alpha_{0}N}{N-1}|u|^{\frac{N^2-2N+2}{N-1}})|v|^{N} \exp\{\alpha_{0}|u|^{\frac{N}{N-1}}+\beta_{0}|v|^{\frac{N}{N-1}}\} \quad\text{in }\Omega,\\ -\Delta_{N}v &=bv|v|^{\frac{N-4}{2}}|u|^{N/2}+cv|v|^{N-2}+dv(N|v|^{N-2}\\ &\quad +\frac{\beta_{0}N}{N-1}|v|^{\frac{N^2-2N+2}{N-1}})|u|^{N} \exp\{\alpha_{0}|u|^{\frac{N}{N-1}}+\beta_{0}|v|^{\frac{N}{N-1}}\} \quad\text{in }\Omega, \end{aligned}\\ u=0,\quad v=0 \quad\text{on }\partial\Omega, \end{gathered} \end{equation} where $a,b,c,d,\alpha_{0},\beta_{0}$ are real constants and $\alpha_{0},\beta_{0}>0$. For similar problem, to our knowledge, de Figueiredo, do O and Ruf \cite{f2} firstly discussed the coupled system of exponential type in $\mathbb{R}^{2}$ \begin{equation}\label{e1.1} \begin{gathered} -\Delta u=g(v) \quad\text{in }\Omega,\\ -\Delta v=f(u) \quad\text{in }\Omega,\\ u=0,\quad v=0 \quad\text{on }\partial\Omega, \end{gathered} \end{equation} where $f(u),g(v)$ behave like $\exp\{\alpha|u|^{2}\}$ and $\exp\{\alpha|v|^{2}\}$ respectively for some $\alpha>0$ at infinity. They obtained the existence of the positive solution by a linking theorem in Hilbert space. Recently, Lam and Lu \cite{g1} extended this existence result of problem \eqref{e1.1} on the condition that the nonlinear terms satisfy a weak Ambrosetti-Rabinowitz condition. Furthermore, the author \cite{t1} proved a similar result for a class of cross critical exponential system even if these critical nonlinear terms without Ambrosetti-Rabinowitz condition. For further and recent researches on exponential system, we refer to \cite{f3,r1,s1} and the references therein. Our main propose of this article is to study a class nonuniform critical exponential terms similar to \eqref{eP1}, which weaken the critical assumptions used in \cite{t1}, and further elaborate the idea of \cite{t1} that proper energy estimate guarantees the nontrivial weak solutions for some critical growth systems. In the last section, we will extend this existence result to a wider class of nonlinear terms with cross critical growth. More exactly, we study the problem \begin{equation} \label{eP2} \begin{gathered} -\Delta_{N}u=a|u|^{N-2}u+bu|u|^{N/2-2}|v|^{N/2}+df(x,u,v) \quad\text{in }\Omega,\\ -\Delta_{N}v=bv|v|^{N/2-2}|u|^{N/2}+c|v|^{N-2}v+dg(x,u,v) \quad\text{in }\Omega,\\ u=0,\quad v=0 \quad\text{on }\partial\Omega, \end{gathered} \end{equation} where $a,b,c,d$ are constants and $f(x,u,v),g(x,u,v)$ with critical growth at $\alpha_{0},\beta_{0}>0$ respectively. Here we say $f(x,u,v)$ and $g(x,u,v)$ have critical growth at $\alpha_{0}, \beta_{0}$ respectively, if there exist positive constants $\alpha_{0}, \beta_{0}$ such that: For any $v\neq0$, \begin{equation} \lim_{u\to\infty}\frac{|f(x,u,v)|}{\exp\{\alpha |u|^{\frac{N}{N-1}}\}}=0, \;\forall\alpha>\alpha_{0}\quad\text{and} \quad \lim_{u\to\infty}\frac{|f(x,u,v)|}{\exp\{\alpha |u|^{\frac{N}{N-1}}\}}=+\infty, \; \forall\alpha<\alpha_{0};\label{e1.2} \end{equation} and for any $u\neq0$, \begin{equation} \lim_{v\to\infty}\frac{|g(x,u,v)|}{\exp\{\beta |v|^{\frac{N}{N-1}}\}}=0,\; \forall\beta>\beta_{0}\quad\text{and}\quad \lim_{v\to\infty}\frac{|g(x,u,v)|}{\exp\{\beta |v|^{\frac{N}{N-1}}\}}=+\infty, \; \forall\beta<\beta_{0}.\label{e1.3} \end{equation} Since the system is not variational in general, we assume that there exists the primitive $F(x,u,v)$ such that $$ F_{u}(x,u,v)=f(x,u,v),\quad F_{v}(x,u,v)=g(x,u,v). $$ We weaken some of the critical exponential assumptions used in \cite{t1}, as follows: \begin{itemize} \item[(F1)] $f(x,t,s), g(x,t,s): \overline{\Omega}\times\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ are Carath\'eodory functions satisfying $f(x,t,0)=f(x,0,s)=g(x,t,0)=g(x,0,s)=0$; \item[(F2)] $F(x,s,t)>0$, for $t,s\in \mathbb{R}^{+}$ and a.e. $x\in \Omega$. \end{itemize} We note that the above assumptions have been simplified. From the exponential growth condition, the explicit exponential nonlinear term $$ F(x,u,v)=h(x,u,v)\exp\{k(x,u,v)u^{N/(N-1)}\}\exp\{l(x,u,v)v^{N/(N-1)}\} $$ satisfies the Ambrosetti-Rabinowitz condition, where $\lim_{u\to\infty}k(x,u,v)=\alpha_{0}$, \\ $\lim_{v\to\infty}l(x,u,v)=\beta_{0}$ and $h(x,u,v)\geq0$. It is obvious that \begin{align*} f(x,u,v) &= h_{u}(x,u,v)\exp\{k(x,u,v)u^{N/(N-1)}\}\exp\{l(x,u,v)v^{N/(N-1)}\}\\ &\quad +h(x,u,v)\Big(\frac{N}{N-1}k(x,u,v)u^{\frac{1}{N-1}} +k_{u}(x,u,v)u^{\frac{N}{N-1}}\Big)\\ &\quad\times \exp\{k(x,u,v)u^{N/(N-1)}\}\exp\{l(x,u,v)v^{N/(N-1)}\}, \end{align*} and \begin{align*} g(x,u,v) &= h_{v}(x,u,v)\exp\{k(x,u,v)u^{N/(N-1)}\}\exp\{l(x,u,v)v^{N/(N-1)}\}\\ &\quad +h(x,u,v)\Big(\frac{N}{N-1}k(x,u,v)v^{\frac{1}{N-1}} +k_{v}(x,u,v)v^{\frac{N}{N-1}}\Big) \\ &\quad\times \exp\{k(x,u,v)u^{N/(N-1)}\}\exp\{l(x,u,v)v^{N/(N-1)}\}, \end{align*} Since $h_{u}(x,u,v),h_{v}(x,u,v),k_{u}(x,u,v),k_{v}(x,u,v)$ and $h(x,u,v)\geq0$, there exist constants $C,M>0$ such that for all $|u|,|v|\geq C$, \[ 0< F(x,u,v)\leq M(f(x,u,v)+g(x,u,v))\quad\text{for a.e. } x\in \Omega; \] i. e. the Ambrosetti-Rabinowitz condition is satisfied. On the other hand, without the assumption $\lim\sup_{t\to0}\frac{F(x,t,s)}{|t|^{N}+|s|^{N}}=0$, we could not have mountain pass geometry. A typical example is given as follows: $$ F(x,u,v)=\sqrt{|u||v|}\exp\{\alpha_{0}e^{|u|^{-3}}|u|^{N/(N-1)}\} \exp\{\beta_{0}e^{|v|^{-3}}|v|^{N/(N-1)}\}. $$ Here are the main results of this article for problem \eqref{eP1}. \begin{theorem} \label{thm1.1} Under the assumptions $a,c<\lambda_{1}$, there exists a positive constant $\Lambda^{*}$ such that \eqref{eP1} has at least one solution for all $d>\Lambda^{*}$, where $\lambda_{1}$ as in \eqref{e2.2} and $\Lambda^{*}$ depends on $a,b,c,\alpha_{0},\beta_{0}$, the dimension $N$ and the domain $\Omega$. \end{theorem} The following theorem extends partially the existence result of nontrivial weak solution presented in \cite{t1}. \begin{theorem} \label{thm1.2} If $a,c<\lambda_{1}$ and the assumption {\rm (F1)-(F2)} are satisfied, there exists a positive constant $\Theta^{*}$ such that \eqref{eP2} has at least one solution for all $d>\Theta^{*}$, where $\lambda_{1}$ as in \eqref{e2.2} and $\Theta^{*}$ depends on $a,b,c,\alpha_{0},\beta_{0}$, the dimension $N$ and the domain $\Omega$. \end{theorem} This article is organized as follows. Section 2 contains the preliminaries. Section 3 shows two important estimate results. Section 4 shows the proof of Theorem \ref{thm1.1}. Section 5 provides a simple proof of Theorem \ref{thm1.2}. \section{Preliminaries} Throughout this paper, we define \[ \|u\|_{N}=\Big(\int_{\Omega}|\nabla u|^{N}\Big)^{1/N},\quad |u|_{N}=\Big(\int_{\Omega}|u|^{N}\Big)^{1/N}, \] and \begin{equation} \label{e2.1} \begin{aligned} I(u,v) &=\frac{1}{N}\int_{\Omega}|\nabla u|^{N}+\frac{1}{N} \int_{\Omega}|\nabla v|^{N} -\frac{a}{N}\int_{\Omega}|u|^{N}-\frac{c}{N}\int_{\Omega}|v|^{N}\\ &\quad -\frac{2b}{N}\int_{\Omega}|u|^{N/2}|v|^{N/2} -d\int_{\Omega}|u|^{N}|v|^{N}\exp\{\alpha_{0}|u|^{\frac{N}{N-1}}\} \exp\{\beta_{0}|v|^{\frac{N}{N-1}}\}. \end{aligned} \end{equation} It is well known that \begin{equation} \lambda_{1}=\min_{u\in W_{0}^{1,N}(\Omega)\backslash\{0\}} \frac{\|u\|_{N}^{N}}{|u|_{N}^{N}}>0,\label{e2.2} \end{equation} The space $X$ designates the product space $W_{0}^{1,N}(\Omega)\times W_{0}^{1,N}(\Omega)$ equipped by the norm $\|(u,v)\|_{X}=\|u\|_{N}+\|v\|_{N}$. It is well known that the maximal growth of $u\in W_{0}^{1,N}(\Omega)$ is of exponential type, see references \cite{m1} and \cite{t1}. More precisely, we have the following uniform bound estimate (see also \cite{f1}): \subsection*{Trudinger-Moser inequality} Let $u\in W_{0}^{1,N}(\Omega)$, then $\exp\{|u|^{\frac{N}{N-1}}\}\in L^{\theta}(\Omega)$ for all $1\leq\theta<\infty$. That is to say that for any given $\theta>0$, any $u\in W_{0}^{1,N}(\Omega)$ holds $\exp\{\theta|u|^{\frac{N}{N-1}}\}\in L^{1}(\Omega)$. Moreover, there exists a constant $C=C(N,\alpha)>0$ such that \begin{equation} \sup_{\|u\|_{N}\leq1}\int_{\Omega}\exp(\alpha|u|^{\frac{N}{N-1}}) \leq C|\Omega|,\quad \text{if } 0\leq \alpha\leq\alpha_{N},\label{e2.3} \end{equation} where $|\Omega|$ is the $N$ dimension Lebesgue measure of $\Omega$, $\alpha_{N}=N\omega_{N}^{\frac{1}{N-1}}$ and $\omega_{N}$ is the $N-1$ dimension Hausdorff measure of the unit sphere in $\mathbb{R}^{N}$. Furthermore, if $\alpha>\alpha_{N}$, then $C=+\infty$. Here and throughout this paper, we often denote various constants by same $C$. The reader can recognize them easily. Thanks to Trudinger-Moser inequality, we know the functional $I(u,v)$ is well defined. Using a standard argument, we also deduce that the functional $I(u,v)$ is of class $C^{1}$ and \begin{equation} \label{e2.4} \begin{aligned} & \langle I'(u,v),(\varphi,\phi)\rangle \\ &= \int_{\Omega}|\nabla u|^{N-2}\nabla u\nabla\varphi +\int_{\Omega}|\nabla v|^{N-2}\nabla v\nabla\phi -a\int_{\Omega}|u|^{N-2}u\varphi-c\int_{\Omega}|v|^{N-2}v\phi\\ &\quad -b\int_{\Omega}u\varphi|u|^{N/2-2}|v|^{N/2} -b\int_{\Omega}v\phi|v|^{N/2-2}|u|^{N/2}\\ &\quad -d\int_{\Omega}u\varphi(N|u|^{N-2} +\frac{\alpha_{0}N}{N-1}|u|^{\frac{N^2-2N+2}{N-1}})|v|^{N} \exp\{\alpha_{0}|u|^{\frac{N}{N-1}}+\beta_{0}|v|^{\frac{N}{N-1}}\}\\ &\quad -d\int_{\Omega}v\phi(N|v|^{N-2} + \frac{\beta_{0}N}{N-1}|v|^{\frac{N^2-2N+2}{N-1}})|u|^{N} \exp\{\alpha_{0}|u|^{\frac{N}{N-1}}+\beta_{0}|v|^{\frac{N}{N-1}}\}, \end{aligned} \end{equation} for any $\varphi,\phi\in W_{0}^{1,N}(\Omega)$. Obviously, the critical points of $I(u,v)$ are precisely the weak solutions for problem \eqref{eP1}. By the critical assumptions \eqref{e1.2}, \eqref{e1.3} and (F1), the functional \begin{align*} J(u,v)&=\frac{1}{N}\int_{\Omega}|\nabla u|^{N} +\frac{1}{N}\int_{\Omega}|\nabla v|^{N} -\frac{1}{N}\int_{\Omega}a|u|^{N} -\frac{1}{N}\int_{\Omega}c|v|^{N}\\ &\quad -\frac{2}{N}\int_{\Omega}b|u|^{N/2}|v|^{N/2} -d\int_{\Omega}F(x,u,v), \end{align*} is well defined and of class $C^{1}$ such that the critical points of $J(u,v)$ are precisely the weak solutions for problem \eqref{eP2}; i.e., \begin{equation} \begin{aligned} \langle J'(u,v),(\varphi,\phi)\rangle &= \int_{\Omega}|\nabla u|^{N-2}\nabla u\nabla\varphi +\int_{\Omega}|\nabla v|^{N-2}\nabla v\nabla\phi -a\int_{\Omega}|u|^{N-2}u\varphi\\ &\quad -c\int_{\Omega}|v|^{N-2}v\phi -b\int_{\Omega}u\varphi|u|^{N/2-2}|v|^{N/2}\\ &\quad -b\int_{\Omega}v\phi|v|^{N/2-2}|u|^{N/2} - d\int_{\Omega}f(x,u,v)\varphi-d\int_{\Omega}g(x,u,v)\phi. \end{aligned} \label{e2.5} \end{equation} \section{Energy estimates} \begin{lemma} \label{lem3.1} If $\|u\|_{N}^{\frac{N}{N-1}} < \frac{\alpha_{N}}{\alpha_{0}}$ and $\|v\|_{N}^{\frac{N}{N-1}} < \frac{\alpha_{N}}{\beta_{0}}$, there exists $q>1$ such that $$ \int_{\Omega}(N|u|^{N-1}+\frac{\alpha_{0}N}{N-1}|u|^{\frac{N^2-N+1}{N-1}})^{q} |v|^{qN}\exp\{q\alpha_{0}|u|^{\frac{N}{N-1}}+q\beta_{0}|v|^{\frac{N}{N-1}}\} \leq C $$ and $$ \int_{\Omega}(N|v|^{N-1}+\frac{\beta_{0}N}{N-1}|v|^{\frac{N^2-N+1}{N-1}})^{q} |u|^{qN}\exp\{q\alpha_{0}|u|^{\frac{N}{N-1}}+q\beta_{0}|v|^{\frac{N}{N-1}}\} \leq C. $$ \end{lemma} \begin{proof} By contradiction. Then for any $\varepsilon_{1},\varepsilon_{2}>0$ and any $q>1$, we estimate that \begin{align*} &\int_{\Omega}(N|u|^{N-1}+\frac{\alpha_{0}N}{N-1}|u|^{\frac{N^2-N+1}{N-1}})^{q} |v|^{qN}\exp\{q\alpha_{0}|u|^{\frac{N}{N-1}}+q\beta_{0}|v|^{\frac{N}{N-1}}\}\\ &\leq C\int_{\Omega}\exp\{q(\alpha_{0}+\varepsilon_{1})|u|^{\frac{N}{N-1}}\} \exp\{q(\beta_{0}+\varepsilon_{2})|v|^{\frac{N}{N-1}}\}\\ &= C\int_{\Omega}\exp\{q(\alpha_{0}+\varepsilon_{1})\|u\|_{N}^{\frac{N}{N-1}} (\frac{|u|}{\|u\|_{N}})^{\frac{N}{N-1}}\} \exp\{q(\beta_{0}+\varepsilon_{2})\|v\|_{N}^{\frac{N}{N-1}} (\frac{|v|}{\|v\|_{N}})^{\frac{N}{N-1}}\}, \end{align*} tends to infinite. Then by Trudinger-Moser inequality \eqref{e2.3}, we get that $q(\alpha_{0}+\varepsilon_{1})\|u\|_{N}^{\frac{N}{N-1}}>\alpha_{N}$ or $q(\beta_{0}+\varepsilon_{2})\|v\|_{N}^{\frac{N}{N-1}}>\alpha_{N}$. Since $q>1$ and $\varepsilon_{1},\varepsilon_{2}>0$ are arbitrary, we have $$ \|u\|_{N}^{\frac{N}{N-1}}\geq\frac{\alpha_{N}}{\alpha_{0}}\quad \mathrm{or} \quad \|v\|_{N}^{\frac{N}{N-1}}\geq\frac{\alpha_{N}}{\beta_{0}}, $$ which contradicts our assumptions. Applying similar argument to $\int_{\Omega}(N|v|^{N-1}+\frac{\beta_{0}N}{N-1} |v|^{\frac{N^2-N+1}{N-1}})^{q}|u|^{qN}\exp\{q\alpha_{0}|u|^{\frac{N}{N-1}} +q\beta_{0}|v|^{\frac{N}{N-1}}\}$, we deduce the conclusion. \end{proof} We denote the Moser functions as follows $$ \overline{M_{n}}(x):=\omega_{N}^{-1/N} \begin{cases} (\log n)^{\frac{N-1}{N}},& |x|\leq 1/n;\\ \frac{\log(1/|x|)}{(\log n)^{1/N}}, & 1/n\leq|x|\leq 1;\\ 0, & |x|\geq1; \end{cases} $$ where $2\leq n\in \mathbb{N^{+}}$ and $\omega_{N}$ as in \eqref{e2.3}, i.e. $N^{N-1}\omega_{N}=\alpha_{N}^{N-1}$. Let $r$ be the inner radius of $\Omega$ and $x_{0}\in\Omega$ such that $B_{r}(x_{0})\subset\Omega$. Then the functions $$ M_{n}(x):=\overline{M_{n}}(\frac{x-x_{0}}{r}) $$ satisfy $\|M_{n}\|_{N}=1$, $|M_{n}|_{N}^{N}=O(1/\log n)$ and $\operatorname{supp} M_{n}\subset B_{r}(x_{0})$. We define a close convex ball as \[ \overline{B}_{\alpha_{0},\beta_{0}}:=\{(u,v)\in X|\|(u,v)\|_{X}^{\frac{N}{N-1}} \leq\min(\frac{\alpha_{N}}{\alpha_{0}},\frac{\alpha_{N}}{\beta_{0}})\}. \] Now, we give an estimate from below for the functional $I(u,v)$ on the ball in $\overline{B}_{\alpha_{0},\beta_{0}}$. \begin{lemma} \label{lem3.2} There exist a constant $\Lambda^{*}$ such that for all $d>\Lambda^{*}$, \begin{equation} \inf_{(u,v)\in\overline{B}_{\alpha_{0},\beta_{0}}}I(u,v)=c_{0}<0,\label{e3.1} \end{equation} where $\Lambda^{*}$ depends on $a,b,c,\alpha_{0},\beta_{0}$, the dimension $N$ and the domain $\Omega$. \end{lemma} \begin{proof} Without loss generality, we assume that $\alpha_{0}\geq\beta_{0}$. Here we take $u_{n}=\frac{1}{2}(\frac{\alpha_{N}}{\alpha_{0}})^{\frac{N-1}{N}}M_{n}$ and \[ v_{n}=\frac{1}{2}(\frac{\alpha_{N}}{\alpha_{0}})^{\frac{N-1}{N}}M_{n} \leq\frac{1}{2}(\frac{\alpha_{N}}{\beta_{0}})^{\frac{N-1}{N}}M_{n}. \] Then $\|u_{n}\|_{N}=\|v_{n}\|_{N}=\frac{1}{2} (\frac{\alpha_{N}}{\alpha_{0}})^{\frac{N-1}{N}}$ (i.e. $(u_{n},v_{n})\in \overline{B}_{\alpha_{0},\beta_{0}}$). Form the definition of $M_{n}(x)$, we have \begin{equation} \label{e3.2} \begin{aligned} &\frac{a}{N}\int_{\Omega}|u_{n}|^{N}+\frac{c}{N}\int_{\Omega}|v_{n}|^{N} +\frac{2b}{N}\int_{\Omega}|u_{n}|^{N/2}|v_{n}|^{N/2}\\ &=\frac{a+2b+c}{2^{N}N\omega_{N}}(\frac{\alpha_{N}}{\alpha_{0}})^{N-1} \int_{B(x_{0},\frac{r}{n})}(\log n)^{N-1}\\ &\quad +\frac{a+2b+c}{2^{N}N\omega_{N}} (\frac{\alpha_{N}}{\alpha_{0}})^{N-1}\int_{B(x_{0},r)\setminus B(x_{0}, \frac{r}{n})}\frac{(\log\frac{r}{|x-x_{0}|})^{N}}{\log n}\\ &=\frac{(a+2b+c)r^{N}}{2^{N}N^{2}n^{N}}(\frac{\alpha_{N}}{\alpha_{0}})^{N-1} (\log n)^{N-1}+\frac{a+2b+c}{2^{N}N\log n}(\frac{\alpha_{N}}{\alpha_{0}})^{N-1} \int_{\frac{r}{n}}^{r}(\log\frac{r}{l})^{N}l^{N-1}dl\\ &= O(1/\log n), \end{aligned} \end{equation} and \begin{equation} \label{e3.3} \begin{aligned} &\int_{\Omega}|u_{n}|^{N}|v_{n}|^{N}\exp\{\alpha_{0}|u_{n}|^{\frac{N}{N-1}}\} \exp\{\beta_{0}|v_{n}|^{\frac{N}{N-1}}\}\\ &=\frac{\alpha_{N}^{2(N-1)}}{4^{N}\omega_{N}^{2}\alpha_{0}^{2(N-1)}} \int_{B(x_{0},\frac{r}{n})}(\log n)^{2(N-1)} \exp\{\frac{N}{2^{\frac{N}{N-1}}}\log n+\frac{N\beta_{0}}{2^{\frac{N}{N-1}} \alpha_{0}}\log n\}\\ &\quad +\frac{\alpha_{N}^{2(N-1)}}{4^{N}\omega_{N}^{2}\alpha_{0}^{2(N-1)}} \int_{B(x_{0},r)\setminus B(x_{0},\frac{r}{n})} \frac{(\log\frac{r}{|x-x_{0}|})^{2N}}{(\log n)^{2}}\\ &\quad\times \exp\{(\frac{N}{2^{\frac{N}{N-1}}}+\frac{N\beta_{0}}{2^{\frac{N}{N-1}}\alpha_{0}}) \frac{(\log\frac{r}{|x-x_{0}|})^{\frac{N}{N-1}}}{(\log n)^{\frac{1}{N-1}}}\}\\ &\geq\frac{\omega_{N}r^{N}}{4^{N}n^{N}}\frac{N^{2N-3}}{\alpha_{0}^{2(N-1)}} (\log n)^{2(N-1)}n^{\frac{N}{2^{\frac{N}{N-1}}} +\frac{N\beta_{0}}{2^{\frac{N}{N-1}}\alpha_{0}}} +\frac{\alpha_{N}^{2(N-1)}}{4^{N}\omega_{N}\alpha_{0}^{2(N-1)} (\log n)^{2}}\\ &\quad\times \int_{\frac{r}{n}}^{r}(\log\frac{r}{l})^{2N} \exp\{(\frac{N}{2^{\frac{N}{N-1}}}+\frac{N\beta_{0}}{2^{\frac{N}{N-1}}\alpha_{0}}) \frac{(\log\frac{r}{l})^{\frac{N}{N-1}}}{(\log n)^{\frac{1}{N-1}}}\}l^{N-1}dl. \end{aligned} \end{equation} Obviously, for fixed $n$, we deduce that expression \eqref{e3.2} is bounded and expression $\eqref{e3.3}$ is larger than a positive constant. Noticing the definitions of $u_{n},v_{n}$, we obtain that there exists a positive constant $\Lambda^{*}$ such that for all $d>\Lambda^{*}$ holds $I(u_{n},v_{n})<0$, which implies that $$ \inf_{(u,v)\in\overline{B}_{\alpha_{0},\beta_{0}}}I(u,v)=c_{0}<0. $$ \end{proof} \section{Proof of Theorem \ref{thm1.1}} Since $\overline{B}_{\alpha_{0},\beta_{0}}$ is a Banach space with the norm given by the norm of $X$, the functional $I(u,v)$ is of class $C^{1}$ and bounded below on $\overline{B}_{\alpha_{0},\beta_{0}}$. In fact, if $\|u\|_{N}^{\frac{N}{N-1}}$ equals to $\min(\frac{\alpha_{N}}{\alpha_{0}},\frac{\alpha_{N}}{\beta_{0}})$, then $\|v\|_{N}=0$. Hence that \begin{equation} \int_{\Omega}|u|^{N}|v|^{N}\exp\{\alpha_{0}|u|^{\frac{N}{N-1}}\} \exp\{\beta_{0}|v|^{\frac{N}{N-1}}\}=0.\label{e4.1} \end{equation} And same result holds for $\|v\|_{N}^{\frac{N}{N-1}}=\min(\frac{\alpha_{N}}{\alpha_{0}}, \frac{\alpha_{N}}{\beta_{0}})$. By a similar argument of Lemma \ref{lem3.1}, we conclude that \begin{equation} \int_{\Omega}|u|^{N}|v|^{N}\exp\{\alpha_{0}|u|^{\frac{N}{N-1}}\} \exp\{\beta_{0}|v|^{\frac{N}{N-1}}\}\leq C\label{e4.2} \end{equation} for $\|u\|_{N}^{\frac{N}{N-1}},\|v\|_{N}^{\frac{N}{N-1}} <\min(\frac{\alpha_{N}}{\alpha_{0}},\frac{\alpha_{N}}{\beta_{0}})$. That is to say that the functional $I(u,v)$ is bounded below on $\overline{B}_{\alpha_{0},\beta_{0}}$. Thanks to Ekeland's variational principle \cite[Corollary A.2]{c1}, there exists some minimizing sequence $\{(u_{n},v_{n})\}\subset\overline{B}_{\alpha_{0},\beta_{0}}$ such that \begin{equation} I(u_{n},v_{n})\to \inf_{(u,v)\in\overline{B}_{\alpha_{0},\beta_{0}}}I(u,v) =c_{0}<0,\label{e4.3} \end{equation} and \begin{equation} I'(u_{n},v_{n})\to0 \quad\text{in $X^{*}$, as as $n\to\infty$}.\label{e4.4} \end{equation} From \eqref{e2.4} and \eqref{e4.4}, taking $(\varphi,\phi)=(u_{n},0)$ and $(\varphi,\phi)=(0,v_{n})$ respectively, we have \begin{equation} \begin{aligned} &\int_{\Omega}|\nabla u_{n}|^{N}-a\int_{\Omega}|u_{n}|^{N} -b\int_{\Omega}|u_{n}|^{N/2}|v_{n}|^{N/2}\\ &-d\int_{\Omega}(N|u_{n}|^{N}+\frac{\alpha_{0}N}{N-1}|u_{n}|^{\frac{N^2}{N-1}}) |v_{n}|^{N}\exp\{\alpha_{0}|u_{n}|^{\frac{N}{N-1}} +\beta_{0}|v_{n}|^{\frac{N}{N-1}}\}\to 0, \end{aligned}\label{e4.5} \end{equation} and \begin{equation} \begin{aligned} &\int_{\Omega}|\nabla v_{n}|^{N}-c\int_{\Omega}|v_{n}|^{N} -b\int_{\Omega}|u_{n}|^{N/2}|v_{n}|^{N/2}\\ &-d\int_{\Omega}(N|v_{n}|^{N}+\frac{\beta_{0}N}{N-1}|v_{n}|^{\frac{N^2}{N-1}}) |u_{n}|^{N}\exp\{\alpha_{0}|u_{n}|^{\frac{N}{N-1}} +\beta_{0}|v_{n}|^{\frac{N}{N-1}}\}\to0. \end{aligned} \label{e4.6} \end{equation} Since $u_{n},v_{n}$ are uniform bounded in $W_{0}^{1,N}(\Omega)$, by Lemma \ref{lemA1} in the Appendix, we conclude that $$ u_{n}\rightharpoonup u_{0},\quad v_{n}\rightharpoonup v_{0}\quad\text{in } W_{0}^{1,N}(\Omega), $$ and $(u_{0},v_{0})$ is a weak solution for problem \eqref{eP1}. Now, we prove that this weak solution is nontrivial. \begin{proposition} \label{prop4.1} The above weak solution $(u_{0},v_{0})$ is a nontrivial solution for problem \eqref{eP1}. \end{proposition} \begin{proof} By the assumptions $a,c<\lambda_{1}$ and $d>0$, we have that $u_{0}=0$ if and only if $v_{0}=0$. The condition $d>0$ guarantees this problem is nontrivial. In fact, if $u_{0}=0$, then $v_{0}$ is a solution of the equation \begin{gather*} -\Delta_{p}v=c|v|^{N-2}v<\lambda_{1}|v|^{N-2}v \quad\text{in }\Omega,\\ v=0 \quad \text{on } \partial\Omega. \end{gather*} Obviously, we have $v_{0}=0$. Now we suppose that $u_{0}=v_{0}=0$. Then by $u_{n},v_{n}\rightharpoonup0$ weak convergence in $W_{0}^{1,N}(\Omega)$, we have $$ \lim_{n\to\infty}\frac{a}{N}\int_{\Omega}|u_{n}|^{N}, \lim_{n\to\infty}\frac{c}{N}\int_{\Omega}|v_{n}|^{N}, \lim_{n\to\infty}\frac{2b}{N}\int_{\Omega}|u_{n}|^{N/2}|v_{n}|^{N/2}=0. $$ These together with \eqref{e4.5} and \eqref{e4.6}, from Lemma \ref{lem3.1}, by H\"older inequality, we obtain $$ \|u_{n}\|_{N},\|v_{n}\|_{N}\to0. $$ i.e. $(u_{0},v_{0})\to(0,0)$ strongly in $X$. Obviously, $$ \int_{\Omega}|u_{n}|^{N}|v_{n}|^{N}\exp\{\alpha_{0}|u_{n}|^{\frac{N}{N-1}}\} \exp\{\beta_{0}|v_{n}|^{\frac{N}{N-1}}\}\to0, $$ as $n\to\infty$. Hence that $$ \lim_{n\to\infty}I(u_{n},v_{n})=0, $$ which contracts with \eqref{e4.3}. \end{proof} Thus the proof of theorem \ref{thm1.1} is complete. \section{Proof of Theorem \ref{thm1.2}} In this section we show the existence of nontrivial weal solution for more general quasilinear system (i.e. problem \eqref{eP2}). As the proofs are similar we will sketch from place to place. Noticing the assumptions \eqref{e1.2} and \eqref{e1.3}, by similar arguments of Lemma \ref{lem3.1}, we would see that \begin{equation} \int_{\Omega}|f(x,u,v)|^{q},\int_{\Omega}|g(x,u,v)|^{q}\leq C \label{e5.1} \end{equation} for some $q>1$ and $\|u\|_{N}^{\frac{N}{N-1}} < \frac{\alpha_{N}}{\alpha_{0}}$ and $\|v\|_{N}^{\frac{N}{N-1}} < \frac{\alpha_{N}}{\beta_{0}}$. By assumption (F2), choosing a proper constant $c\neq0$ such that $(u_{n},v_{n})=(cM_{n}(x),cM_{n}(x))\in\overline{B}_{\alpha_{0},\beta_{0}}$, we have \begin{equation} \int_{\Omega}F(x,u_{n},v_{n})\geq C \label{e5.2} \end{equation} for some fixed $n>1$, which means that $$ \inf_{(u,v)\in\overline{B}_{\alpha_{0},\beta_{0}}}J(u,v)=\widetilde{c_{0}}<0 $$ for $d$ large enough. Form the assumption (F1), similar to equality \eqref{e4.1} and inequality \eqref{e4.2}, we have that $J(u,v)$ is bounded below on $\overline{B}_{\alpha_{0},\beta_{0}}$. This combined with $\overline{B}_{\alpha_{0},\beta_{0}}$ is a Banach space with the norm given by the norm of $X$ and the functional $J(u,v)$ is of class $C^{1}$, by Ekeland's variational principle \cite[Corollary A.2]{c1}, there exists some minimizing sequence $\{(u_{n},v_{n})\}\subset\overline{B}_{\alpha_{0},\beta_{0}}$ such that \begin{equation} J(u_{n},v_{n})\to \inf_{(u,v)\in\overline{B}_{\alpha_{0},\beta_{0}}}J(u,v) =\widetilde{c_{0}}<0,\label{e5.3} \end{equation} and \begin{equation} J'(u_{n},v_{n})\to 0 \quad\text{in $X^{*}$, as $ n\to\infty$}.\label{e5.4} \end{equation} From \eqref{e2.5} and \eqref{e5.4}, taking $(\varphi,\phi)=(u_{n},0)$ and $(\varphi,\phi)=(0,v_{n})$ respectively, we have \begin{equation} \int_{\Omega}|\nabla u_{n}|^{N}-a\int_{\Omega}|u_{n}|^{N}-b\int_{\Omega}|u_{n}|^{N/2}|v_{n}|^{N/2} -d\int_{\Omega}f(x,u_{n},v_{n})u_{n}\to0,\label{e5.5} \end{equation} and \begin{equation} \int_{\Omega}|\nabla v_{n}|^{N}-c\int_{\Omega}|v_{n}|^{N} -b\int_{\Omega}|u_{n}|^{N/2}|v_{n}|^{N/2} -d\int_{\Omega}g(x,u_{n},v_{n})v_{n}\to0.\label{e5.6} \end{equation} Since $u_{n},v_{n}$ are uniform bounded in $W_{0}^{1,N}(\Omega)$, by Lemma \ref{lemA1} in the appendix, we conclude that $$ u_{n}\rightharpoonup u_{0},\quad v_{n}\rightharpoonup v_{0}\quad\text{in } W_{0}^{1,N}(\Omega), $$ and $(u_{0},v_{0})$ is a weak solution for problem \eqref{eP2}. Now, we will prove this weak solution is nontrivial. \begin{proposition} \label{prop5.1} The above weak solution $(u_{0},v_{0})$ is nontrivial. \end{proposition} \begin{proof} By the assumptions (F1), $a,c<\lambda_{1}$ and $d>0$, using same argument for Proposition 4.1, we can get that $u=0$ if and only if $v=0$. Now we suppose that $u_{0}=v_{0}=0$. Then by $u_{n},v_{n}\rightharpoonup0$ weak convergence in $W_{0}^{1,N}(\Omega)$, we have $$ \lim_{n\to\infty}\frac{a}{N}\int_{\Omega}|u_{n}|^{N}, \lim_{n\to\infty}\frac{c}{N}\int_{\Omega}|v_{n}|^{N}, \lim_{n\to\infty}\frac{2b}{N}\int_{\Omega}|u_{n}|^{N/2}|v_{n}|^{N/2}=0. $$ These together with \eqref{e5.1}, \eqref{e5.5} and \eqref{e5.6}, by H\"older inequality, we obtain $$ \|u_{n}\|_{N},\|v_{n}\|_{N}\to0. $$ i.e. $(u_{0},v_{0})\to(0,0)$ strong convergence in $X$, which means $\int_{\Omega}F(x,u_{n},v_{n})\to0$, as $n\to\infty$. Hence $$ \lim_{n\to\infty}J(u_{n},v_{n})=0, $$ which contracts with \eqref{e5.3}. \end{proof} Thus the proof of Theorem \ref{thm1.2} is complete. \section{Appendix} Here we give a brief proof for the existence result of the weak solution for problem \eqref{eP2}, see also \cite{w1}, however the non-triviality of this weak solution need to be clarified. \begin{lemma} \label{lemA1} Suppose the sequences $\{u_{n}\},\{v_{n}\}$ are bounded in $W_{0}^{1,N}(\Omega)$, and the $\lim_{n\to\infty}J'(u_{n},v_{n})\to0$ in $X^{*}$, then there exist $u_{0},v_{0}$ such that $u_{n}\rightharpoonup u_{0}$, $v_{n}\rightharpoonup v_{0}$ in $W_{0}^{1,N}(\Omega)$ and $\langle J'(u_{0},v_{0}),(\varphi,\phi)\rangle=0$ for all $\varphi,\phi\in W_{0}^{1,N}(\Omega)$. \end{lemma} \begin{proof} Since $\{u_{n}\},\{v_{n}\}$ are bounded in $W_{0}^{1,N}(\Omega)$, there exist $u_{0},v_{0}$ such that $$ u_{n}\to u_{0} \quad \mathrm{and} \quad v_{n}\to v_{0}, $$ which implies $u_{n}\to u_{0}$ and $v_{n}\to v_{0}$ in $L^{1}(\Omega)$. By assumptions \eqref{e1.2} and \eqref{e1.3}, using Trudinger-Moser inequality, we have \begin{gather*} \int_{\Omega}|f(x,u_{n},v_{n})u_{n}|\leq C,\quad \int_{\Omega}|f(x,u_{n},v_{n})v_{n}|\leq C,\\ \int_{\Omega}|g(x,u_{n},v_{n})v_{n}|\leq C, \quad \int_{\Omega}|g(x,u_{n},v_{n})u_{n}|\leq C. \end{gather*} Combining the above results, we find that \begin{equation} f(x,u_{n},v_{n})\to f(x,u_{0},v_{0}),\quad g(x,u_{n},v_{n})\to g(x,u_{0},v_{0}) \quad\text{in }\ L^{1}(\Omega).\label{e6.1} \end{equation} Now, taking test function $(\tau(u_{n}-u_{0}),0)$, the assumption $\lim_{n\to\infty}J'(u_{n},v_{n})\to 0$ becomes \begin{align*} &\langle I_{2}'(u_{n},v_{n}),(\tau(u_{n}-u_{0}),0)\rangle\\ &=\int_{\Omega}|\nabla u_{n}|^{N-2}\nabla u_{n}\nabla\tau(u_{n}-u_{0}) +\int_{\Omega}au_{n}\tau(u_{n}-u_{0})|u_{n}|^{N-2}\\ &\quad +\int_{\Omega}bu_{n}\tau(u_{n}-u_{0})|u_{n}|^{N/2-2}|v_{n}|^{N/2} +\int_{\Omega}f(x,u_{n},v_{n})\tau(u_{n}-u_{0})\to0, \end{align*} where \[ \tau(t) =\begin{cases} t,&\text{if } |t|\leq1; \\ t/|t|, & \text{if } |t|>1. \end{cases} \] Hence by \eqref{e6.1} and $|\tau(u_{n}-u_{0})|_{\infty}\to0$, we deduce $$ \int_{\Omega}(|\nabla u_{n}|^{p-2}\nabla u_{n}-|\nabla u_{0}|^{p-2} \nabla u_{0})\nabla\tau(u_{n}-u_{0})\to0, $$ which implies $\nabla u_{n}\to \nabla u_{0}$ a.e. in $\Omega$; see \cite[Theorem 1.1]{v1}. Since $N\geq2$, we know $$ |\nabla u_{n}|^{N-2}\nabla u_{n}\rightharpoonup|\nabla u_{0}|^{N-2}\nabla u_{0} \quad\text{in } (L^{N/(N-1)}(\Omega))^{N}. $$ Using similar argument, we get the same result for sequence $\{v_{n}\}$. By these results combined with \eqref{e6.1} and $J'(u_{n},v_{n})\to0$, we obtain that $$ \langle J'(u_{0},v_{0}),(\varphi,\phi)\rangle=0 $$ for any $\varphi,\phi\in \mathcal{D}(\Omega)$. By using an argument of density, this identity holds for all $\varphi,\phi\in W_{0}^{1,N}(\Omega)$. Then the proof is complete. \end{proof} \subsection*{Acknowledgements} The author would like to thank the anonymous referees for the careful reading of the original manuscript and for the valuable suggestions. \begin{thebibliography}{99} \bibitem{c1} D. G. Costa; \emph{An Invitation to Variational Methods in Differential Equations}, Birkh\"auser, 2007. \bibitem{f1} D. G. de Figueiredo, J.M. do O, B. Ruf; \emph{On an inequality by N. Trudinger and J. Moser and related elliptic equations}, Comm. Pure Appl. Math. \textbf{55} (2002), 135-152. \bibitem{f2} D. G. de Figueiredo, J.M. do O, B. Ruf; \emph{Critical and subcritical elliptic systems in dimension two}, Indiana Univ. Math. J. \textbf{53} (2004), 1037-1054. \bibitem{f3} D. G. de Figueiredo, J. M. do O, B. Ruf; \emph{Elliptic equations and systems with critical Trudinger-Moser nonlinearites}, Disc. Cont. Dyna. Syst. \textbf{30} (2011), 455-476. \bibitem{g1} N. Lam, Guozhen Lu; \emph{Elliptic equations and systems with subcritical and critical exponential growth without the Ambosetti-Rabinowitz condition}, J. Geometry Analysis \textbf{24} (2014), 118-143. \bibitem{m1} J. Moser; \emph{A sharp form of an inequality by N.Trudinger}, Indiana Univ. Math. J. \textbf{20} (1971), 1077-1092. \bibitem{r1} B. Ribeiro; \emph{The Ambrosetti-Prodi problem for elliptic systems with Trudinger-Moser nonlinearities}, Proc. Edinburgh Math. Society \textbf{55} (2012), 215-244. \bibitem{s1} M. D. Souza; \emph{Existence and multiplicity of solutions for a singular semilinear elliptic problem in $\mathbb{R}^{2}$}, Electron. J. Diff. Equa. \textbf{2011}, No. 98 (2011), 1-13. \bibitem{t1} N. S. Trudinger; \emph{On the embedding into Orlicz spaces and some applications}, J. Math. Mech. \textbf{17} (1967), 473-484. \bibitem{v1} S. de Valeriola, M. Willem; \emph{On some quasilinear critical problems}, Adv. Nonlinear Stud. \textbf{9} (2009), 825-836. \bibitem{w1} Xiaozhi Wang; \emph{A Positive Solution for some Critical $p$-Laplacian Systems}, Preprint. \end{thebibliography} \end{document}