\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 29, pp. 1--19.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/29\hfil On vanishing at space infinity] {On vanishing at space infinity for a semilinear heat equation with absorption} \author[N. Umeda \hfil EJDE-2014/29\hfilneg] {Noriaki Umeda} % in alphabetical order \address{Noriaki Umeda \newline Graduate School of Sciences and Technology, Meiji University, 1-1-1, Higashi-Mita, Tama-ku, Kawasaki city, Kanagawa, 214-8571, Japan. \newline Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1, Komaba, \newline Meguro-ku, Tokyo, 153-8914, Japan} \email{umeda\_noriaki@cocoa.ocn.ne.jp} \thanks{Submitted February 24, 2012. Published January 16, 2014.} \subjclass[2000]{35K15, 35K55} \keywords{Vanishing at space infinity; semilinear heat equation with absorption} \begin{abstract} We consider a Cauchy problem for a semilinear heat equation with absorption. The initial datum of the problem is bounded and its infimum is positive. We study solutions which do not vanish in the total space at the vanishing time; they vanish only at space infinity. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} We consider the semilinear heat equation (with absorption) \begin{equation} u_t = \Delta u- u^{-p}, \quad x\in \mathbb{R}^d , \; t>0 \label{CP-u} \end{equation} supplemented by initial data \begin{equation} u(x,0) = u_0 (x)>0, \quad x\in \mathbb{R}^d \label{CP-u0}, \end{equation} with $d\ge 1$ and $p>-1$. The function $u_0 $ is assumed to satisfy \begin{gather} u_0 \text{ is bounded and continuous in } \mathbb{R}^d , \label{H1} \\ m:=\inf_{x\in \mathbb{R}^d } u_0 (x)>0. \label{H2} \end{gather} In Theorem \ref{Existence-C} we prove that the Cauchy problem \eqref{CP-u}-\eqref{CP-u0} has a unique positive classical solution under the hypotheses \eqref{H1}-\eqref{H2}. However, this solution need not exist globally in time. For a given initial datum $u_0 $ we define \[ T(u_0 )=\sup \big\{ t>0;\inf_{x\in \mathbb{R}^d } u(x,t)>0 \big\} <\infty \] and call it the maximal existence time of the positive solution or the vanishing time for \eqref{CP-u}-\eqref{CP-u0}. It is clear that \begin{equation}\label{eq:12-11111} \lim_{t \to T(u_0 ) } \inf_{x\in \mathbb{R}^d } u(x,t)=0. \end{equation} If this happens, we say that the solution vanishes at $t=T(u_0 )$. Usually, \emph{quenching} happens in the case $p>0$ (see \cite{Kawarada,Guo1,Guo2,Guo3}), while \emph{dead-core} occurs when $-1-1$. Let $v$ be a space independent solution of \eqref{CP-u} with an initial datum $m=\inf_{x\in \mathbb{R}^d } u_0 (x)$. It is easily seen that the solution of the problem \begin{equation}\label{eq:GSU-ODE} v' = -v^{-p},\quad \text{ for } t>0, \quad v(0) = m \end{equation} is expressed by \begin{equation}\label{solv1} v(t) = \{ (p+1)(T(m) -t) \}^{1/(p+1)} \quad \text{with} \quad T(m) = \frac{m^{p+1} }{p+1} \end{equation} and \begin{equation}\label{solv2} v(t) = \{ m^{p+1} - (p+1)t \}^{1/(p+1)} . \end{equation} It is immediate that $T(u_0 )\ge T(m)$ by the comparison principle (see Theorem \ref{comparison-C}). Next we study the case $T(u_0 )=T(m)$ in the following theorem (see \cite{GSU0,GSU,GU1,GU2,Gladkov,S,S2,SSU}. \begin{theorem} \label{ThmQSI} Assume \eqref{H1}-\eqref{H2}. If there exists a sequence $\{ a_k \}_{k=1}^{\infty } \subset \mathbb{R}^d $ such that \begin{equation}\label{inftyu01} u_0 (x+a_k ) \to m \quad \text{a.e. in } \mathbb{R}^d \text{ as } k\to \infty, \end{equation} then $T(u_0 )=T(m)$. Moreover, if $u_0 \not\equiv m$, then the solution of \eqref{CP-u}-\eqref{CP-u0} does not vanish in $\mathbb{R}^d $ at $t=T(m)$. (It vanishes only at space infinity.) \end{theorem} \begin{remark}\rm If $u_0 \not\equiv m$, then $|a_k | \to \infty $ as $k\to \infty $. \end{remark} The next theorem describes the behavior of the limit of the solution of \eqref{CP-u}-\eqref{CP-u0} as $t\to T(m)$. We prove that $u(x,T(m))=\lim_{t\to\ T(m)} u(x,t)$ for every $x\in \mathbb{R}^d $ (see Lemma \ref{SU-Lem41}). \begin{theorem} \label{ThmQSIB} Under the hypotheses as Theorem \ref{ThmQSI}, \[ \lim_{k \to \infty} u(a_k,T(m))=0. \] \end{theorem} Finally, we consider the relation between the form of initial data and the profile of a vanishing solution at time $T(m)$ (see \cite{GSU2}). In \cite[\S2b]{L}, for the equation \[ u_t =\Delta u +f(u), \] a subsolution and a supersolution of the form $\varphi (T(m)-t+h(x,t))$ were constructed. Here we construct a subsolution and a supersolution of the form $\varphi(T(m)-t+g(x,t))$ where $g(x,t)$ decays to zero at space infinity and \begin{equation} \varphi (s) =v(T(m)-s)=\{ (p+1)s \}^{1/(p+1)} ,\label{phi-def} \end{equation} to estimate the profile at the vanishing time for \eqref{CP-u}-\eqref{CP-u0}. It is clear that \begin{equation} \varphi' =\varphi^{-p}, \quad \varphi (T(m))=m, \quad \lim_{s\to 0} \varphi (s) =0.\label{phi-def2} \end{equation} Let $\psi$ be a positive function satisfying the following conditions: \begin{gather} \psi (x) \text{ is bounded and continuous in } \mathbb{R}^d, \label{A-psi-frac0} \\ \psi (x)>0 \quad \text{for } x \in \mathbb{R}^d, \label{A-psi-frac10} \end{gather} there exists a constant $C_1 >0$ such that \begin{equation} \sup_{x\in \mathbb{R}^d } \Big[ \inf_{y\in B(0,1)} \Big\{ \sup_{z\in B(y,1)} \frac{\psi(x)}{\psi(x+z)} \Big\} \Big] \le C_1, \label{A-psi-frac} \end{equation} and there exist constants $a\in ( 0,1/(4T(m)) ) $ and $C_2 >0 $ such that \begin{equation} \sup_{(x,y) \in \mathbb{R}^d \times \mathbb{R}^d } \frac{\psi(x-y)}{\psi(x)e^{a|y|^2 } } \le C_2 . \label{A-psi-frac2} \end{equation} Here $B(x,r)$ denotes the open ball of radius $r$ centered at $x$. \begin{theorem} \label{ThmUmeda} Let the hypotheses in Theorem \ref{ThmQSI} hold. If $\psi $ satisfies \eqref{A-psi-frac0}-\eqref{A-psi-frac2}, and \begin{equation}\label{ThU0UL} C_I \psi (x)\le u_0^{p+1} (x)-m^{p+1} \le C_{II} \psi (x) \end{equation} for some constants $C_I>0$ and $C_{II}$, then there exist constants \begin{equation} C=C(C_1 ,C_2 ,a,T(m),C_I )>0 \quad \hbox{and} \quad C'=C'(C_1 ,C_2 ,a, T(m) ,C_{II} )>0 \end{equation} such that the solution to \eqref{CP-u}-\eqref{CP-u0} satisfies \[ C \psi ^{1/(p+1)} (x) \le u(x,T(m)) \le C' \psi^{1/(p+1)} (x) . \] \end{theorem} \begin{remark} \rm Theorem \ref{ThmUmeda}, we may be restated as follows. If \[ u_0^{p+1} (x)-m^{p+1} \ge C_I \psi (x) \quad (\text{or } \le C_{II} \psi (x) ), \] for some constant $C_I>0$ (or $C_{II} >0$), then there exists a constant $C>0$ (or $C'>0$) such that the solution of \eqref{CP-u}-\eqref{CP-u0} satisfies \[ u(x,T(m)) \ge C \{ \psi (x)\}^{1/(p+1)} \quad (\text{or } \le C' \{ \psi (x)\}^{1/(p+1)}). \] \end{remark} If $\psi $ is a positive constant, then it satisfies \eqref{A-psi-frac0}-\eqref{A-psi-frac2}, and the initial datum with this $\psi $ satisfies \eqref{ThU0UL}. However, it does not satisfy the hypothesis of Theorem \ref{ThmQSI}. In fact, the solution of \eqref{CP-u}-\eqref{CP-u0} with such an initial datum does not vanish at $t=T(m)$. We shall show examples of $\psi$ satisfying these hypothesis. \begin{example} \rm Let $f$ satisfy \begin{equation} \text{$f(r)=(r^2 +1 )^{-b/2}$, $f(r)=e^{-br}$ or $f(r)= \{ \log (r+e) \}^{-b}$ for $r\ge 0$ and $b>0$}. \label{f-form} \end{equation} Assume that $\psi (x)$ satisfies one of the following three conditions: \begin{enumerate} \item $\psi (x)=f(|x|)$. \item $\psi (x) =\Theta (x/|x|) + \{ 1-\Theta ((x/|x|)\} \tilde{f} (|x|) $, where $\Theta (\theta ) \in C^{\infty } (S^{d-1} )$ satisfies \begin{equation*} \Theta (\theta ) \begin{cases} =0, & \theta \in S^{d-1} \cap \overline{B(\theta_0 ,r_1 )}, \\ \in (0,1), & \theta \in S^{d-1} \cap B(\theta_0,r_2 ) \backslash \overline{B(\theta_0 ,r_1 )} ,\\ =1, & \theta \in S^{d-1} \backslash B(\theta_0 ,r_2 ) \end{cases} \end{equation*} with some direction $\theta_0 \in S^{d-1} $, some constants $r_1 $, $r_2 $ satisfying $0-1$ and $d\ge 1$. If there exist sequences $\{ a_k \}_{k=1}^{\infty } \subset \mathbb{R}^d $ and $\{ r_k \}_{k=1}^{\infty } $ satisfying $00$ there exists $k_0 >0$ such that for any $k\ge k_0 $, \begin{equation}\label{SU11} \| \tilde{u}_0 \|_{L^{\infty } (B(a_k ,r_k )) } < \varepsilon^2 . \end{equation} Take $t_0 \in (0,T(m))$. By the mean value theorem we have \[ -(u^{-p} -v^{-p} )=\int_0^1 p\{ \theta u+(1-\theta )v \}^{-p-1} \tilde{u} d\theta \le \max \{ 0,p \} \{ v(t_0 ) \}^{-p-1} \tilde{u} \] for $t\in (0,t_0 )$. Put $K=K(t_0 )=\max \{ 0,p \} (v(t_0 ))^{-p-1} $. Thus \begin{gather*} \tilde{u}_t\le \Delta \tilde{u}+K\tilde{u} ,\quad x\in \mathbb{R}^d, 00 $ such that \begin{equation}\label{8:5-shapEEE} \inf_{t \in (0,T(m)) } \Big[ \inf_{k\in {\bf N} } \Big\{\operatorname{ess\,sup}_{x\in B(a_k ,r_k /2) } u(x,t) \Big\} \Big] \ge L . \end{equation} Since $v_t \le 0$ and $\lim_{t\to T(m)} v(t)=0 $, there exists $T_0 \in [0,T(m) )$ such that \[ v(T_0 ) \le \frac{L}{3}. \] From \eqref{SUPro21} there exists a constant $k_0 \ge 0$ such that \[ \sup_{k\ge k_0 } \| u(\cdot ,T_0)-v(T_0) \|_{L^{\infty}(B(a_k ,r_k /2))} \le \frac{L}{3}. \] From \eqref{8:5-shapEEE}, we see that \begin{align*} &\sup_{k\ge k_0 } \{ \| u(\cdot ,T_0 )-v(T_0 ) \|_{L^{\infty}(B(a_k ,r_k /2))} \} \\ & =\sup_{k\ge k_0 } \Big\{ \operatorname{ess\,sup}_{x\in B(a_k ,r_k /2) } u(x,T_0 ) -v(T_0 ) \Big\} \\ &\ge L-\frac{L}{3}=\frac{2L}{3}>\frac{L}{3}. \end{align*} This is a contradiction. We thus conclude that \begin{equation}\label{SHStar} \inf_{t \in [0,T(m)) } \Big[ \inf_{k\in {\bf N} } \Big\{ \operatorname{ess\,sup}_{x\in B(a_k ,r_k /2) } u(x,t) \Big\} \Big]=0 \end{equation} and $T(u_0 )\le T(m)$. By Theorem \ref{comparison-C}, we see that $T(u_0 )\ge T(m)$. We thus obtain $T(u_0 )=T(m)$. \end{proof} The next lemma shows that the solution of \eqref{CP-u}-\eqref{CP-u0} does not vanish in $\mathbb{R}^d $ even at the vanishing time. The lemma is shown by using the argument in \cite[Lemma 2.3]{MM2} (see also \cite{SU}). \begin{lemma}\label{SU-Lem31} Let $u(x,t)$ be a solution of \eqref{CP-u}-\eqref{CP-u0} in $\mathbb{R}^d \times [0,T(m))$ with $m$ defined in \eqref{H2}. Suppose that there exist $t_0 \in (0,T(m))$, $a \in \mathbb{R}^d$, $r_0 >0$ and $\theta >1$ such that \[ u(x,t) \ge \theta \varphi(T(m) -t) \quad \text{in } |x-a|0$ and $\tilde{\theta } =\tilde{\theta } (\varepsilon ) \in (1,\theta )$ satisfy \begin{equation}\label{T-epsilon-t0} \tilde{\theta } \varphi ( T-t_0 +\varepsilon/2 ) \le \theta \varphi (T-t_0). \end{equation} Define \[ \omega(x,t)=\tilde{\theta } \varphi(T-t+h(r)), \] where $r=|x-a|$ and \[ h(r)=\varepsilon\Big(\frac{1+\cos{\frac{\pi r}{r_0}}}{2}\Big) =\varepsilon\Big\{ \cos \Big(\frac{\pi r}{2r_0}\Big) \Big\}^2 . \] Thus, from \eqref{phi-def} and \eqref{phi-def2} we have \begin{align*} \omega_t-\Delta \omega +\omega^{-p} &=-\tilde{\theta } \varphi ' - \tilde{\theta } \varphi ' \Delta h - \tilde{\theta } \varphi '' |\nabla h|^2 +(\tilde{\theta } \varphi)^{-p} \\ &=\tilde{\theta } ( -\varphi^{-p} ) \Big\{1+\Delta h +\frac{\varphi ''}{\varphi '} |\nabla h|^2 -\tilde{\theta }^{-p-1} \Big\}, \end{align*} where \begin{gather*} \nabla h =h_r \nabla r =h_r \frac{x-a}{r} ,\\ \Delta h =\operatorname{div} (\nabla h)=h_{rr} +\frac{d-1}{r} h_r . \end{gather*} Since $\varphi '' =-p\varphi^{-p-1} \varphi ' $, there exists $t_0 \in (0,T)$ such that for $t\in (t_0,T)$ \begin{equation} \label{hhhdainyu} \begin{aligned} 1+\Delta h + \frac{\varphi ''}{\varphi '} |\nabla h|^2 -\tilde{\theta}^{-p-1} & = 1+ \Delta h -p\varphi^{-p-1} |\nabla h|^2 -\tilde{\theta }^{-p-1} \\ &\ge (1-\tilde{\theta }^{-p-1} )+ \Delta h -\frac{p|\nabla h|^2}{(p+1)(T-t+h)} \\ &\ge (1-\tilde{\theta }^{-p-1} )+ \left(h_{rr} +\frac{d-1}{r}h_r\right) -\frac{p|\nabla h|^2}{(p+1)h}. \end{aligned} \end{equation} We thus conclude that \begin{equation}\label{inequarity333} \begin{gathered} \omega_t \le \Delta \omega -\omega^{-p} , \quad |x-a|0$ sufficient small. By Theorem \ref{comparison-C}, for $x \in B(a,r_0 ) $ and $t\in [t_0 ,T)$ we have $u(x,t)\ge \omega (x,t)$. Since $\varphi$ is an increasing function, we obtain \[ u(x,t) \ge \tilde{\theta } \varphi \Big( T-t+h\big(\frac{r_0}{2}\big) \Big) =\tilde{\theta } \varphi \big(T-t+\frac{\varepsilon}{2} \big) \quad \text{for } (x,t)\in B( a, r_0 /2 ) \times [t_0 ,T). \] From \eqref{T-epsilon-t0}, we see that \[ \tilde{\theta } \varphi ( T-t +\varepsilon/2 ) \le \theta \varphi (T-t) \quad \text{for } t\in (t_0 , T). \] Since \[ u(x,t) \ge \theta \varphi (T-t ) \quad \text{for } (x,t)\in B( a,r_0/2) \times [t_0 ,T), \] we have \[ u(x,t) \ge \tilde{\theta } \varphi ( T-t +\frac{\varepsilon}{2} ) \quad \text{for } (x,t)\in B( a,r_0/2) \times [t_0 ,T) \] and $u$ does not vanish at $t=T$ in $B ( a,r_0/2)$. \end{proof} Next we show that the condition on $u_0 $ in Theorem \ref{ThmQSI} is equivalent to the one in Lemma \ref{SUProp21}. \begin{lemma}\label{DDae-infty} Assume \eqref{H1}-\eqref{H2}. Condition \eqref{inftyu01} is equivalent to condition \eqref{SU10} for sequences $\{ a_k \}_{k=1}^{\infty } \subset \mathbb{R}^d $ and $\{ r_k \}_{k=1}^{\infty } $ satisfying $00 $ be such that $B(x_0 ,1) \subset B(0,r_k )$ for $k\ge k_0 $. Since \[ \lim_{k\to \infty } \| u_0 -m \|_{L^{\infty } (B(a_k ,r_k)) } =0, \] we have \[ u_0 (x+a_k ) \to m \quad \text{a.e. in $B(x_0 ,1)$ as $k\to \infty$.} \] Since $x_0 \in \mathbb{R}^d $ is arbitrary, we obtain \eqref{inftyu01}. \end{proof} Finally, we shall prove that the vanishing occurs only at space infinity by using Lemma \ref{SU-Lem31}. \begin{proof}[Proof of Theorem \ref{ThmQSI}] Lemmas \ref{SUProp21} and \ref{DDae-infty} yield $T(u_0 )=T(m)$. Let $T=T(u_0 )=T(m)$. We need to show that for any $a \in \mathbb{R}^d$ there exist $t_0 \in (0, T )$, $r_0>0$ and $\theta > 1 $ such that for $x\in B(a,r_0 )$ and $t\in [t_0 ,T)$ \[ u(x,t) \ge \theta \varphi(T -t). \] From the strong maximum principle (or Theorem \ref{comparison-C2}), we obtain \[ u(x,t)>v(t) \quad \text{for } (x,t)\in D\times (0,T) \] for any compact set $D\subset \mathbb{R}^d $. We thus may let $u_0(x)>m$ for $x\in B(a,r_0 )$ without loss of generality. Let $w(x,t)$ be a solution of \begin{equation}\label{SU-w} \begin{gathered} w_t =\Delta w, \quad x \in B(a ,r_0), t> 0,\\ w(x,t)=1, \quad x \in \partial B(a ,r_0), t\ge 0, \\ 1 \le w(x,0)\le u_0 (x)/m, \quad x \in B(a ,r_0), \\ w(x,0) \not\equiv 1, \quad x \in B(a ,r_0). \end{gathered} \end{equation} It is clear that $vw \le u$ on $\partial B(a ,r_0) \times(0,T)$ and $B(a ,r_0) \times \{0\}$. From \eqref{SU-w} we obtain \[ (vw)_t = -v^{-p} w +v \Delta w \le -(vw)^{-p} +\Delta(vw). \] Then for any $a\in \mathbb{R}^d$ and any $r_0>0$, $vw$ is a subsolution of \eqref{CP-u}-\eqref{CP-u0} in $B(a ,r_0)$. Thus, by the strong maximum principle, for any $(x,t) \in B(a,r_0 ) \times (0,T )$, we see that $w(x,t) >1$. In particular, for any $\tilde{r}_0 \in(0,r_0 )$ there exist $\theta >1$ and $t_0 \in (0,T)$ such that \[ w(x,t) \ge \theta, \quad |x-a|<\tilde{r}_0, \; t_0 \le t < T. \] This implies \[ u(x,t) \ge \theta \varphi(T-t), \quad |x-a|<\tilde{r}_0, \; t_0 \le t < T \] by the comparison principle. By Lemma \ref{SU-Lem31}, $u$ does not vanish in a neighborhood of $a$. Since $a\in \mathbb{R}^d $ is arbitrary, it does not do in $\mathbb{R}^d$. \end{proof} \section{Behavior at vanishing time}\label{sec4} In this section we prove Theorem \ref{ThmQSIB}. The proof for the theorem uses the argument of the proof in \cite[Theorem 3]{SU}. First we introduce a lemma on the existence for the solution to \eqref{CP-u}-\eqref{CP-u0} at $t=T(m)$. \begin{lemma}\label{SU-Lem41} Assume the same hypotheses as in Theorem \ref{ThmQSI}. Then $u(x,T) =\lim_{t\to T} u(x,t)$ exists for any $x\in \mathbb{R}^d$ with $T=T(m)$. Moreover $u(x,T)\in C^{\infty } (\mathbb{R}^d) $. \end{lemma} The proof of this lemma shall be shown in Appendix B. Now we proceed with the proof of Theorem \ref{ThmQSIB}. \begin{proof}[Proof of Theorem \ref{SU-Lem31}] It is clear in the case $u_0 \equiv m$. We should only consider the case $u_0 \not\equiv m$. Let $\{ r_k \}_{k=1}^{\infty } $ be as defined in Lemma \ref{SUProp21}. Let $\varepsilon>0$ be sufficiently small so that $\varepsilon 0$ there exists a natural number $k_0 \in {\bf N}$ such that for any $k>k_0$, if $x \in B(a_k ,r_k /2 ), t \in (0,T^{\varepsilon})$, then \begin{equation}\label{2005.6.11.5} v^{\varepsilon}(t)+\varepsilon \ge u^{k,\varepsilon}(x,t). \end{equation} By the comparison principle (see Theorem \ref{comparison-C}) for any $x \in \mathbb{R}^d$ and any $t \in (0,T^{\varepsilon})$, \begin{equation}\label{2005.6.11.6} u^{k,\varepsilon}(x,t) \ge u(x,t). \end{equation} Since $T(m)0$ there exists $k_0 = k_0 (\varepsilon) \in {\bf N}$ such that for any $k>k_0$ \begin{align}\label{2005.6.11.7} v^{\varepsilon}(T(m))+\varepsilon \ge u(a_k,T(m)). \end{align} Since $\varepsilon >0$ can be chosen arbitrarily small and $\lim_{\varepsilon \to 0} v^{\varepsilon} (T(m))=0 $, \eqref{2005.6.11.7} implies \[ \lim_{k\to\infty} u(a_k,T(m)) =0. \] \end{proof} \section{Profile at vanishing} To prove Theorem \ref{ThmUmeda}, we construct a subsolution and a supersolution of the form $\varphi (T-t+g(x,t))$ with $T=T(m)$, as we have explained before. This is a modification of the method employed in \cite{L} and \cite{Shimozyo} to study blow-up profile for a semilinear heat equation. Let \begin{eqnarray} g^{\gamma }_{\alpha ,\beta } (x,t) =g^{\gamma ,\psi }_{\alpha ,\beta } (x,t) =\int_{\mathbb{R}^d } G^{\gamma }_{\alpha ,\beta } (x-y,t) \psi (y) dy, \label{g-psi-def} \end{eqnarray} where \[ G^{\gamma }_{\alpha ,\beta } (x,t) =\frac{|x|^{\beta } }{(t+\gamma )^{\alpha -d/2 } } G(x,t+\gamma ) =\frac{|x|^{\beta } }{(t+\gamma )^{\alpha} } \exp \Big( -\frac{|x|^2}{4(t+\gamma )} \Big) \] with $\alpha \in \mathbb{R} $, $\beta \ge 0$, $\gamma >0$ are constants (see \cite{GSU2}). Note that $g^{\gamma }_{\alpha ,\beta } $ also may be expressed as \[ g^{\gamma }_{\alpha ,\beta } (x,t) =\int_{\mathbb{R}^d } G^{\gamma }_{\alpha ,\beta } (y,t) \psi (x-y) dy. \] It is easily seen that: \begin{gather} |\nabla g^{\gamma }_{\alpha ,0 } | \le \frac{ \sqrt{d} g^{\gamma }_{\alpha +1,1} }{2} , \label{gggggg1} \\ \Delta g^{\gamma }_{\alpha ,0 } =\frac{g^{\gamma }_{\alpha +2 ,2} }{4} -\frac{d g^{\gamma }_{\alpha +1 ,0} }{2} , \label{gggggg2} \\ \partial_t g^{\gamma }_{\alpha ,0 } =\frac{g^{\gamma }_{\alpha +2 ,2} }{4} -\alpha g^{\gamma }_{\alpha +1 ,0} , \label{gggggg3}\\ \label{ggaa} g^{\gamma }_{\alpha ,\beta } (x,t)=\frac{g^{\gamma }_{0,\beta } } {(t+\gamma )^{\alpha} } . \end{gather} Before proving Theorem \ref{ThmUmeda} we prove the next two propositions. \begin{proposition} \label{Prop1Umeda} Assume that $p>-1$. Let $\psi $ be a positive bounded continuous function satisfying \eqref{A-psi-frac0}-\eqref{A-psi-frac2} and \begin{equation}\label{Lem-2-3-gamma} \gamma \in \Big(0, \frac{1}{4a} -T \Big). \end{equation} Then for any $C>0$ the function \begin{equation}\label{prof-w} W(x,t)=\varphi (T-t+Cg^{\gamma }_{-\alpha ,0} (x,t)) \end{equation} is a supersolution of \eqref{CP-u} in ${\bf R }^d \times (0,T)$ for $\alpha $ satisfies $\alpha \ge \alpha_1 $ with some constant $\alpha_1 =\alpha_1 (p,d,C_1 ,C_2 ,a,T ,\gamma )>0$, where $\varphi $ is defined in \eqref{phi-def}. \end{proposition} \begin{proposition} \label{Prop2Umeda} Assume the same hypotheses as in Proposition \ref{Prop1Umeda}. Then, for each constant $C>0$, the function \begin{equation}\label{astwwwww} w(x,t)=\varphi (T-t+Cg^{\gamma }_{\alpha ,0} (x,t)) \end{equation} is a subsolution of \eqref{CP-u} in $\mathbb{R}^d \times (0,T)$ provided that $\alpha $ satisfies $\alpha \ge \alpha_2 $ with some constant $\alpha_2 =\alpha_2 (p,d,C_1 ,C_2 ,a,T ,\gamma ) >0$. \end{proposition} Before proving Propositions \ref{Prop1Umeda} and \ref{Prop2Umeda}, we need one lemma on estimates for $g^{\gamma }_{0 ,\beta } $. \begin{lemma} \label{Lem3Umeda} Assume the same hypotheses as in Propositions \ref{Prop1Umeda} and \ref{Prop2Umeda}. Then for $\beta =0$, $1$, $2$, there exist constants $C_3=C_3 (C_1 ,\gamma )>0$ and $C_4 =C_4(C_2 ,a ,T,\gamma ) >0$ such that \[ C_3 \psi (x)\le g^{\gamma }_{0 ,\beta } (x,t)\le C_4 \psi (x) \quad \text{in } \mathbb{R}^d \times [0,T], \] where $C_1 $ and $C_2 $ are in \eqref{A-psi-frac} and \eqref{A-psi-frac2}, respectively. \end{lemma} \begin{proof} First we show $g^{\gamma }_{0,\beta } (x,t) \ge C_3 \psi (x)$ with some $C_3 >0$. From \eqref{A-psi-frac} we see that there exists a vector $q\in B(0,\min \{ 1, 2/\sqrt{d} \}) $ such that \begin{equation}\label{A-psi-11} \psi (x)\le 2C_1 \inf_{z\in B(q+x,1) } \psi (z) \end{equation} for each $x\in \mathbb{R}^d $. If \eqref{A-psi-11} holds, then we see that \begin{align*} g^{\gamma }_{0,\beta } (x,t) &\ge \inf_{z\in B(q+x,1) } \psi (z) \times \int_{B(q,1) } |y|^{\beta } \exp \Big( -\frac{|y|^2}{4\gamma } \Big) dy \\ &\ge \psi (x) \frac{1}{2C_1 } \int_{B(q,1) } |y|^{\beta } \exp \Big( -\frac{|y|^2}{4\gamma } \Big) dy. \end{align*} Since $|y|^{\beta} \exp(-|y|^2 /4\gamma )$ is radially symmetric and $|q|<2/\sqrt{d} $, we have \begin{align*} \int_{B(q,1)} |y|^{\beta } \exp \Big( -\frac{|y|^2}{4\gamma } \Big) dy &=\int_{B(\tilde{q},1)} |y|^{\beta } \exp \Big( -\frac{|y|^2}{4\gamma } \Big) dy \\ &\ge \int_{B(0,1)\cap [0,1]^d } |y|^{\beta } \exp \Big( -\frac{|y|^2}{4\gamma } \Big) dy, \end{align*} where $\tilde{q}=\big( \frac{|q|}{\sqrt{d} } , \frac{|q|}{\sqrt{d} },\ldots , \frac{|q|}{\sqrt{d} } \big)$. We thus obtain \begin{align*} g^{\gamma }_{0,\beta } (x,t) &\ge \psi (x) \frac{1}{2C_1 } \int_{B(0,1) \cap [0,1]^d } |y|^{\beta } \exp \Big( -\frac{|y|^2}{4\gamma } \Big) dy \\ &\ge \psi (x) \frac{1}{2^{d+1} C_1 } \int_{B(0,1)} |y|^{\beta } \exp \Big( -\frac{|y|^2}{4\gamma } \Big) dy. \end{align*} Let \begin{equation} \begin{aligned} C_3 & =\min_{\beta =0,1,2} \frac{2^{-1-d} }{C_1 } \int_{B(0,1)} |y|^{\beta } \exp \Big( -\frac{|y|^2}{4\gamma } \Big) dy \\ &=\frac{2^{-1-d}}{C_1 } \int_{B(0,1)} |y|^2 \exp \Big( -\frac{|y|^2}{4\gamma } \Big) dy. \end{aligned} \end{equation} Then we have \[ g^{\gamma }_{0,\beta } (x,t) \ge C_3 \psi (x) \] for any $x\in \mathbb{R}^d $. We next prove $g^{\gamma }_{0,\beta } (x,t) \le C_4 \psi (x)$ with some $C_4 >0$. In addition to satisfying \eqref{Lem-2-3-gamma} we may assume that \[ \frac{1}{4(T+\gamma )} -a>0. \] We thus see that from \eqref{A-psi-frac2}, \[ g^{\gamma }_{0 ,\beta } (x,t)\le C_2 \psi (x) \int_{\mathbb{R}^d } |y|^{\beta } \exp \Big\{ -\Big( \frac{1}{4(T+\gamma )} -a \Big) |y|^2 \Big\} dy \] for $t\in[0,T]$. By putting \[ C_4 =\max_{\beta =0,1,2} C_2 \int_{\mathbb{R}^d } |y|^{\beta } \exp \Big\{ -\Big( \frac{1}{4(T+\gamma )} -a \Big) |y|^2 \Big\} dy, \] we obtain $g^{\gamma }_{0 ,\beta } (x,t)\le C_4 \psi (x)$ for $t\in[0,T]$. \end{proof} \begin{proof}[Proof of Proposition \ref{Prop1Umeda}] By a direct calculation we have \begin{equation} \begin{aligned} W_t -\Delta W +W^{-p} & =-\varphi' +C \varphi' \partial_t g^{\gamma }_{-\alpha ,0} \\ &\quad -C \varphi' \Delta g^{\gamma }_{-\alpha ,0} -|C \nabla g^{\gamma }_{-\alpha ,0} |^2 \varphi'' +\varphi^{-p} . \end{aligned} \end{equation} From \eqref{gggggg2}-\eqref{gggggg3} we have \begin{equation} \label{UProp41-1} (\partial_t -\Delta ) g^{\gamma }_{-\alpha ,0} =\Big( \alpha +\frac{d}{2} \Big) g^{\gamma }_{-\alpha+1 ,0} . \end{equation} Since \begin{gather} \varphi' =\varphi^{-p} , \label{phi1diff} \\ \varphi'' =-p \varphi^{-2p-1} \label{phi2diff} \end{gather} and \[ \varphi^{p+1} =(p+1)(T-t+Cg^{\gamma }_{-\alpha ,0} ) \ge (p+1)(Cg^{\gamma }_{-\alpha ,0} ), \] we obtain \begin{equation}\label{UProop41-2} |C\nabla g_{-\alpha ,0}^{\gamma } |^2 \varphi'' \le \frac{C|p||\nabla g_{-\alpha ,0}^{\gamma } |^2 }{(p+1) g_{-\alpha ,0}^{\gamma} } \varphi' . \end{equation} Lemma \ref{Lem3Umeda}, \eqref{gggggg1} and \eqref{ggaa} yield \begin{equation}\label{UProp41-3} |C\nabla g_{-\alpha ,0}^{\gamma } |^2 \varphi'' \le \frac{C|p|d(g_{-\alpha +1 ,1}^{\gamma} )^2 }{4(p+1) g_{-\alpha ,0}^{\gamma } } \varphi' \le \frac{C|p|d C_4^2 (t+\gamma )^{\alpha -2} \psi }{4C_3 (p+1) } \varphi' . \end{equation} From \eqref{phi1diff}, \eqref{UProp41-1}, \eqref{UProp41-3} and Lemma \ref{Lem3Umeda}, we have \begin{align*} W_t -\Delta W+W^{-p} & \ge \Big\{ C_3 (t+\gamma )^{\alpha -1} \Big( \alpha +\frac{d}{2} \Big) - \frac{C|p|d C_4^2 (t+\gamma )^{\alpha -2} }{4C_3 (p+1) } \Big\} \varphi' \\ & \ge \Big\{ C_3 \gamma \Big( \alpha +\frac{d}{2} \Big) - \frac{C|p|d C_4^2 }{4C_3 (p+1)} \Big\} (t+\gamma )^{\alpha -2} \varphi' . \end{align*} If $\alpha $ satisfies \begin{equation}\label{labelalpha0} \alpha \ge \alpha_1 \equiv \max \Big\{ \frac{ C C_4^2 |p|d }{4C_3^2 \gamma (p+1) } -\frac{d}{2} ,\frac{1}{2} \Big\} >0, \end{equation} then $W$ is a supersolution of \eqref{CP-u} in $\mathbb{R}^d \times (0,T)$. \end{proof} \begin{proof}[Proof of Proposition \ref{Prop2Umeda}] As before, for $\varphi =\varphi (T-t+Cg^{\gamma }_{\alpha ,0} (x,t))$ we have \begin{equation} \begin{aligned} w_t -\Delta w +w^{-p} &=-\varphi' +C \varphi' \partial_t g_{\alpha ,0} -C \varphi' \Delta g^{\gamma }_{\alpha ,0} -|C\nabla g^{\gamma }_{\alpha ,0} |^2 \varphi'' +\varphi^{-p} \\ &\le \frac{C\partial_t g^{\gamma }_{\alpha ,0} }{\varphi^p } +\frac{C|\Delta g^{\gamma }_{\alpha ,0} |}{\varphi^p } +\frac{|C p \nabla g^{\gamma }_{\alpha ,0} |^2 }{\varphi^{2p+1} } \end{aligned} \label{Ew-ineq} \end{equation} by \eqref{phi1diff}-\eqref{phi2diff}. It is easily seen that \begin{equation}\label{phi-g-est} \varphi^{p+1} =(p+1)(T-t+Cg^{\gamma }_{\alpha ,0} ) \ge (p+1)(Cg^{\gamma }_{\alpha ,0} ). \end{equation} From Lemma \ref{Lem3Umeda}, \eqref{gggggg1}, \eqref{ggaa} and \eqref{phi-g-est}, it follows that \begin{equation}\label{galpha-0-ineq} \big|\frac{\nabla g^{\gamma }_{\alpha ,0} }{\varphi^{p+1} } \big| \le \frac{ \sqrt{d} g^{\gamma }_{0 ,1} }{ 2(p+1)(t+\gamma )g^{\gamma }_{0, 0} } \le \frac{C_4 \sqrt{d} }{ 2\gamma (p+1)C C_3 } . \end{equation} Substituting \eqref{galpha-0-ineq} for \eqref{Ew-ineq}, and using \eqref{gggggg2}-\eqref{ggaa}, we have \begin{align*} &w_t -\Delta w +w^{-p} \\ &\le \frac{C(p+1)}{ (t+\gamma )^{ \alpha +2} \varphi } \Big[ g^{\gamma }_{0,2} +(t+\gamma )\Big\{ -2\alpha g^{\gamma }_{0,0} +g^{\gamma }_{0,0} +\frac{C_4 \sqrt{d} |p| g^{\gamma }_{0,1} }{4C_3 (p+1) } \Big\} \Big] \\ &\le \frac{C(p+1)\psi }{(t+\gamma )^{\alpha +2} \varphi } \Big[ -2\alpha \gamma C_3 +C_4 \Big\{ 1+ (T+\gamma ) \Big(1 +\frac{C_4 d|p| }{4 C_3 (p+1) } \Big) \Big\} \Big] \end{align*} in $\mathbb{R}^d \times [0,T]$. If $\alpha $ satisfies \begin{equation}\label{labelalpha} \alpha \ge \alpha_2 \equiv \frac{C_4 }{2\gamma C_3 } \Big\{ 1+ (T+\gamma ) \Big(1 +\frac{C_4 d|p| }{4 C_3 (p+1) } \Big) \Big\} , \end{equation} then $w$ is a subsolution of \eqref{CP-u} in $\mathbb{R}^d \times (0,T)$. \end{proof} \begin{proof}[Proof of Theorem \ref{ThmUmeda}] Let $c_1 =c_1 (C_2 ,a,\gamma ,\alpha ) $ and $c_2 =c_2 (C_1 ,\gamma ,\alpha ) $ be positive constants such that \[ g^{\gamma }_{\alpha ,0} (x,0)\le c_1 \psi (x) , \quad g^{\gamma }_{-\alpha , 0} (x,0) \ge c_2 \psi (x) \] with $\alpha > 0$ as in Lemma \ref{Lem3Umeda} and \eqref{ggaa}. Hence \[ m^{p+1} +C_l g^{\gamma }_{\alpha ,0} (x,0) \le u_0^{p+1} (x) \le m^{p+1}+ C_h g^{\gamma }_{-\alpha ,0} (x,0) \] with $C_l =C_I /c_1 $ and $C_h =C_{II} /c_2 $. Since $m^{p+1} =(p+1)T$ by \eqref{solv1}, we have \begin{align*} w(x,0) &= \{ (p+1)T+C_l g^{\gamma }_{\alpha ,0} (x,0) \}^{1/(p+1)} \le u_0 (x) \\ & \le \{ (p+1) T+C_h g^{\gamma }_{-\alpha ,0} (x,0) \}^{1/(p+1)} = W(x,0), \end{align*} where $W$ and $w$ are defined in \eqref{prof-w} with $C=C_h /(p+1)$ and \eqref{astwwwww} with $C=C_l /(p+1)$. Propositions \ref{Prop1Umeda}, \ref{Prop2Umeda} and the comparison principle (see Theorem \ref{comparison-C}) yield \[ w(x,t) \le u(x,t) \le W(x,t) \quad \text{in } \mathbb{R}^d \times [0,T). \] We thereby get \[ \{ C_l g^{\gamma }_{\alpha ,0} (x,T) \}^{1/(p+1) } \le u (x,T) \le \{ \mathstrut C_h g^{\gamma }_{-\alpha ,0} (x,T) \}^{1/(p+1)} . \] Taking $C=( C_l C_3 )^{1/(p+1)} $ and $C' =(C_h C_4 )^{1/(p+1) }$, by Lemma \ref{Lem3Umeda} \[ C\psi^{1/(p+1)} (x) \le u(x,T) \le C' \psi^{1/(p+1)} (x). \] Choosing \[ \gamma =\frac{1}{8a}-\frac{T}{2} , \quad \alpha =\max \{ \alpha_1 ,\alpha_2 \} \] with $\alpha_1$ in \eqref{labelalpha0} and $\alpha_2 $ as in \eqref{labelalpha}, we see that $C$ depends only on $C_1 $, $C_2 $, $a$, $T$, $C_I$, and $C'$ does only on $C_1 $, $C_2 $, $a$, $T$, $C_{II}$. \end{proof} \section{Appendix A: Existence and uniqueness of the classical solution and comparison principle} In this section we prove that Cauchy problem \eqref{CP-u}-\eqref{CP-u0} with conditions \eqref{H1}-\eqref{H2} has a unique positive classical solution, as well as a comparison principle. First, we consider the local existence and uniqueness of the classical solution for the problem in time. We know that the solution of \eqref{CP-u}-\eqref{CP-u0} satisfies the integral equation: \begin{equation}\label{zeq:2-7} u(x,t) =e^{t \Delta } u_0 (x) -\int_0^t e^{(t-s) \Delta } u^{-p} (x,s)ds, \end{equation} where \begin{equation}\label{zeq:GGGDelta} e^{t \Delta } \xi (x)=\int_{ \mathbb{R}^d } G(x-y,t) \xi (y)dy \end{equation} with $G(x,t)$ defined in \eqref{G-Senbei} and a measurable function $\xi $. The function $\Xi (x,t)=e^{t\Delta } \xi (x)$ is the unique solution to \begin{gather*} \Xi_t =\Delta \Xi , \quad x\in \mathbb{R}^d , t>0, \\ \Xi (x,0)= \xi (x) , \quad x\in \mathbb{R}^d . \end{gather*} Now we consider the existence in time of a local solutions to \eqref{zeq:2-7}. \begin{lemma} \label{Existence} Assume that $u$ is the solution of \eqref{zeq:2-7}, where $p>-1$, $p\neq 0$, $u_0$ is bounded continuous, $\inf_{x\in \mathbb{R}^d} u_0 (x) =m>0$ and $\sup_{x\in \mathbb{R}^d } u_0 (x) =M <\infty $. Then the solution satisfying $u\ge m/q$ exists in $\mathbb{R}^d \times (0,T)$ with \begin{equation}\label{p-q-value} T0, \\ \min \{ (q-1)M^p, \frac{1}{|p|} ( \frac{m}{q} )^p \} \frac{m}{q} , & -10, \\ (q-1)M^p =\frac{1}{|p|} ( \frac{m}{q} )^p , \quad -11$. Let $u\in B_{m/q}^M $. Then, for $p>0$, \begin{align*} \Psi (u) & =e^{t \Delta } u_0 (x)-\int_0^t e^{(t-s) \Delta } u^{-p} (x,s)ds \\ & \ge m-\int_0^T \big( \frac{q}{m} \big)^p ds =m-\big( \frac{q}{m} \big)^p T, \end{align*} and for $-1m/q$ and $\Psi$ is a mapping from $B_{m/q}^M$ to itself. Rest of the proof we should show that \[ \| \Psi (u_1 )-\Psi (u_2 ) \|_{E_T } \le C \| u_1 -u_2 \|_{E_T } \] with some $C\in (0,1)$. For $u_1 ,u_2 \in B_{m/q}^M$, \[ |\Psi (u_1 )-\Psi (u_2 )| \le \int_0^t e^{(t-s) \Delta } |(u_1 )^{-p} (x,s)-(u_2 )^{-p} (x,s)|ds. \] By the mean value theorem \[ u_1^{-p} -u_2^{-p} =-\int_0^1 p \{ \theta u_1 +(1-\theta) u_2 \}^{-p-1} d\theta (u_1 -u_2). \] Since $u_1 $, $u_2 \ge m/q$, we obtain \[ \| \Psi (u_1 )- \Psi (u_2 ) \|_{E_T} \le T |p| \big( \frac{q}{m} \big)^{p+1} \| u_1 -u_2 \|_{E_T} 1$ is arbitrary, we may let $q=\bar{q} $. To complete the proof of Lemma \ref{Existence}, let $u(x,t)$ be the nonnegative and bounded solution of \eqref{zeq:2-7} that has been obtained in $\mathbb{R}^d \times [0,T)$ for some $T>0$. By \eqref{zeq:2-7}, $u(x,t)$ is continuous in $\mathbb{R}^d \times [0,T)$. Moreover, by considering the difference quotients $\{ u (x_1 ,x_2 ,\ldots ,x_{j-1} ,x_j +h ,x_{j+1} , \ldots ,x_d ,t)-u (x,t) \} /h $ with $h \to 0$, one easily sees that $\partial u (x,t)/\partial x_j $ is locally bounded in $\mathbb{R}^d \times [\tau ,T) $ for $j=1,2,\ldots ,d$ and any $\tau$ such that $0<\tau 0$, $u^{-p} $ are locally H\"older continuous functions in space uniformly with respect to time. It then follows from the representation formula \eqref{zeq:2-7} that $u$ is a classical solution of \eqref{CP-u}-\eqref{CP-u0} in $\mathbb{R}^d \times (0,T)$ with \eqref{H1}-\eqref{H2} (see \cite[Chapter 1, Theorem 10]{F}). \end{proof} \begin{remark}\label{Existence-rem}\rm Note that $T_{m,M} (q)$ defined in \eqref{p-q-value} has a maximum number at $q=\bar{q}$. For $p>0$ it is clear that $\bar{q} =(p+1)/p$. On the other hand, for $-1u_4 $ in $\mathbb{R}^d \times (0,T)$. \end{theorem} \begin{proof} Let $\tilde{w}=u_3 -u_4 $. From Theorem \ref{comparison-C}, we see that $\tilde{w}\ge 0$. For $t\in [0,T' )$ with $T' 0 \quad\text{in } \mathbb{R}^d \times (0,T') , \] where $e^{t\Delta } $ is defined in \eqref{zeq:GGGDelta}. Since $T'0 \quad \text{in } \mathbb{R}^d \times (0,T) . \] We thus see that \begin{gather*} \tilde{w}(x,t)>0 \text{ in } \mathbb{R}^d \times (0,T) , \\ u_3 (x,t)>u_4 (x,t) \text{ in } \mathbb{R}^d \times (0,T) . \end{gather*} \end{proof} Finally, we show the existence of solutions for problem \eqref{CP-u}-\eqref{CP-u0} in $\mathbb{R}^d \times (0,T(m))$. \begin{theorem}\label{Existence-C} Problem \eqref{CP-u}-\eqref{CP-u0} with initial data satisfying \eqref{H1}--\eqref{H2} has a unique classical solution in $\mathbb{R}^d \times (0,T(m))$. \end{theorem} \begin{proof} It is clear for the case $p=0$ and the case $u_0$ is a constant (in the case $m=M$). We consider the other case such as \begin{gather} p>-1,\ p\neq 0, \label{othercase1} \\ m0, \\ \frac{\tilde{q} -1}{\tilde{q} } M^p m , & -10, \\ m_n \big\{ 1- \big( \frac{m_n }{M_n } \big)^{-p} \frac{1+p}{1-p } \big\}^{1/(p+1)} , & -10, \\ M_n \big\{ 1- \frac{m_n }{M_n } \frac{1+p}{1-p } \big\}^{1/(p+1)} , & -10, \\ u_1 (x,0)=u(x,T_1 ), \quad x\in \mathbb{R}^d . \end{gather*} By the same argument as above, we see that the problem has a unique classical solution in $\mathbb{R}^d \times (0,T_2 ]$, where the sequence $\{ T_n \}_{n=1}^{\infty }$ is defined by \begin{equation}\label{tn-both} T_n = \begin{cases} (1-\varepsilon) (\tilde{q}-1) \big( \frac{m_{n-1} }{\tilde{q} } \big)^{p+1} , & p>0, \\ \frac{\tilde{q} -1}{\tilde{q} } M_{n-1}^p m_{n-1} , & -10$ for any $n\in {\bf N} $, we only should prove \begin{equation}\label{limTm} \lim_{n\to \infty } v_m (\tilde{T}_n ) =\lim_{n\to \infty } m_n =0. \end{equation} Put $\mu_n =m_n / M_n $. From \eqref{othercase2} we get \begin{equation}\label{othercase2lim} \sup_{n \in {\bf N} } \mu_n =\sup_{n\in {\bf N} } \frac{v_m (\tilde{T}_n)}{v_M (\tilde{T}_n)} \le \sup_{t\in [0, T(m)) } \frac{v_m (t)}{v_M (t)} <1. \end{equation} From \eqref{m-both} and \eqref{M-both} we see that \begin{equation}\label{mu-both} \mu_{n+1} = \begin{cases} \mu_n \Big\{ \frac{ 1-\frac{p^p (1-\varepsilon)}{(p+1)^p } } { 1-\frac{p^p (1-\varepsilon)}{(p+1)^p } \mu_n^{p+1} } \Big\}^{1/(p+1)} , & p>0, \\ \mu_n \Big\{ \frac{ 1- \mu_n^{-p} \frac{1+p}{1-p } } { 1- \mu_n \frac{1+p}{1-p } } \Big\}^{1/(p+1)} , & -10$. Then from \eqref{othercase1} we obtain that $b=1$ and a contradiction occurs. We thus obtain $\lim_{n \to \infty } \mu_n =0$. This means \eqref{limTm} and \eqref{limtildetntm}. Since \eqref{Tnunlim} holds for any $n\in {\bf N}$, \eqref{CP-u}-\eqref{CP-u0} has a unique classical solution in $\mathbb{R}^d \times (0,T(m))$. \end{proof} \section{Appendix B: Existence and regularity of the solution at $t=T(m)$} In this section we prove Lemma \ref{SU-Lem41}. Let $T=T(m)$. \begin{proof}[Proof of Lemma \ref{SU-Lem41}] From Theorem \ref{ThmQSI}, for any $a\in \mathbb{R}^d $ and any $R\in(0,\sqrt{T})$, there exist constants $C_1 =C_1 (a,R)>0$ and $C_2 =C_2 (a,R)>C_1$ such that \begin{equation} C_1 (d+2)/2$, $C_4 =C_4 (d,q) <\infty $, $C_5=C_5 (a,R,p,d,q)< \infty $, and $r_1 =R/2$. From \cite[II, Lemma 3.3]{LSU} we obtain \[ \|u\|_{C^{\alpha} (Q(r_1)) } \le C_6 (\|u\|_{W_q^{2,1} (Q(r_1 ) )} +\| u \|_{L_q (Q(r))} ) \le C_7 \] with $\alpha \in (0,1)$, $C_6 =C_6 (d,q,\alpha ) <\infty$ and $C_7 =C_7 (a,R,p,d,q,\alpha) <\infty $. From \eqref{appe01} we see that \[ \|u^{-p} \|_{C^{\alpha } (Q(r_1 ) )}\le C_8 \] with $C_8 =C_8 (a,R,p,d,q,\alpha) <\infty $. From \cite[Chapter 3, Theorem 5]{F} we get \begin{equation} \| u \|_{C^{2+\alpha } (Q(r_2 ) )} \le C_9 (\| u \|_{C^{\alpha } (Q(r_1 ) )} +\|u^{-p} \|_{C^{\alpha } (Q(r_1 ) )} ) \le C_{10} \label{appe02} \end{equation} with $r_2 =r_1 /2 =R/4$, $C_9 =C_9 (a,R,d,\alpha )$ and $C_{10} =C_{10} (a,R,p,d,q,\alpha )$. Next put $u_1=\Delta u$. Then we see that \[ (u_1 )_t =\Delta u_1 +pu^{-p-1} u_1 -p(p+1) u^{-p-2} |\nabla u|^2. \] From \eqref{appe01} and \eqref{appe02} we have \begin{gather*} \| u_1 \|_{C^{\alpha } (Q(r_2 ) )} \le C_{10},\\ \|pu^{-p-1} u_1 -p(p+1) u^{-p-2} |\nabla u|^2 \|_{C^{\alpha } (Q(r_2 ) )} \le C_{11} \end{gather*} with $C_{11} =C_{11} (a,R,p,d,q,\alpha )$. From \cite{F} again, \[ \|u_1 \|_{C^{2+\alpha } (Q(r_3 ) )} =\|u \|_{C^{4+\alpha } (Q(r_3 ) )} \le C_{12} \] with $r_3=r_2 /2=R/8 $ and $C_{12} =C_{12} (a,R,p,d,q,\alpha )$. Iterating this argument $n-1$ times, we have \[ \|u \|_{C^{2n+2+\alpha } (Q(r_n ) )} \le C_{13} \] with $r_n =R/2^n $ and $C_{13} =C_{13} (a,R,p,d,q,\alpha ,n )$. We thus see that \[ \Delta^n u_t (x,t)\le C_{14} \text{ for } (x,t)\in Q(r_n ) \] with $C_{14} =C_{14} (a,R,p,d,q,n )$. By integrating $\Delta^n u_t (a,t)$ from $T-r_n /2$ to $T$ with respect to $t$ and subtracting $\Delta^n u_t (a,T-r_n /2)$, we obtain $\Delta^n u (a,T)$. Thus we see that $\Delta^n u (a,T)$ exists. Since $a\in \mathbb{R}^d $ and $n\in {\bf N} $ are arbitrary, we obtain $u(\cdot ,T) \in C^{\infty } (\mathbb{R}^d )$. \end{proof} \subsection*{Acknowledgments} The author is grateful to anonymous referees for their valuable comments on this paper. \begin{thebibliography}{00} \bibitem{F} A. Friedman; \emph{Partial differential equations of parabolic type}, Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1964. \bibitem{GGS} M.-H. Giga, Y. Giga, J. Saal; \emph{Nonlinear partial differential Equations: asymptotic behavior of solutions and self-similar solutions}, Progress in Nonlinear Differential Equations and Their Applications, \textbf{79}, BirkhEuser, Boston, 2010. \bibitem{GSU0} Y. Giga, Y. Seki, N. Umeda; \emph{Blow-up at space infinity for nonlinear heat equations}, Recent Advances in Nonlinear Analysis, World Scientific Publishing, 77-94. (also in EPrint Series of Department of Mathematics, Hokkaido University, 2007.) \bibitem{GSU} Y. Giga, Y. Seki, N. Umeda; \emph{Mean curvature flow closes open sets of noncompact surface of rotation}, Comm. Partial Differential Equations \textbf{34} (2009) no. 11, 1508--1529. \bibitem{GSU2} Y. Giga, Y. Seki, N. Umeda; \emph{On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow}, Discrete and Continuous Dynamical System \textbf{29} (2011), 1463-1470. \bibitem{GU1} Y. Giga, N. Umeda; \emph{On blow-up at space infinity for semilinear heat equations}, J. Math. Anal. Appl. \textbf{316} (2006), 538--555. \bibitem{GU2} Y. Giga, N. Umeda; \emph{Blow-up directions at space infinity for solutions of semilinear heat equations}, Bol. Soc. Parana. Mat. (3) \textbf{23} (2005), 9--28: Correction is available in Bol. Soc. Parana. Mat. (3) \textbf{24} (2006), 19--24. \bibitem{GU3} Y. Giga, N. Umeda; \emph{On instant blow-up for semilinear heat equation with growing initial data}, Methods and Applications of Analysis \textbf{15} (2008), 185--196. \bibitem{Gladkov} A. L. Gladkov; \emph{Behavior of solutions of semilinear parabolic equations as $x\to \infty $}, Math. Notes, \textbf{51} (1992), 124--128. \bibitem{Guo1} J.-S. Guo; \emph{On the quenching behavior of the solution of a semilinear parabolic equation}, J. Math. Anal. Appl. {\bf 151} (1990), 58--79. \bibitem{Guo2} J.-S. Guo; \emph{On a quenching problem with the Robin boundary condition}, Nonlinear Analysis, TMA {\bf 9} (1991), 803--809. \bibitem{Guo3} J.-S. Guo; \emph{On the quenching rate estimate}, Quarterly of Applied Mathematics {\bf 49} (1991), 747--752. \bibitem{GMW} J.-S. Guo, H. Matano, C.-C. Wu; \emph{An application of braid group theory to the finite time dead-core rate}, Journal of Evolution Equations {\bf 10} (2010), 835--855. \bibitem{GS} J.-S. Guo, P. Souplet; \emph{Fast rate of formation of dead-core for the heat equation with strong absorption and applications to fast blow-up}, Mathematische Annalen {\bf 331} (2005), 651--667. \bibitem{HV1} M. A. Herrero, J. J. L. Vel\'azquez; \emph{On the dynamics of a semilinear heat equation with strong absorption}. Comm. Partial Differential Equations \textbf{14} (1989), 1653--1715. \bibitem{HV2} M. A. Herrero, J. J. L. Vel\'azquez; \emph{Asymptotic properties of a semilinear heat equation with strong absorption and small diffusion. Mathematische Annalen}, \textbf{288} (1990), 675--695 \bibitem{IKO} A. M. Il'in, A. S. Kalashnikov, O. A. Oleinik; \emph{Second-order linear equations of parabolic type}, J. Math. Sci. \textbf{108} (2002), 435--542. See also: \emph{Linear equations of the second order of parabolic type}, Russ. Math. Surv., \textbf{17} (1962) (3), 1--143. Both papers are translations of the original Russian version published in `Uspekhi Mat. Nauk, \textbf{17} (1962) no. 3 (105), 3--146'. \bibitem{Kawarada} H. Kawarada; \emph{On solutions of initial-boundary value problem for $u_t =u_{xx} +1/(1-u)$}, Publ. Res. Inst. Math. Sci. \textbf{10} (1974--75), 729--736. \bibitem{K} N. V. Krylov; \emph{Lectures on elliptic and parabolic equations in Sobolev spaces}. Graduate Studies in Mathematics, {\bf 96}, American Mathematical Society, Providence, RI, 2008. \bibitem{L} A. A. Lacey; \emph{The form of blow-up for nonlinear parabolic equations}. Proc. Roy. Soc. Edinburgh Sect. A \textbf{98} (1984), 183-202. \bibitem{LSU} O. A. Lady\v{z}enskaja, V. A. Solonnikov, N. N. Ural'ceva; \emph{Linear and quasilinear equations of parabolic type}. (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1967. \bibitem{MM2} H. Matano, F. Merle; \emph{Classification of type I and type II blowup for a supercritical nonlinear heat equation}, J. Func. Anal. \textbf{256} (2009), 993--1064. \bibitem{PW} M. H. Protter, H. F. Weinberger; \emph{Maximum principles in differential equations}, Englewood Cliffs, 1967. \bibitem{QS} P. Quittner, P. Souplet; \emph{Superlinear parabolic problems, Blow-up, global existence and steady states}, Birkhause, Besel-Boston-Berlin, 2007. \bibitem{ST} O. Sawada, Y. Taniuchi; \emph{A remark on $L^1 $ solutions to the 2-D Navier-Stokes equations}, J. Math. Fluid Mech., \textbf{9} (2007), 533--542. \bibitem{S} Y. Seki; \emph{On directional blow-up for quasilinear parabolic equations with fast diffusion}, J. Math. Anal. Appl., {\bf 338} (2008), 572--587. \bibitem{S2} Y. Seki; \emph{On exact dead-core rates for a semilinear heat equation with strong absorption}, Commun. Contemp. Math, {\bf 13} (2011), 1--52. \bibitem{SSU} Y. Seki, R. Suzuki, N. Umeda; \emph{Blow-up directions for quasilinear parabolic equations}, Proc. Roy. Soc. Edinburgh Sect. \textbf{138} (2008), 379--405. \bibitem{Shimozyo} M. Shimoj\=o; \emph{The global profile of blow-up at space infinity in semilinear heat equations}, J. Math. Kyoto Univ. {\bf 48} (2008), 339--361. \bibitem{SU} M. Shimoj\=o, N. Umeda; \emph{Blow-up at space infinity for solutions of cooperative reaction-diffusion systems}, Funkcialaj Ekvacioj, \textbf{54} (2011), 315--334. \end{thebibliography} \end{document}