\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 32, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/32\hfil Quasilinear elliptic problems] {Existence of solutions to quasilinear elliptic problems with nonlinearity and absorption-reaction gradient term} \author[S. E. Miri \hfil EJDE-2014/32\hfilneg] {Sofiane El-Hadi Miri} % in alphabetical order \address{Sofiane El-Hadi Miri \newline Universit\'e de Tlemcen, Facult\'e de Technologie, BP 230, Tlemcen 13000, Alg\'erie. \newline Laboratoire d'Analyse Non-Lin\'eaire et Math\'ematiques Appliqu\'ees, Universit\'e de Tlemcen, BP 119. Tlemcen, Alg\'erie} \email{mirisofiane@yahoo.fr} \thanks{Submitted January 14, 2013. Published Janaury 27, 2014.} \subjclass[2000]{35D05, 35D10, 35J25, 35J70, 46E30, 46E35} \keywords{Quasi-linear elliptic problems; entropy solution; general growth} \begin{abstract} In this article we study the quasilinear elliptic problem \begin{gather*} -\Delta_p u = \pm |\nabla u|^\nu+f(x,u), \quad \text{in } \Omega, \\ u \ge 0 \quad \text{in }\Omega , \\ u = 0 \quad \text{on }\partial\Omega , \end{gather*} where $\Omega \subset \mathbb{R}^N$ is a bounded regular domain, $p>1$ and $0<\nu\le p$. Moreover, $f$ is a nonnegative function verifying suitable hypotheses. The main goal of this work is to analyze the interaction between the gradient term and the function $f$ to obtain existence results. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction}\label{section00} In this article we will discuss existence results for a class of quasilinear elliptic problems in the form \begin{equation} \begin{gathered} -\Delta _pu=\pm | \nabla u| ^{\nu }+f( x,u) \quad \text{in }\Omega , \\ u>0 \quad \text{in }\Omega , \\ u=0 \quad \text{on }\partial \Omega , \end{gathered}\label{P-} \end{equation} where $\Omega \subset \mathbb{R}^N$ is a bounded domain and $\Delta _pu:= \operatorname{div}(|\nabla u|^{p-2}\nabla u)$, $p>1$, is the classical $p$-Laplace operator and $0<\nu \leq p$. The function $f:\overline{\Omega }\times [0,+\infty ) \to [0,+\infty )$ is assumed to be H\"{o}lder continuous, non-decreasing, and such that \begin{gather} \text{the function }t\mapsto \frac{f( x,t) }{t^{p-1}}\text{ is non-increasing for all }x\in \overline{\Omega }, \label{H2} \\ \lim_{t\to 0}\frac{f( x,t) }{t^{p-1}} =+\infty \text{ and }\lim_{t\to+\infty}\frac{f(x,t) }{t^{p-1}}=0\quad \text{uniformly for }x\in \overline{\Omega }. \label{H3} \\ f( x,0) \neq 0 \label{H4} \end{gather} Notice that problems with gradient term are widely studied in the literature. We can cite the leading works of Boccardo, Gallou\"et, Murat and their collaborators, see for instance \cite{BGO},\cite{BM} and \cite{BGM} and the references therein. For some recent works related to our problem, we can cite \cite{Bou,ADP,APP0,Prim,Rui,AZ,Zou}. In the particular case $p=2$, problem \eqref{P-} is related to the Lane-Emden-Fowler and Emden-Fowler equations, treated in many papers; we particulary cite the works of Radulescu, and his collaborators \cite{GR1,GR2,GR3} and more recently \cite{Dup,K} and the references therein. For the case without the absence of the gradient term, we refer to \cite{LIN}. When the nonlinearity is considered as an absorption term we cite \cite{Dal} where the authors prove the existence of solution even when $\Omega$ is of infinite measure, and in the same direction we cite \cite{BP}. The extension to the $p-$laplacian, of the previous results obtained in the case of the laplacian, especially when using a sub-supersolution method, has a major difficulty: no general comparison principle for the operator $-\Delta_p u \pm | \nabla u|^\nu$ exist at our knowledge, and there are only few partial results in this direction. In addition, the behavior of the operator changes when considering the cases $p<2$ and $p>2$. We refer the reader to \cite{Por} for a general discussion about this fact. \section{Preliminaries} The next comparison principles will be used frequently in this paper, for complete proofs of the first three ones we refer to \cite{Por} and we refer to \cite{AP} for the last one. Considering the problem \begin{equation} \begin{gathered} -\operatorname{div}(a(x,\nabla u))+H(x,\nabla u)=f(x) \quad \text{in }\Omega \\ u=0 \quad \text{on }\partial \Omega \end{gathered} \label{Propor} \end{equation} and having in mind the particular case \begin{gather*} -\Delta _pu \pm| \nabla u| ^{q}=f(x) \quad \text{in }\Omega \\ u=0 \quad \text{on }\partial \Omega, \end{gather*} with $q\leq p$ we have the following result. \begin{theorem}[\cite{Por}] Under the hypotheses: $q>\frac{N(p-1)}{N-1}$, $10 \label{por2} \\ a(x,0)=0 \label{por3} \\ | a(x,\xi )| \leq \beta ( k(x)+| \xi | ^{p-1}),\quad \beta >0,\; k(x)\in L^{p'}(\Omega ) \label{por4} \\ \begin{gathered} | H(x,\xi )-H( x,\eta ) | \leq \gamma ( b(x)+| \xi | ^{q-1}+| \eta | ^{q-1}) | \xi -\eta |, \\ \gamma >0,\quad b(x)\in L^{r}(\Omega ), \end{gathered} \label{por5} \end{gather} where \[ 1 \leq q\leq p-1+\frac{p}{N}, \quad r\geq \frac{N(q-( p-1) ) }{q-1}\quad (\text{with } r=\infty \text{ if }q=1) . \] If $u$ and $v$ are respectively sub- and super-solution of \eqref{Propor}, such as \begin{equation} ( 1+| u| ) ^{\overline{q}-1}u\in W_{0}^{1,p}(\Omega ), \quad ( 1+| v| ) ^{\overline{q}-1}v\in W_{0}^{1,p}(\Omega ),\quad \overline{q}=\frac{(N-p) ( q-( p-1) ) }{p( p-q)} \label{por6} \end{equation} then $u\leq v$ in $\Omega$. \end{theorem} \begin{theorem}[\cite{Por}] Under the hypotheses: $q<\frac{N(p-1)}{N-1}$, $2-\frac{1}{N}0,\ b(x)\in L^{r}(\Omega ), \\ r > \frac{N(p-1)}{N(p-1)-( N-1) } , \quad 1\leq q< \frac{N(p-1)}{( N-1) }. \end{gathered} \end{equation} If $u$ and $v$ are respectively sub- and super-solution of \eqref{Propor}, then $u\leq v$ in $\Omega$. \end{theorem} \begin{theorem}[\cite{Por}] Under the hypotheses: $p>2$, $q>\frac{p}{2}+\frac{(p-1)}{N-1}$, \eqref{por3}), \eqref{por4}, and \begin{gather} [ a(x,\xi )-a( x,\eta ) ] ( \xi -\eta ) \geq \alpha ( 1+| \xi | ^2+| \eta| ^2) ^{\frac{p-2}{2}}| \xi -\eta |^2,\quad \alpha >0 \\ | H(x,\xi )-H( x,\eta ) | \leq \gamma ( b(x)+| \xi | ^{q-1}+| \eta | ^{q-1}) | \xi -\eta | ,\quad \gamma >0, \\ b(x) \in L^N(\Omega )\quad \text{where } 1\leq q\leq \frac{p}{2} +\frac{p}{N}. \end{gather} If $u$ and $v$ are respectively sub- and super-solution of \eqref{Propor}, such as \begin{equation} ( 1+| u| ) ^{\overline{q}-1}u\in W_{0}^{1,p}(\Omega ),\quad ( 1+| v| ) ^{\overline{q}-1}v\in W_{0}^{1,p}(\Omega ),\quad \overline{q}=\frac{(N-p) ( q-\frac{p}{2}) }{p( \frac{p}{2}+1-q) } \end{equation} then $u\leq v$ in $\Omega$. \end{theorem} \begin{theorem}[\cite{AP}] \label{compa} Assume that $10$. Suppose that $u,v\in W_0^{1,p}(\Omega ) $ are such that \begin{equation} \label{eq:u1} \begin{gathered} -\Delta_p u\ge f(x,u), \quad u>0 \text{in }\Omega, \\ -\Delta_pv\le f(x,v), \quad v>0 \text{in }\Omega. \end{gathered} \end{equation} Then $u\ge v$ in $\Omega $. \end{theorem} Since we are dealing with a generalized notion of solution, we recall here the definition of entropy solutions for elliptic problems. \begin{definition} \label{def:entropye0l} \rm Let $u$ be a measurable function. We say that $u\in {\mathcal{T} }^{1,p}_{0}(\Omega )$ if $T_k(u)\in W_0^{1,p}(\Omega )$ for all $k>0$, where \begin{equation} \label{trun} T_{k}( s) =\begin{cases} k \operatorname{sgn}( s) &\text{if } | s| \geq k, \\ s &\text{if } | s| \leq k. \end{cases} \end{equation} Let $H\in L^{1}(\Omega )$. Then $u\in {\mathcal{T} }^{1,p}_{0}(\Omega )$ is an entropy solution to the problem \begin{equation} \label{eq:def} \begin{gathered} -\Delta_p u= H \quad \text{in }\Omega , \\ u|_{\partial\Omega }=0, \end{gathered} \end{equation} if for all $k>0$ and all $v\in W_0^{1,p}(\Omega ) \cap L^{\infty}(\Omega )$, we have \begin{equation} \label{eq:alcala} \int_\Omega |\nabla u|^{p-2}\langle\nabla u,\nabla (T_k(u-v))\rangle =\int_\Omega H T_k(u-v). \end{equation} \end{definition} We refer to \cite{BBVP} and \cite{LP} for more properties of entropy solutions. It is clear that if $u$ is an entropy solution to problem \eqref{P-}, then $u $ is a distributional solution to \eqref{P-}. \section{The absorption case} In this section we consider the problem \begin{equation} \begin{gathered} -\Delta _pu+| \nabla u| ^{\nu }=f( x,u) \quad \text{in }\Omega , \\ u>0 \quad \text{in }\Omega , \\ u=0 \quad \text{on }\partial \Omega . \end{gathered} \label{abs} \end{equation} \begin{theorem} \label{thexi0} Assume that the assumptions on $f$ hold. If $0<\nu \leq p$, then problem \eqref{abs} has at least one entropy solution $u\in W_{0}^{1,p}(\Omega )$ . \end{theorem} \begin{proof} We split the proof into several steps. \smallskip \noindent\textbf{Step 1: Construction of supersolution and subsolution.} To obtain the existence result we will use sub-supersolution argument. Let us consider the problem \begin{equation} \begin{gathered} -\Delta _pw=f( x,w) \quad \text{in }\Omega , \\ w>0 \quad \text{in }\Omega , \\ w=0 \quad \text{on }\partial \Omega . \end{gathered} \label{Psup} \end{equation} Then under the hypothesis on $f$, problem \eqref{Psup} possesses a unique solution $w$ which is a supersolution of \eqref{abs}. For the subsolution to problem \eqref{abs}, we consider $\underline{u}=0$. Finally by Theorem \ref{compa} we reach that $\underline{u}\leq w$. To obtain the existence result we use a monotonicity argument. Since no general comparison principle is known for this kind of problems, we will consider different values of $p$. The following steps 2, 3 and 4 are devoted to proving the existence of solution in the singular case, namely $p<2$, but for different ranges of $p$ and $\nu$. \smallskip \noindent\textbf{Step 2: Existence result for $\frac{2N}{N+1}\le p<2$ and $ 1\le \nu\le p-1+\frac{p}{N}$.} In this case, by \cite[Theorems 3.1 and 3.2]{Por} we know that a comparison principle holds for the operator $-\Delta_p u+|\nabla u|^\nu$ in the space $W_0^{1,p}(\Omega )$. Then, we define the sequence $\{u_n\}_{n\in \mathbb{N}}$ as follows: $u_{0}= \underline{u}$ and for $n\geq 1$, $u_n$ is the solution to problem \begin{equation} \begin{gathered} -\Delta _pu_n+| \nabla u_n| ^{\nu }=f(x,u_{n-1}) \quad \text{in }\Omega , \\ u_n>0 \quad \text{in }\Omega , \\ u_n=0 \quad \text{on }\partial \Omega . \end{gathered} \label{apro1} \end{equation} We claim that the sequence $\{u_n\}_{n\in \mathbb{N}}$ is increasing in $n$ and for all $n\geq 0$, $u_n\leq w$. Notice that the last statement follows easily from Theorem \ref{compa}. To prove the monotonicity of $ \{u_n\}_{n\in \mathbb{N}}$, we will use the comparison result obtained in \cite{Por}. It is clear that $u_1$ solves \[ -\Delta _pu_1+| \nabla u_1| ^{\nu }=f(x,u_{0}) . \] By the definition of $u_{0}$, we obtain that \[ -\Delta _pu_1+| \nabla u_1| ^{\nu } \geq -\Delta _pu_{0}+| \nabla u_{0}| ^{\nu }. \] Thus, by the comparison principle in \cite{Por}, we reach $u_1\geq u_{0}$. Let us show that $u_2\geq u_1$. As above, $u_2$ satisfies \[ -\Delta _pu_2+| \nabla u_2| ^{\nu }=f(x,u_1) . \] Since $f$ is a nondecreasing function, it follows that \[ -\Delta _pu_2+| \nabla u_2| ^{\nu }\geq -\Delta_pu_1+| \nabla u_1| ^{\nu }. \] Hence $u_2\geq u_1$. Therefore, the result follows by induction and then the claim follows. Thus, using $u_n$ as a test function in \eqref{apro1} and by the non decreasing property of $f$, we obtain that $\|u_n\|_{W_0^{1,p}(\Omega )}\le C$. Hence we obtain the existence of $u\in W_0^{1,p}(\Omega )$ such that $u_n\rightharpoonup u$ weakly in $W_0^{1,p}(\Omega )$ and $u_n\to u$ strongly in $L^\sigma(\Omega )$ for all $\sigma0 \quad \text{in }\Omega , \\ v_{k,n}=0 \quad \text{on }\partial \Omega . \end{gathered} \label{apro10} \end{equation} Let us begin by proving that the sequence $\{v_{k,n}\}_{k\in \mathbb{N}}$ is increasing in $k$ and that $v_{k,n}\leq w$, for all $k\geq 0$. For simplicity, we set \[ H_n(\xi )=\frac{|\xi |^{\nu }}{1+\frac{1}{n}|\xi |^{\nu }}\quad\text{where } \xi \in \mathbb{R}^N. \] It is clear that $v_{1,n}$ solves \[ -\Delta _pv_{1,n}+H_n(\nabla v_{1,n})=f( x,v_{0,n}) . \] By the definition of $v_{0,n}$, we obtain that \[ -\Delta _pv_{1,n}+H_n(\nabla v_{1,n})\geq -\Delta_pv_{0,n}+H_n(\nabla v_{0,n}). \] It is clear that $H_n$ satisfies the hypotheses of the comparison principle in \cite{Por}. Hence we reach $v_{1,n}\geq v_{0,n}$. In the same way, and using an induction argument, we conclude that $v_{k,n}\geq v_{k-1,n} $ for all $k\in \mathbb{N}^{\ast }$. Now, as in the proof of the previous step, using $v_{k,n}$ as a test function in \eqref{apro10} and by the hypotheses on $f$, we obtain that $\|v_{k,n}\|_{W_0^{1,p}(\Omega )}\le C$. Thus we obtain the existence of $u_n\in W_0^{1,p}(\Omega )$ such that $v_{k,n}\rightharpoonup u_n$ weakly in $W_0^{1,p}(\Omega )$. As in the previous step, we can show that $v_{k,n}\to u_n$ strongly in $W_0^{1,p}(\Omega )$. Note that by the previous computation we obtain easily that \[ v_{k,n}\geq v_{k,n+1}\quad \text{for all }k\geq 1. \] Hence we conclude that $u_n$ is the minimal solution to problem \begin{equation} \begin{gathered} -\Delta _pu_n+\dfrac{|\nabla u_n|^{\nu }}{1+\frac{1}{n}|\nabla u_n|^{\nu }}=f( x,u_n) \quad \text{in }\Omega , \\ u_n>0 \quad \text{in }\Omega , \\ u_n=0 \quad \text{on }\partial \Omega , \end{gathered} \label{apro100bis} \end{equation} with $u_n\leq u_{n+1}$ for all $n\geq 1$. It is clear that $\underline{u}\leq u_n\leq w\in L^{\infty }(\Omega )$. Then, as above using $u_n$ as a test function in \eqref{apro100bis}, we reach that $\|u_n\|_{W_{0}^{1,p}(\Omega )}\leq C$ and thus, we obtain the existence of $u\in W_{0}^{1,p}(\Omega )$ such that $u_n\rightharpoonup u$ weakly in $W_{0}^{1,p}(\Omega )$. If $\nu0 \quad \text{in }\Omega , \\ v_{k,n}=0 \quad \text{on }\partial \Omega . \end{gathered} \label{apro100} \end{equation} As above we have $v_{k,n}\le w$ for all $k\ge 0$. It is clear that $Q_n$ satisfies the condition of \cite[Theorems 3.1 and 3.2]{Por}. We claim that the sequence $\{v_{k,n}\}_{k\in \mathbb{N}}$ is increasing in $k$, for all fixed $n$. To prove the claim, we observe that $v_{1,n}$ solves \[ -\Delta _pv_{1,n}+Q_n(\nabla v_{1,n})=f( x,v_{0,n}) . \] By the definition of $v_{0,n}$, we obtain that \[ -\Delta _pv_{1,n}+Q_n(\nabla v_{1,n})\geq -\Delta _pv_{0,n}+Q_n(\nabla v_{0,n}). \] Hence, using again the comparison principle in \cite{Por}, we reach that $v_{1,n}\geq v_{0,n}$. In the same way, using an iteration argument, we conclude that $v_{k,n}\geq v_{k-1,n}$ for all $k\in \mathbb{N}^{\ast }$ and then the claim follows. Now for fixed $k$, we claim that $v_{k,n}\leq v_{k,n+1}$. Using the non decreasing property and the regularity of $f$ we see that the claim follows if we can prove that $v_{1,n}\leq v_{1,n+1}$. By the definition of $v_{1,n}$ and $v_{1,n+1}$, we have \[ -\Delta _pv_{1,n}+Q_n(\nabla v_{1,n})=-\Delta _pv_{1,n+1}+Q_{n+1}(\nabla v_{1,n+1})\le -\Delta _pv_{1,n+1}+Q_n(\nabla v_{1,n+1}). \] Thus, using the comparison principle of \cite{Por}, we conclude that $v_{1,n}\le v_{1,n+1}$. The general result follows by induction. Now, as in the previous steps, using $v_{k,n}$ as a test function in \eqref{apro100} and by the H\"{o}lder continuity of $f$, we obtain that $\|v_{k,n}\|_{W_{0}^{1,p}(\Omega )}\leq C$. Thus, we obtain the existence of $u_n\in W_{0}^{1,p}(\Omega )$ such that $v_{k,n}\rightharpoonup u_n$ weakly in $W_{0}^{1,p}(\Omega )$ as $k\to \infty $. The compactness arguments used in the first step allow us to prove that $v_{k,n}\to u_n$ strongly in $W_{0}^{1,p}(\Omega )$. Hence, we find that $u_n$ is the minimal solution to problem \begin{equation} \begin{gathered} -\Delta _pu_n+Q_n(\nabla u_n)=f( x,u_n) \quad \text{in }\Omega , \\ u_n>0 \quad \text{in }\Omega , \\ u_n=0 \quad \text{on }\partial \Omega , \end{gathered} \label{apro1000} \end{equation} with $u_n\leq u_{n+1}$ for all $n\geq 1$. It is clear that $\underline{u} \leq u_n\leq w\in L^{\infty }(\Omega )$. Then, as above, using $u_n$ as a test function in \eqref{apro100} we obtain easily that $\|u_n\|_{W_{0}^{1,p}(\Omega )}\leq C$. Thus, we obtain the existence of $u\in W_{0}^{1,p}(\Omega )$ such that $u_n\rightharpoonup u$ weakly in $W_{0}^{1,p}(\Omega )$. Since $\nu 2$, we will make a perturbation in the principal part of the operator, namely for $\varepsilon>0$, we consider the next approximating problems \begin{equation} \begin{gathered} -L_{\varepsilon}u+|\nabla u|^{\nu }=f( x,u) \quad \text{in }\Omega , \\ u>0 \quad \text{in }\Omega , \\ u=0 \quad \text{on }\partial \Omega , \end{gathered} \label{p2} \end{equation} where \[ -L_{\varepsilon}u=-\operatorname{div}((\varepsilon+|\nabla u|^2)^{\frac{p-2}{2}}\nabla u). \] We begin by proving that problem \eqref{p2} has a minimal solution $u_{\varepsilon}$ at least for $\varepsilon$ small. Fixed $\varepsilon>0$, then we define $w_\varepsilon$ to be the unique solution of problem \begin{equation} \begin{gathered} -L_\varepsilon w_\varepsilon= f( x,w_\varepsilon) \quad \text{in }\Omega, \\ w_\varepsilon>0 \quad \text{in }\Omega, \\ w_\varepsilon=0 \quad \text{on }\partial \Omega, \end{gathered} \label{we} \end{equation} (see \cite{M} for the proof of the uniqueness result). It is clear that $w_\varepsilon$ is a bounded supersolution to \eqref{p2} and $\|w_\varepsilon\|_{L^\infty}\le C$ for all $\varepsilon\ge 0$. The function $\underline{u}=0$ is aldo a subsolution of \eqref{p2}. Now, for $\varepsilon$ fixed we define the sequence $\{v_{n,k}\}_{k\in \mathbb{N}}$ as follows: $v_{n,0}=\underline{u}$ and for $k\geq 1$, $v_{n,k}$ is the solution to problem \begin{equation} \begin{gathered} -L_{\varepsilon}v_{k,n}+D_n(\nabla v_{k,n})=f( x,v_{k-1,n}) \quad \text{in }\Omega , \\ v_{k,n}>0 \quad \text{in }\Omega , \\ v_{k,n}=0 \quad \text{on }\partial \Omega , \end{gathered} \label{p4} \end{equation} where \[ D_n(\xi )=\begin{cases} \frac{|\xi |^{\nu }}{1+\frac{1}{n}|\xi |^{\nu }} \quad \text{if } 1<\nu \leq p \\ (|\xi |+\frac{1}{n})^{\nu } \quad \text{if } \nu \leq 1. \end{cases} \] It is clear that $v_{k,n}\leq w_{\varepsilon}$ for all $k\geq 0$. We claim that the sequence $\{v_{k,n}\}_{k\in \mathbb{N}}$ is increasing in $k$ for every fixed $n$. To prove the claim, we observe that $v_{1,n}$ solves \[ -L_{\varepsilon}v_{1,n}+D_n(\nabla v_{1,n})= f( x,v_{0,n}) . \] By the definition of $v_{0,n}$, we obtain that \[ -L_{\varepsilon}v_{1,n}+D_n(\nabla v_{1,n})\geq -L_{\varepsilon}v_{0,n}+D_n(\nabla v_{0,n}). \] Hence, using the comparison principle in \cite[Theorem 4.1]{Por}, we reach that $v_{1,n}\geq v_{0,n}$. In the same way, using an induction argument, we conclude that $v_{k,n}\geq v_{k-1,n}$ for all $k\in \mathbb{N}^{\ast }$ and then the claim follows. Using $v_{k,n}$ as a test function in \eqref{p4} we easily get that $\|v_{k,n}\|_{W_{0}^{1,p}(\Omega )}\leq C$. Thus, we obtain the existence of $u_n\in W_{0}^{1,p}(\Omega )$ such that $v_{k,n}\rightharpoonup u_n$ weakly in $W_{0}^{1,p}(\Omega )$. By the compactness argument used in the Step 2, we obtain that $v_{k,n}\to u_n$ strongly in $W_{0}^{1,p}(\Omega )$ and $ u_n$ is the minimal solution to the problem \begin{equation} \begin{gathered} -L_{\varepsilon}u_n+D_n(\nabla u_n)=f( x,u_n) \quad \text{in }\Omega ,\\ u_n>0 \quad \text{in }\Omega , \\ u_n=0 \quad \text{on }\partial \Omega . \end{gathered} \label{p5} \end{equation} Now, we pass to the limit in $n$. Using $u_n$ as a test function in \eqref{p5} and as $f$ is assumed to be H\"{o}lder continuous, we find that $\|u_n\|_{W_{0}^{1,p}(\Omega )}\leq C$. Thus, we obtain the existence of $u_{\varepsilon}\in W_{0}^{1,p}(\Omega )$ such that $u_n\rightharpoonup u_{\varepsilon}$ weakly in $W_{0}^{1,p}(\Omega )$. If $\nu 0 \quad \text{in }\Omega , \\ u_{\varepsilon}=0 \quad \text{on }\partial \Omega . \end{gathered} \label{p6} \end{equation} If $\nu=p$, then by the argument of the last part of Step 3 and using the compactness result of \cite{Por1}, we reach the strong convergence of $\{u_n\}_{n\in \mathbb{N}}$ in $W_0^{1,p}(\Omega )$. Thus, we obtain a minimal solution to \eqref{p6} also in this case. To finish, we just have to pass to the limit in $\varepsilon$. Notice that, in general, the sequence $\{u_{\varepsilon}\}_{\varepsilon}$ is not necessarily monotone in $\varepsilon$. Using $u_{\varepsilon}$ as a test function in \eqref{p6} we reach that $\|u_{\varepsilon }\|_{W_{0}^{1,p}(\Omega )}\leq C$ and then $u_{\varepsilon}\rightharpoonup u$ weakly in $W_{0}^{1,p}(\Omega )$. Since $\underline{u}\leq u_{\varepsilon}\leq w_{\varepsilon}\leq C$, then we easily get that \[ f( x,u_{\varepsilon}) \to f( x,u) \text{ strongly in }L^{1}(\Omega ). \] Since $\nu 0 \quad \text{in }\Omega , \\ u=0 \quad \text{on }\partial \Omega , \end{gathered} \label{p61} \end{equation} and the existence result follows. It is clear that $\underline{u}\leq u\leq w$. \end{proof} \section{The reaction case} \label{sec:reac} In this section, we study the reaction case, namely we consider the problem \begin{equation} \begin{gathered} -\Delta _pu=f( x,u) +| \nabla u| ^{\nu } \quad \text{in }\Omega , \\ u>0 \quad \text{in }\Omega , \\ u=0 \quad \text{on }\partial \Omega , \end{gathered} \label{reac} \end{equation} with $\nu 0 \quad \text{in }\Omega , \\ u=0 \quad \text{on }\partial \Omega . \end{gathered} \label{Pint} \end{equation} By the assumptions on $f$, we reach that problem \eqref{Pint} has a unique positive solution $v\in \mathcal{C}^{1,\sigma}(\overline{\Omega })$ with $\sigma<1$. Then for $C>1$ we have \[ -\Delta _p( Cv) =C^{p-1}f( x,v) +C^{p-1}. \] By hypothesis \eqref{H2}, we obtain $-\Delta _p(Cv)\geq f(x,Cv)+C^{p-1}$. Since $\nu C^{\nu }|\nabla v|^{\nu }+1$. Thus \[ -\Delta _p(Cv)\geq f(x,Cv)+|\nabla Cv|^{\nu }+1 \] and then $\overline{u}=Cv$ is a supersolution to problem \eqref{reac}. To prove the existence, we follow the arguments used in the previous section. By the comparison principle in Theorem \ref{compa} we have that $\underline{u}\leq \overline{u}$. \smallskip \textbf{First case: $\frac{2N}{N+1}\le p<2$ and $\nu0 \quad \text{in }\Omega , \\ u_n=0 \quad \text{on }\partial \Omega , \end{gathered} \label{reac1} \end{equation} where \[ Q_n(\xi )=(|\xi |+\frac{1}{n})^{\nu },\quad \text{for }\xi \in \mathbb{R}^N. \] It is clear that $\underline{u}\leq u_n\leq \overline{u}$. Using $u_n$ as a test function in \eqref{reac1} and by the fact that $\nu 0$ small, we claim that problem \begin{equation} \begin{gathered} -L_{\varepsilon}u=f( x,u) +|\nabla u|^{\nu } \quad \text{in }\Omega , \\ u>0 \quad \text{in }\Omega , \\ u=0 \quad \text{on }\partial \Omega , \end{gathered} \label{reac2} \end{equation} where \[ -L_{\varepsilon}u=-\operatorname{div}((\varepsilon+|\nabla u|^2)^{\frac{p-2}{2}}\nabla u), \] has a minimal solution $u_{\varepsilon}$, at leat for $\varepsilon$ small such that $\underline{u}\leq u_{\varepsilon}\leq \overline{u}$. Since $\underline{u},\overline{u}\in \mathcal{C}^{1,\alpha}(\overline{ \Omega })$, then for $\varepsilon$ small we reach that $\underline{u}$ (respectively $\overline{u}$) is a subsolution (respectively supersolution) to \eqref{reac2}. Fix an $\varepsilon$ small enough so that the previous statement still holds true, and define \[ D_n(\xi )=\begin{cases} \frac{|\xi |^{\nu }}{1+\frac{1}{n}|\xi |^{\nu }}& \text{if }1<\nu 0 \quad \text{in }\Omega , \\ v_{k,n}=0 \quad \text{on }\partial \Omega . \end{gathered} \label{reac3} \end{equation} Notice that $u_n=\lim\limits_{k\to \infty }v_{n,k}$ where the sequence $\{v_{n,k}\}_{k\in \mathbb{N}}$ is defined as follows: $v_{n,0}=\underline{u}$ and for $k\geq 1$, $v_{k,n}$ is the solution to problem \begin{gather*} -L_{\varepsilon}v_{k,n}=f( x,v_{k-1,n}) +D_n(\nabla v_{k,n}) \quad \text{in } \Omega , \\ v_{k,n}>0 \quad \text{in }\Omega , \\ v_{k,n}=0 \quad \text{on }\partial \Omega . \end{gather*} Using $u_n$ as a test function in \eqref{reac3} and as $f$ is a nondecreasing H\"{o}lder continuous function, we reach $\|u_n\|_{W_{0}^{1,p}(\Omega )}\leq C$. Thus, we obtain the existence of $u_{\varepsilon}\in W_{0}^{1,p}(\Omega )$ such that $u_n\rightharpoonup u_{\varepsilon}$ weakly in $W_{0}^{1,p}(\Omega )$. By the compactness argument in Step 2 of Theorem \ref{thexi0} we obtain that $u_n\rightharpoonup u_{\varepsilon}$ strongly in $W_{0}^{1,p}(\Omega )$ and $u_{\varepsilon}$ is the minimal solution to \eqref{reac2}. It is clear that $\underline{u}\leq u_{\varepsilon}\leq \overline{u}$, and the claim follows. The last step is to pass to the limit in $\varepsilon$. Using $u_\varepsilon$ as a test function in \eqref{reac2}, we reach that $\|u_\varepsilon\|_{W_0^{1,p}(\Omega )}\le C$ and then $u_\varepsilon\to u$ weakly in $W_0^{1,p}(\Omega )$. Since $\nu 0 \quad \text{in }\Omega , \\ u=0 \quad \text{on }\partial \Omega . \end{gathered}\label{p62} \end{equation} \end{proof} \begin{remark} \rm Observe that the condition \ref{H4} imposed on $f$ to ensure that $0$ is a strict subsolution, is not necessary, indeed one can drope it, and consider as subsolution the function introduced in \cite{Dup}, in \cite{M} and in \cite{M2}, defined by $\ ~\underline{u}$ $=Mh( c\varphi_1)$ where $M$ and $c$ are positive constants to be chosen, $\varphi _1$ is the first eigenfunction of the p-laplacian and $h$ is the solution to the differential equation \begin{gather*} h''(t)=q(h(t))g(h(t)), \\ h>0, \quad h'>0, \\ h(0)=h'(0)=0. \end{gather*} where $q:( 0,+\infty ) \to ( 0,+\infty ) $ is a non-increasing and H\"older continuous function, and $g(s)$ behaves like $\frac{1}{s^\beta}$, for some $\beta>0$. \end{remark} \subsection*{Acknowledgments} I am deeply grateful to Professors B. Abdellaoui and V. Radulescu, and to the anonymous referees for providing constructive comments that help in improving the contents of this article. \begin{thebibliography}{99} \bibitem{Bou} B. Abdellaoui; \emph{Multiplicity result for quasilinear elliptic problems with general growth in the gradient}, Advanced Nonlinear Studies \textbf{8} (2008), 289-302. \bibitem{ADP} B. Abdellaoui, A. Dall'Aglio, I. Peral; \emph{Some remarks on elliptic problems with critical growth in the gradient}, J. Differential Equations 222 (2006), 21-62. \bibitem{AP} B. Abdellaoui, I. Peral; \emph{Existence and non existence results for quasilinear elliptic equations involving the p-laplacian with a critical potential. Annali di Matematica}, \textbf{182} (2003), 247-270. \bibitem{APP0} B. Abdellaoui, I. Peral, A. Primo; \emph{Breaking of resonance and regularizing effect of a first order term in some elliptic equations}, Ann. I. H. Poincar\'{e}-AN \textbf{25} (2008), 969-985. \bibitem{AZ} C. Azizieh; \emph{Some results on positive solutions of equations including the p-Laplacian operator}, Nonlinear Analysis, \textbf{55}, 191-207, 2003. \bibitem{BBVP} P. B\'{e}nilan, L. Boccardo, T. Gallou\"{e}t, R. Gariepy, M. Pierre, J.L. Vazquez; \emph{An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,} Ann. Scuola Norm. Sup. Pisa. Cl. Sci. \textbf{22} (1995), 241-273. \bibitem{BGO} L. Boccardo, T. Gallou\"{e}t, L. Orsina; \emph{Existence and nonexistence of solutions for some nonlinear elliptic equations,} J. Anal. Math. \textbf{73} (1997), 203-223. \bibitem{BGM} L. Boccardo, T. Gallou\"{e}t, F. Murat; \emph{A unified representation of two existence results for problems with natural growth}, Research Notes in Mathematics \textbf{296} (1993), 127-137. \bibitem{BM} L. Boccardo, F. Murat, J. P. Puel; \emph{Existence des solutions non born\'{e}es pour certaines \'{e}quations quasilin\'{e}aires}, Portugal Math \textbf{41} (1982), 507-534. \bibitem{BP} L. Boccardo, M. M. Porzio; \emph{Quasilinear elliptic equations with subquadratic growth}, Journal of Differential Equations 229 (1), (2006) pp. 367-388 \bibitem{Dal} A. Dall'Aglio, V. De Cicco, D. Giachetti, J.-P. Puel; \emph{Nonlinear elliptic equations with natural growth in general domains}, Annali di Matematica Pura e Applicata, Vol. 181,(2002), pp. 407-426. \bibitem{Dup} L. Dupaigne, M. Ghergu, V. Radulescu; \emph{Lane-Emden-Fowler equations with convection and singular potential}, J. Math. Pures Appl. \textbf{87} (2007), 563-581. \bibitem{GR1} M. Ghergu, V. Radulescu; \emph{Bifurcation ad asymptotics for the Lane-Emden-Fowler equation}, C. R. Acad. Sci. Paris, S\'{e}r. I \textbf{337} (2003), 259-264. \bibitem{GR2} M. Ghergu, V. Radulescu; \emph{Ground state solutions for the singular Lane-Emden-Fowler equation with sublinear convection term}, J. Math. Anal. Appl. \textbf{333} (2007), 265-273. \bibitem{GR3} M. Ghergu, V. Radulescu; \emph{Singular Elliptic Problems}. Bifurcation and Asymptotic Analysis, in: Oxford Lecture Series in Mathematics and Its Applications, vol. 37, The Clarendon Press, Oxford University Press, (2008). \bibitem{K} R. Kajikiya; \emph{Sobolev norm estimates of solutions for the sublinear Emden-Fowler equation}, Opuscula Math. 33 (2013), no. 4, 713--723. \bibitem{LP} C. Leone, A. Porretta; \emph{Entropy solutions for nonlinear elliptic equations in $L^1$}, Nonlinear Anal. T.M.A \textbf{32}, (1998), 325-334. \bibitem{LIN} P. Lindqvist; \emph{On the equation $\Delta_p u+\lambda |u|^{p-2}u=0$,} Proc. Amer. Math. Soc. \textbf{109}, no. 1 (1990), 157-164. \bibitem{M} S. E. H. Miri; \emph{Quasilinear elliptic problems with general growth and nonlinear term having singular behavior}, Advanced Nonlinear Studies. 12 (2012), 19-48. \bibitem{M2} S. E. H. Miri; \textit{Probl\`{e}mes elliptiques et paraboliques avec terme singulier.} Ph. D. diss., 2012. \bibitem{Prim} A. Perrotta, A. Primo; \emph{Regularizing effect of a gradient term in problem involving the $p$-Laplacian Operator}, Advanced nonlinear studies, 11 (2011), 221-231. \bibitem{Por} A. Porretta; \emph{On the comparison principle for p-Laplace type operators with first order terms}, Resultsand developments, Quaderni di Matematica \textbf{23}, Department of Mathematics, Seconda Universit`a di Napoli, Caserta, 2008. \bibitem{Por1} A. Porretta; \emph{Nonlinear equations with natural growth terms and measure data}, 2002-Fez conference on Partial Differential Equations, Electronic Journal of Differential Equations, Conference \textbf{09} 2002, 183-202. \bibitem{Rui} D. Ruiz; \emph{A priori estimates and existence of positive solutions for strongly nonlinear problems}, J. Differential Equations \textbf{199} (1) (2004), 96-114. \bibitem{Zou} H. Zou; \emph{A priori estimates and existence for quasi-linear elliptic equations}, Calc. Var. \textbf{33} (2008), 417-437. \end{thebibliography} \end{document}