\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 33, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/33\hfil H\"older continuity] {H\"older continuity for a periodic 2-component \\ $\mu$-b system} \author[X. Wang \hfil EJDE-2014/33\hfilneg] {Xiaohuan Wang} % in alphabetical order \address{Xiaohuan Wang \newline College of Mathematics and Information Science, Henan University\\ Kaifeng 475001, China} \email{xiaohuanw@126.com} \thanks{Submitted September 27, 2013. Published January 27, 2014.} \subjclass[2000]{35G25, 35B30, 35L05} \keywords{ H\"older; $\mu$-Hunter-Saxton system; energy estimates; \hfill\break\indent initial value problem; $\mu$-b system} \begin{abstract} In this article, we consider the Cauchy problem of a periodic 2-component $\mu$-b system. We show that the date to solution for the periodic 2-component $\mu$-b system is H\"older continuous from bounded set of Sobolev spaces with exponent $s>5/2$ measured in a weaker Sobolev norm with index $r0,x\in\mathbb{R},\\ \rho_t=(\rho u)_x,\quad t>0,\; x\in\mathbb{R},\\ u(0,x)=u_0(x),\quad \rho(0,x)=\rho_0(x), \quad x\in\mathbb{R},\\ u(t,x+1)=u(t,x),\quad \rho(t,x+1)=\rho(t,x), \quad t\geq0,\; x\in\mathbb{R}, \end{gathered} \label{1.1} \end{equation} where $b\in\mathbb{R}$, $\mu(u)=\int_\mathbb{S}udx$ and $\mathbb{S}=\mathbb{R}/\mathbb{Z}:=(0,1)$. Recently, Zou \cite{Z} introduced the system \begin{equation} \begin{gathered} \mu(u)_t-u_{txx}=2\mu(u)u_x-2u_xu_{xx}-uu_{xxx}+\rho\rho_x-\gamma_1u_{xxx},\quad t>0,\; x\in\mathbb{R},\\ \rho_t=(\rho u)_x-2\gamma_2\rho_x,\quad t>0,\; x\in\mathbb{R},\\ u(0,x)=u_0(x),\quad \rho(0,x)=\rho_0(x), \quad x\in\mathbb{R},\\ u(t,x+1)=u(t,x),\quad \rho(t,x+1)=\rho(t,x), \quad t\geq0,\; x\in\mathbb{R}, \end{gathered}\label{1.2} \end{equation} where $\mu(u)=\int_\mathbb{S}udx$, $\mathbb{S}=\mathbb{R}/\mathbb{Z}$ and $\gamma_i\in\mathbb{R}$, $i=1,2$. By integrating both sides of the first equation in the system \eqref{1.2} over the circle $\mathbb{S}$ and using the periodicity of $u$, one obtains \[ \mu(u_t)=\mu(u)_t=0, \] which implies the following 2-component periodic $\mu$-Hunter-Saxton system \begin{equation} \begin{gathered} -u_{txx}=2\mu(u)u_x-2u_xu_{xx}-uu_{xxx}+\rho\rho_x-\gamma_1u_{xxx},\quad t>0,\; x\in\mathbb{R},\\ \rho_t=(\rho u)_x-2\gamma_2\rho_x,\quad t>0,x\in\mathbb{R},\\ u(0,x)=u_0(x),\quad \rho(0,x)=\rho_0(x), \quad x\in\mathbb{R},\\ u(t,x+1)=u(t,x),\quad \rho(t,x+1)=\rho(t,x), \quad t\geq0,\; x\in\mathbb{R}. \end{gathered}\label{1.3} \end{equation} This system is a 2-component generalization of the generalized Hunter-Saxton equation obtained in \cite{KLM}. Zou \cite{Z} shows that this system is both a bi-Hamiltonian Euler equation and a bi-variational equation. Liu-Yin \cite{LYna} established the local well-posedness, precise blow-up scenario and global existence result to the system \eqref{1.3}. If $b=2$, then system \eqref{1.1} becomes the system \eqref{1.3} with $\gamma_1=\gamma_2=0$. Therefore, system \eqref{1.1} generalizes system \eqref{1.3} in some sense. If $\rho\equiv0$, then system \eqref{1.1} becomes the system \begin{equation} \begin{gathered} \mu(u_t)-u_{xxt}+uu_{xxx}-bu_x(\mu(u)-u_{xx})=0,\quad t>0,\; x\in\mathbb{S},\\ u(0,x)=u_0(x), \quad x\in\mathbb{S}. \end{gathered} \label{1.4} \end{equation} The above equation is called $\mu$-b equation. If $b=2$, then equation \eqref{1.4} becomes the well-known $\mu$-CH equation. Lenells, Misio\l{}ek and Ti\u{g}lay \cite{LMT2010} introduced the $\mu$-CH, the $\mu$-DP as well as $\mu$-Burgers equations, and the $\mu$-$b$ equation (see also \cite{K}). In the case $b=3$, the $\mu$-$b$ equation reduces to the $\mu$-DP equations. In addition, if $\mu(u)=0$, they reduce to the HS and $\mu$-Burgers equations, respectively. It is remarked that the $\mu$-Hunter-Saxton equation has a very close relation with the periodic Hunter-Saxton and Camassa-Holm equations, that is, \eqref{1.4} will reduce to the Hunter-Saxton equation \cite{HunS,Wjp,Y2004} if $\mu(u)=0$ and $b=2$. The local well-posedness of the $\mu$-CH and $\mu$-DP Cauchy problems have been studied in \cite{KLM} and \cite{LMT2010}. Recently, Fu et. al. \cite{FLQ11} described precise blow-up scenarios for $\mu$-CH and $\mu$-DP. When $\rho\not\equiv0$ and $\gamma_i=0$ $(i=1,2)$, Constanin-Ivanov \cite{CI} considered the peakon solutions of the Cauchy problem of system \eqref{1.3}. In paper \cite{Wun}, Wunsch studied the the Cauchy problem of 2-component periodic Hunter-Saxton system, see also \cite{Km}. The local well-posedness of system \eqref{1.1} was established in our paper \cite{W1}. Recently, some properties of solutions to the Camassa-Holm equation have been studied by many authors. Himonas et al. \cite{HMPZ} studied the persistence properties and unique continuation of solutions of the Camassa-Holm equation, see \cite{FL,ZC} for the similar properties of solutions to other shallow water equation. Himonas-Kenig \cite{HK} and Himonas et al. \cite{HKM} considered the non-uniform dependence on initial data for the Camassa-Holm equation on the line and on the circle, respectively. Lv et al. \cite{LPW} obtained the non-uniform dependence on initial data for $\mu$-$b$ equation. Lv-Wang \cite{LWjmp} considered the system \eqref{1.1} with $\rho=\gamma-\gamma_{xx}$ and obtained the non-uniform dependence on initial data. Just recently, Chen et al. \cite{CLZ} and Himonas et al. \cite{HH} studied the H\"older continuity of the solution map for shallow water equations. Thompson \cite{T} also studied the H\"older continuity for the CH system, which is obtained from \eqref{1.1} by replacing the operator $\mu-\partial_x^2$ with the operator $1-\partial_x^2$. Our work has been inspired by \cite{CLZ,HH}. In this paper, we shall study the problem \eqref{1.1}. We remark that there is significant difference between system \eqref{1.1} and CH system because of the two operators $1-\partial_x^2$ and $\mu-\partial_x^2$. Moreover, the properties of $u$ and $\gamma$ are different, see Proposition \ref{p2.1}. So the system \eqref{1.1} will have the properties unlike the signal equation, for example, $\mu$-b equation. And this is different from the CH system. This paper is organized as follows. In section 2, we will recall some known results about the well-posedness and then state out our main results. Section 3 is concerned with the proof of the main results. {\bf Notation} In this paper, the symbols $\lesssim,\,\thickapprox$ and $\gtrsim$ are used to denote inequality/equality up to a positive universal constant. For example, $f(x)\lesssim g(x)$ means that $f(x)\leq cg(x)$ for some positive universal constant $c$. In the following, we denote by $\ast$ the spatial convolution. Given a Banach space $Z$, we denote its norm by $\|\cdot\|_Z$. Since all space of functions are over $\mathbb{S}$, for simplicity, we drop $\mathbb{S}$ in our notations of function spaces if there is no ambiguity. Let $[A,B]=AB-BA$ denotes the commutator of linear operator $A$ and $B$. Set $\|z\|_{H^s\times H^{s-1}}^2=\|u\|_{H^s}^2+\|\rho\|_{H^{s-1}}^2$, where $z=(u,\rho)$. \section{Some known results and main result} In this section we first recall the known results, and then state out our main result. As $\mu(u)_t=0$ under spatial periodicity, we can re-write \eqref{1.1} as follows: \begin{equation} \begin{gathered} u_t-uu_x=\partial_xA^{-1}\Big(b\mu(u)u+\frac{3-b}{2}u^2_x+\frac{1}{2}\rho^2 \Big),\quad t>0,\;x\in\mathbb{S},\\ \rho_t-u\rho_x=u_x\rho,\quad t>0,\; x\in\mathbb{S},\\ u(0,x)=u_0(x),\quad \rho(0,x)=\rho_0(x), \quad x\in\mathbb{S}, \end{gathered} \label{2.1} \end{equation} where $A=\mu-\partial_x^{2}$ is an isomorphism between $H^s(\mathbb{S})$ and $H^{s-2}(\mathbb{S})$ with the inverse $v=A^{-1}u$ given by \begin{align*} v(x)&= (\frac{x^2}{2}-\frac{x}{2}+\frac{13}{12} )\mu(u)+ (x-{1}/{2} ) \int_0^1\int_0^yu(s){\rm d}s{\rm d}y\\ &\quad -\int_0^xu(s){\rm d}s{\rm d}y+\int_0^1\int_0^y \int_0^su(r){\rm d}r{\rm d}s{\rm d}y. \end{align*} Since $A^{-1}$ and $\partial_x$ commute, the following identities hold: \begin{gather} A^{-1}\partial_xu(x) = (x-{1}/{2} )\int_0^1u(x){\rm d}x-\int_0^xu(y){\rm d}y+\int_0^1\int_0^xu(y){\rm d}y{\rm d}x, \label{2.2}\\ A^{-1}\partial_x^2u(x) = -u(x)+\int_0^1u(x){\rm d}x. \label{2.3} \end{gather} It is easy to show that $\mu(\Lambda^{-1}\partial_xu(x))=0$. \begin{proposition}[{\cite[Theorem 2.1]{W1}}] \label{p2.1} Given $z_0=(u_0,\rho_0)\in H^s\times H^{s-1}$, $s\geq2$. Then there exists a maximal existence time $T=T(\|z_0\|_{H^s\times H^{s-1}})>0$ and a unique solution $z=(u,\rho)$ to system {\rm\eqref{2.1}} such that \[ z=z(\cdot,z_0)\in C([0,T);H^s\times H^{s-1})\cap C^1([0,T);H^{s-1}\times H^{s-2}). \] Moreover, the solution depends continuously on the initial data, i.e. the mapping \[ z_0\rightarrow z(\cdot,z_0): H^s\times H^{s-1}\rightarrow C([0,T);H^s\times H^{s-1})\cap C^1([0,T);H^{s-1}\times H^{s-2}) \] is continuous. \end{proposition} Next, an explicit estimate for the maximal existence time $T$ is given. \begin{proposition}\label{p2.2} Let $s>\frac{5}{2}$. If $z=(u,\rho)$ is a solution of system {\rm\eqref{2.1}} with initial data $z_0$ described in Proposition {\rm\ref{p2.1}}, then the maximal existence time $T$ satisfies \[ T\geq T_0:=\frac{1}{2C_s\|z_0\|_{H^s\times H^{s-1}}}, \] where $C_s$ is a constant depending only on $s$. Also, we have \[ \|z(t)\|_{H^s\times H^{s-1}}\leq 2\|z_0\|_{H^s\times H^{s-1}}, \quad 0\leq t\leq T_0. \] \end{proposition} Now, we state our main result. \begin{theorem}\label{t2.1} Assume $s>5/2$ and $3/2< r5/2,\,3/25/2,\,s-1< r< s\}. \end{gather*} \end{theorem} \section{Proof of Theorem \ref{t2.1}} In this section, we prove Theorem \ref{t2.1} by using energy method. We shall prove that \[ \|z(t)-\hat z(t)\|_{C([0,T_0];H^r\times H^{r-1})}\leq c\|z(0)-\hat z(0)\|_{H^r\times H^{r-1}}^\alpha, \] where $\|z(t)\|_{H^r\times H^{r-1}}=\|u(t)\|_{H^r}+\|\rho(t)\|_{H^{r-1}}$. We note that $\|u(0)-\hat u(0)\|_{H^r}>0$ and $\|\rho(0)-\hat \rho(0)\|_{H^{r-1}}>0$. Indeed, due to $r>3/2$, it follows from Sobolev embedding $H^{\frac{1}{2}+}(\mathbb{S})\hookrightarrow C^0(\mathbb{S})$ that \[ \|u(0)-\hat u(0)\|_{C^0}\lesssim\|u(0)-\hat u(0)\|_{H^r}. \] Hence $u(0)\equiv \hat u(0)$ if $\|u(0)-\hat u(0)\|_{H^r}=0$, and it follows from Proposition \ref{p2.1} that $u(x,t)=\hat u(x,t)$. Therefore, we will assume that $\|u(0)-\hat u(0)\|_{H^r}>0$ and $\|\rho(0)-\hat \rho(0)\|_{H^{r-1}}>0$. To prove Theorem \ref{t2.1}, we need the following Lemmas. \begin{lemma}[{\cite[Lemma 1]{HH}}] \label{l3.1} If $r+1\geq0$, then \[ \|[\Lambda^r\partial_x,f]v\|_{L^2}\leq c\|f\|_{H^s}\|v\|_{H^r} \] provided that $s>3/2$ and $r+1\leq s$. \end{lemma} \begin{proof}[Proof of Theorem \ref{t2.1}] Let $u_0(x),\,\rho(0),\hat u_0(x),\,\hat\rho(0)\in B(0,h)$ and $(u(x,t),\rho(x,t))$ and $(\hat u(x,t),\hat\rho(x,t))$ be the two solutions to \eqref{2.1} with initial data $(u_0(x),\rho(0))$ and $(\hat u_0(x),\hat\rho(0))$, respectively. Let \[ v=u-\hat u,\quad \sigma=\rho-\hat\rho, \] then $v$ and $\sigma$ satisfy that \begin{equation} \begin{gathered} \begin{aligned} v_t-\frac{1}{2}\partial_x[v(u+\hat u)] &=-\partial_xA^{-1}\big[b\mu(u)v+b\mu(v)\hat u\\ &\quad +\frac{3-b}{2}\left(v_x(u+\hat u)_x\right) +\frac{1}{2}\sigma(\rho+\hat\rho)\big],\quad t>0,\; x\in\mathbb{S}, \end{aligned} \\ \sigma_t=(v\rho+\sigma\hat u)_x,\quad t>0,\; x\in\mathbb{S},\\ v(0,x)=u_0(x)-\hat u_0(x), \quad x\in\mathbb{S},\\ \sigma(0,x)=\rho_0(x)-\hat \rho_0(x), \quad x\in\mathbb{S}. \end{gathered}\label{3.1} \end{equation} Let $\Lambda=(1-\partial_x)^{1/2}$. Applying $\Lambda^r$ and $\Lambda^{r-1}$ to both sides of the first and second equation of \eqref{3.1}, then multiplying both sides by $\Lambda^rv$ and $\Lambda^{r-1}\sigma$, respectively, and integrating, we obtain \begin{equation} \begin{aligned} &\frac{1}{2}\frac{d}{dt}\|v(t)\|_{H^r}^2\\ &= \frac{1}{2}\int_\mathbb{S}\Lambda^r \partial_x[v(u+\hat u)]\cdot \Lambda^rv{\rm d}x -\int_\mathbb{S}\Lambda^{r}\partial_xA^{-1} \Big[b\mu(u)v+b\mu(v)\hat u\\ &\quad +\frac{3-b}{2}\big(v_x(u+\hat u)_x\big) +\frac{1}{2}\sigma(\rho+\hat\rho)\Big]\cdot \Lambda^rv{\rm d}x, \end{aligned}\label{3.2} \end{equation} and \begin{equation} \frac{1}{2}\frac{d}{dt}\|\sigma(t)\|_{H^{r-1}}^2= \int_\mathbb{S}\Lambda^{r-1} (v\rho+\sigma\hat u)_x\cdot \Lambda^{r-1}\sigma{\rm d}x. \label{3.3} \end{equation} It follows from Lemma \ref{l3.1} that \begin{equation} \begin{aligned} &\big|\frac{1}{2}\int_\mathbb{S}\Lambda^r \partial_x[v(u+\hat u)]\cdot \Lambda^rv{\rm d}x\big| \\ &= \frac{1}{2}\big|\int_\mathbb{S}[\Lambda^r\partial_x,u+\hat u]v\cdot \Lambda^rv{\rm d}x-\int_\mathbb{S}(u+\hat u)\Lambda^r \partial_xv\cdot \Lambda^rv{\rm d}x\big| \\ &\lesssim \big|\int_\mathbb{S}[\Lambda^r\partial_x,u+\hat u]v\cdot \Lambda^rv{\rm d}x\big|+\big|\int_\mathbb{S}(u+\hat u)\Lambda^r\partial_xv\cdot \Lambda^rv{\rm d}x\big| \\ &\lesssim \big|\int_\mathbb{S}[\Lambda^r\partial_x,u+\hat u]v\cdot \Lambda^rv{\rm d}x\big|+\big|\int_\mathbb{S}\partial_x(u+\hat u)\cdot (\Lambda^rv)^2{\rm d}x\big| \\ &\lesssim \|[\Lambda^r\partial_x,u+\hat u]v\|_{L^2}\|v(t)\|_{H^r}+\|\partial_x(u+\hat u)\|_{L^\infty}\|v(t)\|_{H^r}^2 \\ &\lesssim (\|u+\hat u\|_{H^s}+\|\partial_x(u+\hat u)\|_{L^\infty})\|v(t)\|_{H^r}^2 \\ &\lesssim (\|u+\hat u\|_{H^s})\|v(t)\|_{H^r}^2, \end{aligned} \label{3.4} \end{equation} where we have used the facts that $H^{\frac{1}{2}+}\hookrightarrow L^\infty$ and $s>3/2$. It is easy to show that \begin{equation} \begin{aligned} &\big|-b\int_\mathbb{S}\Lambda^r\partial_xA^{-1}[\mu(u)v+\mu(v)\hat u]\cdot \Lambda^rv{\rm d}x\big| \\ &\lesssim \|\partial_xA^{-1}[\mu(u)v+\mu(v)\hat u]\|_{H^r}\cdot\|v(t)\|_{H^r}. \end{aligned} \label{3.5} \end{equation} By \eqref{2.2} and \eqref{2.3}, we have \begin{align*} \|\partial_xA^{-1}u\|_{H^r} &= \big\|\big(x-\frac 12\big)\int_0^1u(x){\rm d}x -\int_0^xu(y){\rm d}y+\int_0^1\int_0^xu(y){\rm d}y{\rm d}x\big\|_{H^r}\\ &\lesssim \|x-\frac 12\|_{H^r}\int_0^1|u(x)|{\rm d}x +\|u(t)\|_{H^{r-1}} +\int_0^1\int_0^x|u(y)|{\rm d}y{\rm d}x. \end{align*} Using the above inequality, we have \begin{equation} \begin{aligned} &\|\partial_xA^{-1}[\mu(u)v+\mu(v)\hat u]\|_{H^r} \\ &\lesssim |\mu(u)|\Big(\|x-\frac 12\|_{H^r}\int_0^1|v(x)|{\rm d}x +\|v(t)\|_{H^{r-1}} +\int_0^1\int_0^x|v(y)|{\rm d}y{\rm d}x\Big) \\ &\quad +|\mu(v)|\Big(\|x-\frac 12\|_{H^r}\int_0^1|\hat u(x)|{\rm d}x +\|\hat u(t)\|_{H^{r-1}} +\int_0^1\int_0^x|\hat u(y)|{\rm d}y{\rm d}x\Big) \\ &\lesssim (\|u\|_{H^s}+\|\hat u\|_{H^s})\|v(t)\|_{H^r}, \end{aligned} \label{3.6} \end{equation} where we have used the inequality \[ |\mu(v)|=\big|\int_\mathbb{S}v(x,t){\rm d}x\big|\leq\int_\mathbb{S}|v(x,t)|{\rm d}x\leq\|v(t)\|_{H^r} \] provided that $r\geq0$. Substituting \eqref{3.6} into \eqref{3.5}, we obtain \begin{equation} \big|-b\int_\mathbb{S}\Lambda^r\partial_xA^{-1}\left[\mu(u)v+\mu(v)\hat u\right]\cdot \Lambda^rv{\rm d}x\big|\lesssim(\|u\|_{H^s}+\|w\|_{H^s})\|v(t)\|_{H^r}^2. \label{3.7} \end{equation} Similarly, integrating by parts, we have \begin{equation} \begin{aligned} &\big|\frac{1}{2}\int_\mathbb{S}\Lambda^{r}\partial_xA^{-1}\left( \sigma(\rho+\hat\rho)\right)\cdot \Lambda^rv{\rm d}x\big| \\ &\lesssim \|\partial_xA^{-1}\sigma(\rho+\hat\rho)\|_{H^r}\cdot\|v(t)\|_{H^r} \\ &\lesssim \|\sigma(t)\|_{L^2}(\|\rho\|_{H^1} +\|\hat\rho\|_{H^1})\cdot\|v(t)\|_{H^r} \\ &\lesssim (\|\rho\|_{H^{s-1}}+\|\hat\rho\|_{H^{s-1}})\cdot(\|v(t)\|_{H^r}^2 +\|\sigma(t)\|_{H^{r-1}}^2); \end{aligned} \label{3.8} \end{equation} and \begin{equation} \begin{aligned} &\big|-\frac{3-b}{2}\int_\mathbb{S}\Lambda^r\partial_xA^{-1}v_x(u+\hat u)_x\cdot \Lambda^rv{\rm d}x\big| \\ &\lesssim \|\partial_xA^{-1}v_x(u+\hat u)_x\|_{H^r}\cdot\|v(t)\|_{H^r} \\ &\lesssim \|v(t)\|_{L^2}(\|u\|_{H^2}+\|\hat u\|_{H^2})\cdot\|v(t)\|_{H^r} \\ &\lesssim (\|u\|_{H^s}+\|\hat u\|_{H^s})\cdot\|v(t)\|_{H^r}^2 \end{aligned} \label{3.9} \end{equation} provided that $s\geq2$. In the above inequality, we used \[ \big|\int_{\mathbb{S}}v_x(x,t)u_x(x,t){\rm d}x\big| =\big|\int_{\mathbb{S}}v(x,t)u_{xx}(x,t){\rm d}x\big| \leq\|v(t)\|_{L^2}\|u\|_{H^2}. \] It follows from Lemma \ref{l3.1} that \begin{equation} \begin{aligned} &\big|\int_\mathbb{S}\Lambda^r (v\rho+\sigma\hat u)_x\cdot \Lambda^r\sigma{\rm d}x\big| \\ &\leq \|v\rho\|_{H^r}\|v(t)\|_{H^r}+\|[\partial_x\Lambda^{r-1},\hat u] \sigma\|_{L^2}\|\sigma(t)\|_{H^{r-1}}+ \|\hat u_x\|_{L^\infty}\|\sigma(t)\|_{H^{r-1}}^2 \\ &\lesssim (\|\hat u\|_{H^s}+\|\rho\|_{H^s})(\|v(t)\|_{H^r}^2 +\|\sigma(t)\|_{H^{r-1}}^2), \end{aligned} \label{3.10} \end{equation} where we used the fact $H^r\hookrightarrow H^s$ $(r\leq s)$ again. \smallskip \noindent{\bf Lipschitz continuous $\Omega_1$.} Substituting \eqref{3.4}-\eqref{3.9} and \eqref{3.10} into \eqref{3.2} and \eqref{3.3}, respectively, and adding the resulting equalities, we have \begin{align*} &\frac{1}{2}\frac{d}{dt}\left(\|v(t)\|_{H^r}^2+\|\sigma(t)\|_{H^{r-1}}^2\right)\\ &\lesssim(\|u\|_{H^s}+\|\hat u\|_{H^s}+\|\rho\|_{H^{s-1}}+\|\hat\rho\|_{H^{s-1}})(\|v(t)\|_{H^r}^2 +\|\sigma(t)\|_{H^{r-1}}^2). \end{align*} It follows from Proposition \ref{p2.2} that \begin{align*} &\|u\|_{H^s}+\|\hat u\|_{H^s}+\|\rho\|_{H^{s-1}}+\|\hat\rho\|_{H^{s-1}}\\ &\lesssim \|u(0)\|_{H^s}+\|\hat u(0)\|_{H^s}+\|\rho(0)\|_{H^{s-1}}+\|\hat\rho(0)\|_{H^{s-1}}\lesssim1 \end{align*} since $u_0,\rho_0,\,\hat u_0,\hat\rho_0\in B(0,h)$. Consequently, we obtain \[ \frac{1}{2}\frac{d}{dt}\|z(t)\|_{H^r\times H^{r-1}}^2\lesssim c\|z(t)\|_{H^r\times H^{r-1}}^2, \] which implies that \begin{equation} \|z(t)\|_{H^r\times H^{r-1}}\leq e^{cT_0}\|z(0)\|_{H^r\times H^{r-1}}. \label{3.11} \end{equation} Or equivalently \begin{equation} \|u(t)-\hat u(t)\|_{H^r}+\|\rho(t)-\hat \rho(t)\|_{H^{r-1}}\leq e^{cT_0}(\|u(0)-\hat u(0)\|_{H^r}+\|\rho(0)-\hat \rho(0)\|_{H^{r-1}}). \label{3.12} \end{equation} In the beginning of section 3, we obtain that $\|u(0)-\hat u(0)\|_{H^r}>0$ and $\|\rho(0)-\hat \rho(0)\|_{H^r}>0$. Indeed, if $\|u(0)-\hat u(0)\|_{H^r}=0$ or $\|\rho(0)-\hat \rho(0)\|_{H^r}=0$, it follows from the Sobolev embedding Theorem and Proposition \ref{p2.1} that $u(x,t)\equiv \hat u(x,t)$ or $\rho(x,t)\equiv \hat \rho(x,t)$, respectively. Thus we can assume that \[ \|u(0)-\hat u(0)\|_{H^r}=O(\|\rho(0)-\hat \rho(0)\|_{H^{r-1}}). \] By \eqref{3.11}, we have \[ \|u(t)-\hat u(t)\|_{H^r}\leq C(\|u(0)-\hat u(0)\|_{H^r}), \] which is the desired Lipschitz continuity in $\Omega_1$. \smallskip \noindent\textbf{H\"older continuous in $\Omega_2$.} Since $s-15/2$. Therefore, applying \eqref{3.11} into \eqref{3.13}, we obtain \[ \|z(t)\|_{H^r\times H^{r-1}}\lesssim\|z(0)\|_{H^{s-1}\times H^{s-2}}^{s-r}, \] which is the desired H\"older continuity (similar to the discussion in $\Omega_1$). The proof of Theorem \ref{t2.1} is completed. \end{proof} \subsection*{Acknowledgments} This research was supported in part by PRC Grants NSFC 11301146 and 11226168. \begin{thebibliography}{99} \bibitem{CLZ} R. Chen, Y. Liu, P. Z. Zhang; \newblock{\em The H\"older continuity of the solution map to the b-family equation in weak topology}, Math. Ann. {\bf 357} (2013) 1245-1289. \bibitem{CI} A. Constantin, R. Ivanov; \newblock{\em On an integrable two-component Camassa-Holm shallow water system}, Phys. Lett. A {\bf 372} (2008) 7129-7132. \bibitem{FLQ11} Y. Fu, Y. Liu, C. Qu; \newblock{\em On the blow-up structure for the generalized periodic Camassa-Holm and Degasperis-Procesi equations}, J. Funct. Anal. {\bf 262}(2012), 3125-3158. \bibitem{FL} Y. G. Fu, Z. R. Liu; \newblock{\em Non-uniform dependence on initial data for the periodic modified Camassa-Holm equation}, Nonlinear Differential Equations and Applications NoDEA {\bf 20} (2013) 741-755. \bibitem{HMPZ} A. Himonas, G. Misiolek, G. Ponce, Y. Zhou; \newblock{\em Persistence properties and unique continuous of solutions of the Camassa-Holm equation}, Comm. Math. Phys. {\bf 271} (2007) 511-522. \bibitem{HK} A. Himonas, C. Kenig; \newblock{\em Non-uniform dependence on initial data for the CH equation on the line}, Differential Integral Equations {\bf 22} (2009) 201-224. \bibitem{HKM} A. Himonas, C. Kenig, G. Misiolek; \newblock{\em Non-uniform dependence for the periodic CH equation}, Commun. Partial Differential Equations {\bf 35} (2010) 1145-1162. \bibitem{HH} A. Himonas, J. Holmes; \newblock{\em H\"older continuity of the solution map for the Novikov equation}, J. Math. Phys. {\bf 54} (2013), 061051. \bibitem{HunS} J. K. Hunter, R. Saxton; \newblock{\em Dynamics of director fields}, SIAM J. Appl. Math. {\bf51} (1991) 1498-1521. \bibitem{KLM} B. Khesin, J. Lenells, G. Misiolek; \newblock{\em Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms}, Math. Ann. {\bf342} (2008) 617-656. \bibitem{K} M. Kohlmann; \newblock{\em The periodic $\mu$-$b$-equation and Euler equations on the circle}, J. Nonlinear Math. Phys. {\bf 18}(2011), 1-8. \bibitem{Km} M. Kohlmann; \newblock{\em The curvature of semidirect product groups associated with two-component Hunter-Saxton systems}, J. Phys. A: Math. Theor. {\bf44} (2011) 225203. \bibitem{LMT2010} J. Lenells, G. Misio\l{}ek, F. Ti\u{g}lay; \newblock{\em Integrable evolution equations on spaces for tensor densities and their peakon solutions}, Comm. Math. Phys. {\bf 299}(2010), 129--161. \bibitem{LYna} J. Liu, Z. Yin; \newblock{\em On the Cauchy problem of a periodic 2-component $\mu$-Hunter-Saxton equation}, Nonlinear Analysis, {\bf75} (2012) 131-142. \bibitem{LWjmp} G. Y. Lv, M. X. Wang; \newblock{\em Non-uniform dependence for a modified Camassa-Holm system}, J. Math. Physics {\bf 53} (2012) 013101. \bibitem{LPW} G. Y. Lv, Peter Y. H. Pang, M. X. Wang; \newblock{\em Non-uniform Dependence on Initial Data for the $\mu$-$b$ Equation}, Z. Angew. Math. Phys. {\bf64} (2013) 1543-1554. \bibitem{W1} G. Y. Lv, X. H. Wang; \newblock{\em On initial data problem for a periodic 2-component $\mu$-b system}, submitted. \bibitem{T} R. Thompson; \newblock{\em The periodic Cauchy problem for the 2-component Camassa-Holm system}, Differential and Integral Equations {\bf26} (2013) 155-182. \bibitem{Wjp} J. P. Wang; \newblock{\em The Hunter-Saxton equation: remarkable structures of symmetries and conserved densities}, Nonlinearity, {\bf23} (2010) 2009. \bibitem{Wun} M. Wunsch; \newblock{\em On the Hunter-Saxton system}, Discrete Contin. Dyn. Syst. Ser. B {\bf12} (2009) 647-656. \bibitem{Y2004} Z. Yin; \newblock{\em On the structure of solutions to the periodic Hunter-Saxton equation}, SIAM J. Math. Anal. {\bf36} (2004) 272-283. \bibitem{ZC} Y. Zhou, H. P. Chen; \newblock{\em Wave breaking and propagation speed for the Camassa-Holm equation with $k\neq0$}, Nonlinear Anal. Real World Appl. {\bf 12} (2011) 1355-1358. \bibitem{Z} D. Zuo; \newblock{\em A 2-component $\mu$-Hunter-Saxton equation}, Inverse Problems {\bf26} (2010) 085003. \end{thebibliography} \end{document}