\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{graphicx} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 43, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/43\hfil Smallest eigenvalues] {Existence and comparison of smallest eigenvalues for a fractional\\ boundary-value problem} \author[P. W. Eloe, J. T. Neugebauer \hfil EJDE-2014/43\hfilneg] {Paul W. Eloe, Jeffrey T. Neugebauer} % in alphabetical order \address{Paul W. Eloe \newline Department of Mathematics, University of Dayton, Dayton, OH 45469, USA} \email{peloe1@udayton.edu} \address{Jeffrey T. Neugebauer \newline Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475, USA} \email{jeffrey.neugebauer@eku.edu} \thanks{Submitted August 22, 2013. Published February 10, 2014.} \subjclass[2000]{26A33} \keywords{Fractional boundary value problem; smallest eigenvalues; \hfill\break\indent $u_0$-positive operator} \begin{abstract} The theory of $u_0$-positive operators with respect to a cone in a Banach space is applied to the fractional linear differential equations $$ D_{0+}^{\alpha} u+\lambda_1p(t)u=0\quad\text{and}\quad D_{0+}^{\alpha} u+\lambda_2q(t)u=0, $$ $0< t< 1$, with each satisfying the boundary conditions $u(0)=u(1)=0$. The existence of smallest positive eigenvalues is established, and a comparison theorem for smallest positive eigenvalues is obtained. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} We consider the eigenvalue problems \begin{gather}\label{1} D_{0+}^{\alpha} u+\lambda_1p(t)u=0, \quad 00$ and $k_2(u)>0$ such that $k_1u_0\leq Mu\leq k_2u_0$ with respect to $\mathcal{P}$. \end{definition} The following two results are fundamental to our comparison results and are attributed to Krasnosel'skii \cite{K64}. The proof of Theorem \ref{TheoremOne} can be found in Krasnosel'skii's book \cite{K64}, and the proof of Theorem \ref{TheoremTwo} is provided by Keener and Travis \cite{KT78} as an extension of Krasonel'skii's results. \begin{theorem}\label{TheoremOne} Let $\mathcal{B}$ be a real Banach space and let $\mathcal{P}\subset\mathcal{B}$ be a reproducing cone. Let $L:\mathcal{B}\to\mathcal{B}$ be a compact, $u_0$-positive, linear operator. Then $L$ has an essentially unique eigenvector in $\mathcal{P}$, and the corresponding eigenvalue is simple, positive, and larger than the absolute value of any other eigenvalue. \end{theorem} \begin{theorem}\label{TheoremTwo} Let $\mathcal{B}$ be a real Banach space and $\mathcal{P}\subset\mathcal{B}$ be a cone. Let both $M,N:\mathcal{B}\to\mathcal{B}$ be bounded, linear operators and assume that at least one of the operators is $u_0$-positive. If $M\leq N$, $Mu_1\geq\lambda_1u_1$ for some $u_1\in\mathcal{P}$ and some $\lambda_1>0$, and $Nu_2\leq \lambda_2u_2$ for some $u_2\in\mathcal{P}$ and some $\lambda_2>0$, then $\lambda_1\leq \lambda_2$. Furthermore, $\lambda_1=\lambda_2$ implies $u_1$ is a scalar multiple of $u_2$. \end{theorem} \section{Comparison of smallest eigenvalues} In \cite{BL05}, Bai and L\:u showed the Green's function for $-D_{0+}^{\alpha} u(t)=0$ satisfying \eqref{3} is \begin{equation} G(t,s)=\begin{cases} \frac{[t(1-s)]^{\alpha-1}-(t-s)^{\alpha-1}}{\Gamma(\alpha)}, & 0\leq s \leq t\leq 1,\\[4pt] \frac{[t(1-s)]^{\alpha-1}}{\Gamma(\alpha)}, & 0\leq t\leq s\leq 1. \end{cases} \end{equation} Define the Banach Space \[ \mathcal{B}= \{ u: u=t^{\alpha -1}v, v\in C^{1}[0,1], v(1)=0\}, \] with the norm \[ \|u\|=|v'|_0, \] where $|v'|_0=\sup_{t\in [0,1]} |v'(t)|$ denotes the usual supremum norm. Note that for $v\in C^1[0,1]$, $v(1)=0$, $0\leq t\leq1$, $$ |v(t)|=|v(t)-v(1)|=\big|\int_1^tv'(s)ds\big|\le (1-t)|v'|\le \|u\|. $$ Therefore, $|v|_0\le \|u\|=|v'|_0$ and $$ |u|_0=|t^{\alpha -1}v|_0\le t^{\alpha -1}\|u\|, $$ implies $|u|_0\le \|u\|$. Define the linear operators \begin{equation} Mu(t)=\int^1_0 G(t,s)p(s)u(s)ds \end{equation} and \begin{equation} Nu(t)=\int^1_0 G(t,s)q(s)u(s)\;ds. \end{equation} \begin{theorem} The operators $M,N:\mathcal{B}\to \mathcal{B}$ are compact linear operators. \end{theorem} \begin{proof} We first show $M:\mathcal{B}\to \mathcal{B}$. Let $u\in \mathcal{B}$. So there is a $v\in C^1[0,1]$ such that $u=t^{\alpha-1}v$. Since $v\in C^1[0,1]$ and $p\in C[0,1]$, let $L=|v|_0$ and let $P=|p|_0$. Now \begin{align*} Mu(t) &=\int_0^{1}\frac{t^{\alpha -1}(1-s)^{\alpha -1}}{\Gamma (\alpha )} p(s)u(s)ds-\int_0^t\frac{(t-s)^{\alpha -1}}{\Gamma (\alpha)}p(s)u(s)ds\\ &=t^{\alpha-1}\Big(\int_0^{1}\frac{(1-s)^{\alpha -1}}{\Gamma (\alpha )}p(s)u(s)ds -t^{1-\alpha}\int_0^t\frac{(t-s)^{\alpha -1}}{\Gamma (\alpha)}p(s)u(s)ds\Big). \end{align*} Define \[ g(t)=\begin{cases} 0, & t=0,\\ t^{1-\alpha}\int_0^t\frac{(t-s)^{\alpha -1}}{\Gamma (\alpha)}p(s)u(s)ds, & 00$, \begin{align*} |g'(t)| &=\Big|(1-\alpha )t^{-\alpha}\int_0^t\frac{(t-s)^{\alpha -1}}{\Gamma (\alpha )} p(s)u(s)ds \\ &\quad +(\alpha -1)t^{1-\alpha}\int_0^t \frac{(t-s)^{\alpha -2}}{\Gamma (\alpha)}p(s)u(s)ds\Big|\\ &\leq \Big|(1-\alpha )t^{-\alpha}\int_0^t \frac{(t-s)^{\alpha -1}}{\Gamma (\alpha )}p(s)s^{\alpha-1}v(s)ds\Big|\\ &\quad +\Big|t^{1-\alpha}\int_0^t\frac{(t-s)^{\alpha -2}}{\Gamma (\alpha -1)} p(s)s^{\alpha-1}v(s)ds\Big|\\ &\leq (\alpha -1)PLt^{-\alpha}t^{\alpha-1}\int_0^t(t-s)^{\alpha -1}ds +PLt^{1-\alpha}t^{\alpha-1}\int_0^t(t-s)^{\alpha -2}ds\\ &= \big(\frac{\alpha-1}{\alpha}+\frac{1}{\alpha-1}\big)PLt^{\alpha-1}. \end{align*} So, $\lim_{t\to 0^{+}}g'(t)=0$. Moreover, using the definition of derivative and L'Hospital's rule, \[ g'(0)=\lim_{t\to 0^{+}} \frac{g(t)-g(0)}{t}=\lim_{t\to 0^{+}} \frac{g(t)}{t} =\lim_{t\to 0^{+}} g'(t) =0, \] and so $g'\in C[0,1]$. Now set \[ \hat{v}(t) =\Big(\int_0^{1}\frac{(1-s)^{\alpha -1}}{\Gamma (\alpha )}p(s)u(s)ds -t^{1-\alpha}\int_0^t\frac{(t-s)^{\alpha -1}}{\Gamma (\alpha)}p(s)u(s)ds\Big). \] It is an easy calculation to verify that $\hat{v}(1)=0$. Thus $Mu\in\mathcal{B}$. So $M:\mathcal{B}\to\mathcal{B}$. The proof that $N:\mathcal{B}\to \mathcal{B}$ is similar. We now show that $M:\mathcal{B}\to\mathcal{B}$ is a compact operator. Let $L>0$ and consider \[ K=\{ u\in\mathcal{B}: \|u\|\le L\} \] or more appropriately consider \[ \hat{K}=\{ v\in C^{1}[0,1]: v(1) =0, |v'|_0\le L\}. \] Define \[ \hat{M}(v)(t)=\Big(\int_0^{1}\frac{(1-s)^{\alpha -1}}{\Gamma (\alpha )} p(s)s^{\alpha -1}v(s)ds-t^{1-\alpha}\int_0^t \frac{(t-s)^{\alpha -1}}{\Gamma (\alpha)}p(s)s^{\alpha -1}v(s)ds\Big). \] To show that $M$ is compact on $\mathcal{B}$ it is sufficient to show that $\{(\hat{M}(v))':v\in\hat{K}\}$ is uniformly bounded and equicontinuous on $[0,1]$. We provide the details for equicontinuity as the details for uniform boundedness are straightforward. Assume $|p|_0=P$ and assume $|v|_0\le L$. Let $\epsilon >0$. As in the calculations above for $g'$, $ (\hat{M}(v))'(0)=0$ and \[ |(\hat{M}(v))'(t)|\le \big(\frac{\alpha-1}{\alpha}+\frac{1}{\alpha-1}\big) PLt^{\alpha-1}. \] Thus, there exists $\delta_1>0$ such that if $|t|<\delta_1$ then $|(\hat{M}(v))'(t)|<\frac{\epsilon}{2}$. On $[\delta_1,1]$, $\{(\hat{M}(v))':v\in\hat{K}\}$ is shown to be equicontinuous by showing that $\{(\hat{M}(v))'':v\in\hat{K}\}$ is uniformly bounded. Now \begin{align*} (\hat{M}(v))'(t)&=(1-\alpha )t^{-\alpha}\int_0^t \frac{(t-s)^{\alpha -1}}{\Gamma (\alpha )}p(s)u(s)ds\\ &\quad +(\alpha -1)t^{1-\alpha}\int_0^t\frac{(t-s)^{\alpha -2}}{\Gamma (\alpha)} p(s)u(s)ds, \end{align*} and so \begin{align*} (\hat{M}(v))''(t) &=-\alpha (1-\alpha )t^{-\alpha-1}\int_0^t \frac{(t-s)^{\alpha -1}}{\Gamma (\alpha )}p(s)s^{\alpha -1}v(s)ds\\ &\quad -(\alpha -1)^{2}t^{-\alpha}\int_0^t \frac{(t-s)^{\alpha -2}}{\Gamma (\alpha)}p(s)s^{\alpha -1}v(s)ds\\ &\quad -(\alpha -1)^{2}t^{-\alpha}\int_0^t \frac{(t-s)^{\alpha -2}}{\Gamma (\alpha )}p(s)s^{\alpha-1}v(s)ds\\ &\quad +(\alpha -1)(\alpha -2)t^{1-\alpha}\int_0^t \frac{(t-s)^{\alpha -3}}{\Gamma (\alpha -1)}p(s)s^{\alpha-1}v(s)ds. \end{align*} Each of the four terms can be bounded by a constant multiple of $t^{\alpha -2}$. For the first term, notice \[ \Big|t^{-\alpha-1}\int_0^t(t-s)^{\alpha -1}p(s)s^{\alpha -1}v(s)ds\Big| \le PLt^{-\alpha-1}\Big|\int_0^t(t-s)^{\alpha -1}s^{\alpha -1}ds\Big|. \] Set $s=rt$. So \begin{align*} t^{-\alpha-1}\Big|\int_0^t(t-s)^{\alpha -1}s^{\alpha -1}ds\Big| &= t^{-\alpha -1}t^{\alpha -1}t^{\alpha -1}t \Big|\int_0^{1}(1-r)^{\alpha -1}r^{\alpha -1}dr\Big|\\ &= t^{\alpha -2}|B(\alpha, \alpha )|, \end{align*} where $B$ denotes the beta function. In dealing with the second and third terms, first note \[ \Big|t^{-\alpha}\int_0^t\frac{(t-s)^{\alpha -2}}{\Gamma (\alpha)}p(s)s^{\alpha -1} v(s)ds\Big| \le PL t^{-\alpha}\Big|\int_0^t(t-s)^{\alpha-2}s^{\alpha-1}ds\Big|. \] Set $s=rt$. Then \begin{align*} t^{-\alpha}\Big|\int_0^t(t-s)^{\alpha-2}s^{\alpha-1}ds\Big| &=t^{-\alpha}t^{\alpha-2}t^{\alpha-1}t \Big|\int_0^t(1-r)^{\alpha-2}r^{\alpha-1}dr\Big|\\ &=t^{\alpha-2}|B(\alpha,\alpha-1)|. \end{align*} Notice $B(\alpha,\alpha-1)$ is well-defined since $1<\alpha\le 2$. Last, we obtain an analogous estimate for the fourth term. If $\alpha=2$, this term is zero. If $1<\alpha<2$, first integrate by parts to obtain \[ \int_0^t(t-s)^{\alpha -3}s^{\alpha -1}ds =\frac{\alpha-1}{\alpha-2}\int^t_0(t-s)^{\alpha-2}s^{\alpha-2}ds. \] Thus, \begin{align*} \Big|t^{1-\alpha}\int_0^t\frac{(t-s)^{\alpha -3}}{\Gamma (\alpha -1)} p(s)s^{\alpha-1}v(s)ds\Big| &\le PL t^{1-\alpha}\Big|\int_0^t(t-s)^{\alpha -3}s^{\alpha -1}ds\Big|\\ &=PL t^{1-\alpha}\Big|\frac{\alpha-1}{\alpha-2} \int^t_0(t-s)^{\alpha-2}s^{\alpha-2}ds\Big|. \end{align*} Again, by setting $s=rt$, we obtain \begin{align*} t^{1-\alpha}\Big|\int^t_0(t-s)^{\alpha-2}s^{\alpha-2}ds\Big| &=t^{1-\alpha}t^{\alpha-2}t^{\alpha-2}t \Big|\int^t_0 (1-r)^{\alpha-2}r^{\alpha-2}dr\Big|\\ &=t^{\alpha-2}|B(\alpha-1,\alpha-1)|. \end{align*} Again, $B(\alpha -1, \alpha -1)$ is well-defined since $1<\alpha < 2$. Therefore, if $\alpha\ne 2$, \begin{align*} |(\hat{M}(v))''(t)| &\le PL \Big[\frac{\alpha(\alpha-1)|B(\alpha,\alpha)|}{\Gamma(\alpha)} +\frac{2(\alpha-1)^2|B(\alpha,\alpha-1)|}{\Gamma(\alpha)}\\ &\quad +\frac{(\alpha-1)^2|B(\alpha-1,\alpha-1)|}{\Gamma(\alpha-1)}\Big] t^{\alpha-2}, \end{align*} and if $\alpha=2$, \[ |(\hat{M}(v))''(t)|\le \frac{4PL}{3}. \] So $\{(\hat{M}(v))'':v\in\hat{K}\}$ is uniformly bounded on $[\delta_1, 1]$. Since $\{(\hat{M}(v))'':v\in\hat{K}\}$ is uniformly bounded on $[\delta_1, 1]$, there exists $\delta_2>0$ such that if $|t_1-t_2|<\delta_2$, $t_1, t_2 \in [\delta_1, 1]$, then $|(\hat{M}(v))'(t_1)-(\hat{M}(v))'(t_2)|<\frac{\epsilon}{2}$. Set $\delta =\min \{\delta_1, \delta_2\}$. If $|t_1-t_2|<\delta$, $t_1, t_2 \in [0, \delta_1]$, then $$ |(\hat{M}(v))'(t_1)-(\hat{M}(v))'(t_2)| \le |(\hat{M}(v))'(t_1)|+|(\hat{M}(v))'(t_2)|<\epsilon. $$ If $|t_1-t_2|<\delta$, $t_1, t_2 \in [\delta_1, 1]$, then $$ |(\hat{M}(v))'(t_1)-(\hat{M}(v))'(t_2)|\le \frac{\epsilon}{2}<\epsilon. $$ If $|t_1-t_2|<\delta$, $0\le t_1<\delta_1\le t_2\le 1$, then \begin{align*} &|(\hat{M}(v))'(t_1)-(\hat{M}(v))'(t_2)|\\ &\le |(\hat{M}(v))'(t_1)-(\hat{M}(v))'(\delta_1)| +|(\hat{M}(v))'(\delta_1)-(\hat{M}(v))'(t_2)|\\ &< \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon. \end{align*} Details for the operator $N$ are similar and the proof is complete. \end{proof} Define the cone \[ \mathcal{P}=\{u\in \mathcal{B}: u(t)\geq 0\text{ for } t\in[0,1]\}. \] \begin{lemma} The cone $\mathcal{P}$ is solid in $B$ and hence reproducing. \end{lemma} \begin{proof} Define \begin{equation}\label{cone} \Omega:=\{u\in \mathcal{B}\;|\; u(t)>0\text{ for }t\in(0,1), v(0)>0, v'(1)<0, \text{ where }u=t^{\alpha-1}v\}. \end{equation} We will show $\Omega\subset \mathcal{P}^\circ$. Let $u\in\Omega$. Since $v(0)>0$, there exists an $\epsilon_1>0$ such that $v(0)-\epsilon_1>0$. Since $v\in C^1[0,1]$, there exists an $a\in(0,1)$ such that $v(t)> \epsilon_1$ for all $t\in(0,a)$. So $u(t)=t^{\alpha-1}v(t)> \epsilon_1t^{\alpha-1}$ for all $t\in(0,a)$. Now, since $v'(1)<0$, there exists an $\epsilon_2>0$ such that $v'(1)+\epsilon_2<0$. Then, since $v(1)=0$ and $-v'(1)>\epsilon_2$, there exists a $b\in(a,1)$ such that $v(t)>(1-t)\epsilon_2$ for all $t\in(b,1]$. Thus $u(t)> b^{\alpha-1}(1-t)\epsilon_2$ for all $t\in(b,1]$. Also, since $u(t)>0$ on $[a,b]$, there exists an $\epsilon_3>0$ such that $u(t)-\epsilon_3>0$ for all $t\in[a,b]$. Let $\epsilon=\min\big\{\frac{\epsilon_1}{2},\frac{b^{\alpha-1}\epsilon_2}{2}, \frac{\epsilon_3}{2}\big\}$. Define $B_\epsilon(u)=\{\hat{u}\in\mathcal{B}:\|u-\hat{u}\|<\epsilon\}$. Let $\hat{u}\in B_\epsilon(u)$. So $\hat{u}=t^{\alpha-1}\hat{v}$, where $\hat{v}\in C^1[0,1]$ with $\hat{v}(1)=0$. Now $$ |\hat{u}(t)-u(t)|\leq t^{\alpha-1}\|\hat{u}-u\|<\epsilon t^{\alpha-1}. $$ So for $t\in(0,a)$, $\hat{u}(t)>u(t)-t^{\alpha-1}\epsilon>t^{\alpha-1} \epsilon_1-t^{\alpha-1}\epsilon_1/2=t^{\alpha-1}\epsilon_1/2$. So $\hat{u}(t)>0$ for $t\in(0,a)$. By the Mean Value Theorem, for $t\in(b,1)$, $|\hat{u}(t)-u(t)|\leq(1-t)\|\hat{u}-u\|<(1-t)\epsilon$. So for $t\in(b,1)$, $$ \hat{u}(t)>u(t)-(1-t)\epsilon>b^{\alpha-1}(1-t)\epsilon_2-(1-t)b^{\alpha-1} \epsilon_2/2=(1-t)b^{\alpha-1}\epsilon_2/2. $$ So for $t\in(b,1)$, $\hat{u}(t)>0$. Also, $|\hat{u}(t)-u(t)|\le\|\hat{u}-u\|<\epsilon$. So for $t\in[a,b]$, $\hat{u}(t)>u(t)-\epsilon>\epsilon_3-\epsilon_3/2>0$. So $\hat{u}(t)>0$ for all $t\in[a,b]$. So $\hat{u}\in\mathcal{P}$ and thus $B_\epsilon(u)\subset\mathcal{P}$. So $\Omega\subset\mathcal{P}^\circ$. \end{proof} \begin{lemma}\label{u0} The bounded linear operators $M$ and $N$ are $u_0$-positive with respect to $\mathcal{P}$. \end{lemma} \begin{proof} First, we show $M:\mathcal{P}\backslash \{0\}\to\Omega\subset\mathcal{P}^{\circ}$. Let $u\in\mathcal{P}$. So $u(t)\geq0$. Then since $G(t,s)\geq0$ on $[0,1]\times[0,1]$ and $p(t)\geq0$ on $[0,1]$, \[ Mu(x)=\int^{1}_0G(t,s)p(s)u(s)ds\geq0, \] for $0\leq t\leq 1$. So $M:\mathcal{P}\to\mathcal{P}$. Now let $u\in\mathcal{P}\backslash \{0\}$. So there exists a compact interval $[\alpha,\beta]\subset[0,1]$ such that $u(t)>0$ and $p(t)>0$ for all $t\in[\alpha,\beta]$. Then, since $G(t,s)>0$ on $(0,1)\times(0,1)$, \begin{align*} Mu(t)&=\int^{1}_0G(t,s)p(s)u(s)ds\\ &\geq\int^{\beta}_{\alpha}G(t,s)p(s)u(s)ds >0, \end{align*} for $00$ and \[ v'(1) =-(1-\alpha )\int_0^{1}\frac{(1-s)^{\alpha -1}}{\Gamma (\alpha )}p(s)u(s)ds -(\alpha -1)\int_0^{1}\frac{(1-s)^{\alpha -2}}{\Gamma (\alpha)}p(s)u(s)ds<0. \] So $M:\mathcal{P}\backslash\{0\}\to\Omega\subset\mathcal{P}^\circ$. Now choose any $u_0\in\mathcal{P}\backslash \{0\}$, and let $u\in\mathcal{P}\backslash \{0\}$. So $Mu\in\Omega\subset\mathcal{P}^{\circ}$. Choose $k_1>0$ sufficiently small and $k_2$ sufficiently large so that $Mu-k_1u_0\in\mathcal{P}^{\circ}$ and $u_0-\frac{1}{k_2}Mu\in\mathcal{P}^{\circ}$. So $k_1u_0\leq Mu$ with respect to $\mathcal{P}$ and $Mu\leq k_2u_0$ with respect to $\mathcal{P}$. Thus $k_1u_0\leq Mu\leq k_2u_0$ with respect to $\mathcal{P}$ and so $M$ is $u_0$-positive with respect to $P$. Similarly, $N$ is $u_0$-positive. \end{proof} \begin{remark} \label{remark} \rm Notice that \[ \Lambda u=Mu=\int^{1}_0G(t,s)p(s)u(s)ds, \] if and only if \[ u(t)=\frac{1}{\Lambda}\int^{1}_0G(t,s)p(s)u(s)ds, \] if and only if \[ D_{0+}^{\alpha} u(t)+\frac{1}{\Lambda}p(t)u(t)=0, \;\;00$ such that $(N-M)u_1-\epsilon u_1\in\mathcal{P}$. So $\Lambda_1u_1+\epsilon u_1=Mu_1+\epsilon u_1\leq Nu_1$, implying $Nu_1\geq (\Lambda_1+\epsilon)u_1$. Since $N\leq N$ and $Nu_2=\Lambda_2u_2$, by Theorem \ref{TheoremTwo}, $\Lambda_1+\epsilon \leq \Lambda_2$, or $\Lambda_1<\Lambda_2$. \end{proof} By Remark \ref{remark}, the following theorem is an immediate consequence of Theorems \ref{eigenvalue} and \ref{comparison}. \begin{theorem} Assume the hypotheses of Theorem \ref{comparison}. Then there exists smallest positive eigenvalues $\lambda_1$ and $\lambda_2$ of \eqref{1},\eqref{3} and \eqref{2},\eqref{3}, respectively, each of which is simple, positive, and less than the absolute value of any other eigenvalue of the corresponding problems. Also, eigenfunctions corresponding to $\lambda_1$ and $\lambda_2$ may be chosen to belong to $\mathcal{P}^{\circ}$. Finally, $\lambda_1\geq\lambda_2$, and $\lambda_1=\lambda_2$ if and only if $p(t)=q(t)$ for all $t\in[0,1]$. \end{theorem} \begin{thebibliography}{99} \bibitem{ABH10} R. P. Agarwal, M. Benchohra, S. Hamani; \emph{A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions}. Acta. Appl. Math. \textbf{109} (2010), 973-1003. \bibitem{A12} M. Al-Refai; \emph{Basic results on nonlinear eigenvalue problems of fractional order}. Electron. J. Differential Equations \textbf{2012} (2012), No. 191, 1-12. \bibitem{BL05} Z. Bia, H. Lu; \emph{Positive solutions for boundary value problem of nonlinear fractional differential equation}. J. Math. Anal. Appl. \textbf{311} (2005), 495-505. \bibitem{CDHY98}C. J. Chyan, J. M. Davis, J. Henderson, W. K. C. Yin; \emph{Eigenvalue comparisons for differential equations on a measure chain}. Electron. J. Differential Eqns. \textbf{1998} (1998), No. 35, 1-7. \bibitem{DEH99} J. M. Davis, P. W. Eloe, J. Henderson; \emph{Comparison of eigenvalues for discrete Lidstone boundary value problems}. Dyn. Sys. Appl. \textbf{8} (1999), 381-388. \bibitem{D04} K. Diethelm; \emph{The Analysis of Fractional Differential equations. An Application-oriented Exposition Using Differential Operaotrs of Caputo Type}. Lecture Notes in Mathematics, 2004, Springer-Verlag, Berlin, 2010. \bibitem{EH89} P. W. Eloe, J. Henderson; \emph{Comparison of eigenvalues for a class of two-point boundary value problems}. Appl. Anal. \textbf{34} (1989), 25-34. \bibitem{EH92} P. W. Eloe, J. Henderson; \emph{Comparison of eigenvalues for a class of multipoint boundary value problems}. Recent Trends in Ordinary Differential Equations \textbf{1} (1992), 179-188. \bibitem{GT67} R. D. Gentry, C. C. Travis; \emph{Comparison of eigenvalues associated with linear differential equations of arbitrary order}. Trans. Amer. Math. Soc. \textbf{223} (1967), 167-179. \bibitem{HG12} X. Han, H. Gao; \emph{Existence of positive solutions for eigenvalue problem of nonlinear fractional differential equations}. Adv. Difference Equ. \textbf{2012}, (2012), No. 66, 8 pp. \bibitem{HP90} D. Hankerson, A. Peterson; \emph{Comparison of eigenvalues for focal point problems for nth order difference equations}. Differential Integral Egns. \textbf{3} (1990), 363-380. \bibitem{Hof03} J. Hoffacker; \emph{Green's functions and eigenvalue comparisons for a focal problem on time scales}. Comput. Math. Appl., \textbf{45} (2003), 1339-1368. \bibitem{KT78} M. Keener, C. C. Travis; \emph{Positive cones and focal points for a class of nth order differential equations}. Trans. Amer. Math. Soc. \textbf{237} (1978), 331-351. \bibitem{KR62} M. G. Krein and M. A. Rutman; \emph{Linear operators leaving a cone invariant in a Banach space}. Translations Amer. Math. Soc., Series 1, Volume 10, 199-325, American Mathematical Society, Providence, RI, 1962. \bibitem{K64} M. Krasnosel'skii; \emph{Positive Solutions of Operator Equations}. Fizmatgiz, Moscow, 1962; English Translation P. Noordhoff Ltd. Gronigen, The Netherlands, 1964. \bibitem{Neu11} J. T. Neugebauer; \emph{Methods of extending lower order problems to higher order problems in the context of smallest eigenvalue comparisons}. Electron. J. Qual. Theory Differ. Equ. \textbf{99} (2011), 1-16. \bibitem{SKM93} S. Samko, A. Kilbas, O. Marichev; \emph{Fractional Integrals and Derivatives: Theory and Applications}. Gordon and Breach, Yverdon, 1993. \bibitem{Tra86} C. C. Travis; \emph{Comparison of eigenvalues for linear differential equations}. Proc. Amer. Math. Soc. \textbf{96} (1986), 437-442. \bibitem{WZ12} J. Wu, X. Zhang; \emph{Eigenvalue problem of nonlinear semipositone higher order fractional differential equations}. Abst. Appl. Anal. \textbf{2012} (2012), Art. ID 740760, 14 pp. \bibitem{ZLWW12} X. Zhang, L. Liu, B. Wiwatanapataphee, Y. Wu; \emph{Positive solutions of eigenvalue problems for a class of fractional differential equations with derivatives}. Abst. Appl. Anal. \textbf{2012} (2012), Art. ID 512127, 16 pp. \end{thebibliography} \end{document}