\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 51, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/51\hfil Growth of solutions] {Growth of solutions to second-order complex differential equations} \author[N. Li, L. Yang \hfil EJDE-2014/51\hfilneg] {Nan Li, Lianzhong Yang} % in alphabetical order \address{ Nan Li \newline School of Mathematics, Shandong University\\ Jinan, Shandong Province, 250100, China. \newline Department of Physics and Mathematics, Joensuu Campus, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland} \email{nanli32787310@gmail.com} \address{Lianzhong Yang (corresponding author)\newline School of Mathematics, Shandong University, Jinan, Shandong Province, 250100, China} \email{lzyang@sdu.edu.cn} \thanks{Submitted September 25, 2013. Published February 19, 2014.} \subjclass[2000]{30D35, 34M10} \keywords{Differential equation; subnormal solution; hyper order} \begin{abstract} In this article, we study the existence of non-trivial subnormal solutions for second-order linear differential equations. We show that under certain conditions some differential equations do not have subnormal solutions, also that the hyper-order of every solution equals one. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this article, we use standard notation from the value distribution theory of meromorphic functions (see \cite{Laine,Yi1}). In addition, we denote the order of growth of $f(z)$ by $\sigma(f)$. The hyper-order of $f(z)$ is defined by \begin{equation*} \sigma_2(f)=\limsup_{r\to\infty}\frac{\log\log T(r,f)}{\log r}. \end{equation*} Consider the second order homogeneous linear periodic differential equation \begin{equation}\label{iaaaa} f''+P(e^{z})f'+Q(e^{z})f=0, \end{equation} where $P(z)$ and $Q(z)$ are polynomials in $z$ and not both constants. It is well known that every solution $f$ of \eqref{iaaaa} is entire. For be a meromorphic function $f$, define \begin{equation}\label{iaaab} \sigma_{e}(f)=\limsup_{r\to\infty}\frac{\log T(r,f)}{r} \end{equation} to be the e-type order of $f$. If $f\not\equiv0$ is a solution of \eqref{iaaaa} satisfying $\sigma_{e}(f)=0$, then we say that $f$ is a nontrivial subnormal solution of \eqref{iaaaa}. Wittich \cite{Wittich}, Gundersen and Steinbart \cite{Gundersen1994}, Xiao \cite{Lpxiao} etc. have investigated the subnormal solution of \eqref{iaaaa}, and obtained good results. In 2007, Chen and Shon \cite{chen2007} studied the existence of subnormal solutions of the general equation \begin{equation}\label{xaac} f''+\big(P_1(e^{z})+P_2(e^{-z})\big)f'+\big(Q_1(e^{z})+Q_2(e^{-z})\big)f =0, \end{equation} and obtained the following results. \begin{theorem} \label{thmA} Let $P_j(z)$, $Q_j(z)$ $(j=1,2)$ be the polynomials in $z$. If \begin{equation} \label{yaaaab} \deg Q_1> \deg P_1 \quad \text{or} \quad \deg Q_2 > \deg P_2 \end{equation} then \eqref{xaac} has no nontrivial subnormal solution, and every solution of \eqref{xaac} satisfies $\sigma_2(f)=1$. \end{theorem} \begin{theorem} \label{thmB} Let $P_j(z)$, $Q_j(z)$ $(j=1,2)$ be the polynomials in $z$. If \begin{equation} \label{yaaaaa} \deg Q_1< \deg P_1 \quad \text{and} \quad \deg Q_2 < \deg P_2 \end{equation} and $Q_1+Q_2\not\equiv 0$, then \eqref{xaac} has no nontrivial subnormal solution, and every solution of \eqref{xaac} satisfies $\sigma_2(f)=1$. \end{theorem} \subsection*{Question} What can we said when $\deg P_1= \deg Q_1$ and $\deg P_2= \deg Q_2$ for \eqref{xaac}? We will prove the following theorem. \begin{theorem} \label{thm1}. Let \begin{gather*} P_1(z)=a_nz^{n}+\dots+a_1z+a_0, \\ Q_1(z)=b_nz^{n}+\dots+b_1z+b_0, \\ P_2(z)=c_{m}z^{m}+\dots+c_1z+c_0, \\ Q_2(z)=d_{m}z^{m}+\dots+d_1z+d_0, \end{gather*} where $a_i, b_i$ $(i=0,\dots, n)$, $c_j, d_j$ $(j=0,\dots, m)$ are constants, $a_nb_nc_{m}d_{m}\neq 0$. Suppose that $a_nd_{m}=c_{m}b_n$ and any one of the following three hypotheses holds: \begin{itemize} \item[(i)] there exists $i$ satisfying $\bigl(-\frac{b_n}{a_n}\bigr)a_i+b_i\neq 0$, $0 < i< n$; (ii) there exists $j$ satisfying $\bigl(-\frac{b_n}{a_n}\bigr)c_j+d_j\neq 0$, $0 < j < m$; \item[(iii)] $$ \bigl(-\frac{b_n}{a_n}\bigr)^{2} +\bigl(-\frac{b_n}{a_n}\bigr) (a_0+c_0)+b_0+d_0\neq 0. $$ \end{itemize} Then \eqref{xaac} has no non-trivial subnormal solution, and every non-trivial solution $f$ satisfies $\sigma_2(f)=1$. \end{theorem} We remark that the equation \[ f''+(e^{2z}+e^{-z}+1)f'+(2e^{2z}+2e^{-z}-2)f=0 \] has a subnormal solution $f_0=e^{-2z}$. Here $n=2$, $m=1$, $a_2=1$, $b_2=2$, $a_1=b_1=0$, $c_1=1$, $d_1=2$, $a_0+c_0=1$, $b_0+d_0=-2$, $(-\frac{b_2}{a_2})\cdot a_1+b_1=0$, and $(-\frac{b_2}{a_2})^{2} +(-\frac{b_2}{a_2})(a_0+c_0)+b_0+d_0= 0$. This shows that the restrictions (i)--(iii) in Theorem \ref{thm1} are sharp. Another problem we want to consider in this paper is what condition will guarantee the more general form \begin{equation} \label{qaaaaa} f''+\big(P_1(e^{\alpha z})+P_2(e^{-\alpha z})\big)f' +\big(Q_1(e^{\beta z}) +Q_2(e^{-\beta z})\big)f=0, \end{equation} where $P(z), Q(z)$ are polynomials in $z, \alpha, \beta$ are complex constants, does not have a non-trivial subnormal solution? We will prove the following theorems. \begin{theorem} \label{thm2} Let \begin{gather*} P_1(z)=a_{1m_1}z^{m_1}+\dots+a_{11}z+a_{10}, \\ P_2(z)=a_{2m_2}z^{m_2}+\dots+a_{21}z+a_{20}, \\ Q_1(z)=b_{1n_1}z^{n_1}+\dots+b_{11}z+b_{10}, \\ Q_2(z)=b_{2n_2}z^{n_2}+\dots+b_{21}z+b_{20}, \end{gather*} where $m_k\geq 1,\, n_k \geq 1\, (k=1,2)$ are integers, $a_{1i_1}$ $(i_1=0,1, \dots, m_1)$, $a_{2i_2}$ $(i_2=0,1, \dots, m_2)$, $b_{1j_1}$ $(j_1=0,1, \dots, n_1)$, $b_{2j_2}$ $(j_2=0,1, \dots, n_2)$, $\alpha$ and $\beta$ are complex constants, $a_{1m_1}a_{2m_2}b_{1n_1}b_{2n_2}\neq 0$, $\alpha \beta\neq 0$. Suppose $m_1\alpha=c_1n_1\beta$ $(01)$ and $m_2\alpha=c_2n_2\beta$ $(c_2>1)$. Then \eqref{qaaaaa} has no non-trivial subnormal solution and every non-trivial solution $f$ satisfies $\sigma_2(f)=1$. \end{theorem} Note that a subnormal solution $f_0=e^{-z}+1$ satisfies the equation \[ f''-[e^{3z}+e^{2z}+e^{-z}]f'-[e^{2z}+e^{-z}]f=0. \] Here $\alpha=\frac{1}{2}$, $\beta=1/3$, $m_1=6$, $m_2=2$, $n_1=6$, $n_2=3$, $m_1\alpha=\frac{3}{2}n_1\beta$ and $m_2\alpha=n_2\beta $. This shows that the restrictions that $m_1\alpha=c_1n_1\beta$ $(c_1>1)$ and $m_2\alpha=c_2n_2\beta\, (c_2>1)$ can not be omitted. \section{Some lemmas} Let $P(z)=(a+ib)z^{n}+\dots$ be a polynomial with degree $n\geq 1$. and $z=re^{i\theta}$. We will we denote $\delta(P,\theta)=a\cos (n\theta)-b\sin (n\theta)$. \begin{lemma}[\cite{Laine}] \label{lem1} Let $P(z)=a_nz^{n}+a_{n-1}z^{n-1}+\dots +a_0$ be a polynomial with $a_n\neq 0$. Then, for every $\varepsilon>0$, there exists $r_0>0$ such that for all $r=|z|>r_0$ we have the inequalities \[ (1-\varepsilon) |a_n|r^{n}\leq |P(z)| \leq (1+\varepsilon) |a_n|r^{n}\,. \] \end{lemma} \begin{lemma}[\cite{Laine}] \label{lem2} Let $g: (0, +\infty)\to \mathbb{R}$ and $h: (0, +\infty)\to \mathbb{R}$ be monotone increasing functions such that $g(r)\leq h(r)$ outside of an exceptional set $E$ of finite logarithmic measure. Then, for any $\alpha >1$, there exists $r_0>0$ such that $g(r)\leq h(\alpha r)$ holds for all $r>r_0$. \end{lemma} \begin{lemma}\cite{Gundersen1} \label{lem3} Let $f(z)$ be a transcendental meromorphic function with $\sigma(f)=\sigma<\infty$. Let $H=\{(k_1,j_1),(k_2,j_2), \dots, (k_{q},j_{q})\}$ be a finite set of distinct pairs of integers that satisfy $k_i>j_i \geq 0$, for $i=1,2, \dots, q$. And let $\varepsilon>0$ be a given constant. Then there exists a set $E\subset [0, 2\pi)$ that has linear measure zero, such that if $\psi \in [0,2\pi) \setminus E$, then there is a constant $R_0=R_0(\psi)>1$ such that for all $z$ satisfying $\arg z =\psi$ and $|z|\geq R_0$ and for all $(k,j)\in H$, we have \begin{equation}\label{baa} \big|\frac{f^{(k)}(z)}{f^{(j)}(z)}\big| \leq |z|^{(k-j)(\sigma-1+\varepsilon)}. \end{equation} \end{lemma} \begin{lemma}[\cite{Gundersen2,Laine-Yang}] \label{lem4} Let $f(z)$ be an entire function and suppose that $|f^{(k)}(z)|$ is unbounded on some ray $\arg z=\theta$. Then, there exists an infinite sequence of points $z_n=r_ne^{i\theta}$ $(n=1,2,\dots)$, where $r_n\to \infty$, such that $f^{(k)}(z_n)\to \infty$ and \begin{equation}\label{bab} \big|\frac{f^{(j)}(z_n)}{f^{(k)}(z_n)}\big| \leq \frac{1}{(k-j)!} |z_n|^{(k-j)}(1+o(1)) \quad (j=0, \dots , k-1). \end{equation} \end{lemma} \begin{lemma}[\cite{chen2003}] \label{lem5} Let $f(z)$ be an entire function with $\sigma(f)=\sigma<\infty$. Let there exists a set $E\subset[0,2\pi)$ with linear measure zero, such that for any $\arg z= \theta_0$ $\in [0,2\pi) \setminus E $, $|f(re^{i\theta_0})|\leq Mr^{k}$ ($M=M(\theta_0)>0$ is a constant, $k(>0)$ is constant independent of $\theta_0$). Then $f(z)$ is a polynomial of $\deg f \leq k$. \end{lemma} \begin{lemma}[\cite{chenshon2011}] \label{lem6} Let $A$ and $B$ be entire functions of finite order. If $f(z)$ is a solution of the equation $$ f''+Af'+Bf=0, $$ then $\sigma_2(f)\leq \max \{\sigma(A), \sigma(B)\}$. \end{lemma} \begin{lemma}[\cite{chenshon}] \label{lem7} Let $f(z)$ be an entire function of infinite order with $\sigma_2=\alpha\, (0\leq \alpha <\infty)$, and a set $E\subset[1,\infty)$ have a finite logarithmic measure. Then, there exists $\{z_k=r_ke^{i \theta_k}\}$ such that $|f(z_k)|=M(r_k,f)$, $\theta_k\in[0, 2\pi)$, $\lim_{k\to\infty}\theta_k=\theta_0\in[0, 2\pi)$, $r_k\not\in E$, $r_k\to\infty$, and such that \begin{itemize} \item[(1)] if $\sigma_2(f)=\alpha$ $(0< \alpha <\infty)$, then for any given $\varepsilon_1$ $(0<\varepsilon_1<\alpha$), \begin{equation}\label{bac} \exp\{r_k^{\alpha-\varepsilon_1}\}<\nu(r_k)<\exp \{r_k^{\alpha+\varepsilon_1}\}, \end{equation} \item[(2)] if $\sigma (f)=\infty$ and $\sigma_2(f)=0$, then for any given $\varepsilon_2$ $(0<\varepsilon_2<1/2$), and any large $M\,(>0)$, we have, for $r_k$ sufficiently large, \begin{equation}\label{bad} r_k^{M}<\nu(r_k)<\exp \{r_k^{\varepsilon_2}\}. \end{equation} \end{itemize} \end{lemma} \begin{lemma}[\cite{Gundersen1}] \label{lem8} Let $f$ be a transcendental meromorphic function, and $\alpha>1$ be a given constant. Then there exists a set $E\subset(1,\infty)$ with finite logarithmic measure and a constant $B>0$ that depends only on $\alpha$ and $i, j$ $(0\leq i< j \leq 2)$, such that for all $z$ satisfying $|z|=r \not\in E \cup [0,1]$, \begin{equation}\label{bae} \big|\frac{f^{(j)}(z)}{f^{(i)}(z)}\big| \leq B\Big(\frac{T(\alpha r,f)}{r}(\log^{\alpha}r)\log T(\alpha r, f)\Big)^{j-i}. \end{equation} \end{lemma} \begin{remark}[\cite{chen2007}] \label{rmk3} \rm From the proof of Lemma \ref{lem8}, we can see that the exceptional set $E$ satisfies that if $a_n$ and $b_{m}$ ($n,m=1,2,\dots$) denote all zeros and poles of $f$, respectively, $O(a_n)$ and $O(b_{m})$ denote sufficiently small neighborhoods of $a_n$ and $b_{m}$, respectively, then $$ E=\{|z|:z\in(\cup_{n=1}^{+\infty}O(a_n))\cup (\cup_{m=1}^{+\infty}O(b_{m}))\}. $$ Hence, if $f(z)$ is a transcendental entire function, and $z$ is a point that satisfies $|f(z)|$ to be sufficiently large, then \eqref{bae} holds. \end{remark} \section{Proof of Theorem \ref{thm1}} Suppose that $f(z)$ is a non-trivial subnormal solution of \eqref{xaac}. Let \[ h(z)=e^{(b_n/a_n)z}f(z), \] then $h(z)$ is a non-trivial subnormal solution of \begin{align*} &h''+\Big(2(-\frac{b_n}{a_n})+P_1(e^{z})+P_2(e^{-z})\Big)h'\\ +&\Big((-\frac{b_n}{a_n})^{2} + (-\frac{b_n}{a_n}) \big(P_1(e^{z})+P_2(e^{-z})\big)+Q_1(e^{z})+Q_2(e^{-z})\Big)h=0. \end{align*} Since any one of the following three hypotheses holds: \begin{itemize} \item[(i)] there exists $i$ satisfying $(-\frac{b_n}{a_n})a_i+b_i\neq 0$, $0 < i< n$; \item[(ii)] there exists $j$ satisfying $(-\frac{b_n}{a_n})c_j+d_j\neq 0$, $0 < j< m$; \item[(iii)] $$ \Big((-\frac{b_n}{a_n})^{2} +(-\frac{b_n}{a_n})(a_0+c_0)+b_0+d_0\Big)\neq 0, $$ \end{itemize} we obtain \begin{equation} \label{zxbbbb} (-\frac{b_n}{a_n})^{2} + (-\frac{b_n}{a_n}) (P_1(e^{z})+P_2(e^{-z}))+Q_1(e^{z})+Q_2(e^{-z})\not\equiv 0. \end{equation} From $a_nd_{m}=c_{m}b_n$, we obtain \begin{equation} \label{zxbbbc} \deg P_2(z) >m-1 \geq \deg [(-\frac{b_n}{a_n})P_2(z)+Q_2(z)]. \end{equation} Combining \eqref{zxbbbb} and \eqref{zxbbbc} with \begin{equation} \deg P_1(z) > n-1 \geq \deg [ (-\frac{b_n}{a_n})P_1(z)+Q_1(z)], \end{equation} we obtain the conclusion by using Theorem \ref{thmB}. \section{Proof of Theorem \ref{thm2}} Suppose $f (\not\equiv 0)$ is a solution of \eqref{qaaaaa}, then $f$ is an entire function. Next we will prove that $f$ is transcendental. Since $Q_1(e^{\beta z}) +Q_2(e^{-\beta z})\not\equiv 0$, we see that any nonzero constant can not be a solution of the \eqref{qaaaaa}. Now suppose that $f_0=b_nz^{n}+\dots+b_1z+b_0$, ($n\geq 1, b_n, \dots, b_0$ are constants, $b_n\neq 0$) is a polynomial solution of \eqref{qaaaaa}. \smallskip \noindent (1) $m_1\alpha=c_1n_1\beta\, (00$, then $\delta(\alpha z, \theta)=\frac{n_1c_1}{m_1}\delta(\beta z, \theta)>0$. From \eqref{qaaaaa} and Lemma \ref{lem1}, that for a sufficiently large $r$ and $\varepsilon>0$, we have \begin{equation} \label{wwaaaaa} \begin{aligned} &(1-\varepsilon)|b_n|r^{n}| b_{1n_1}|e^{n_1\delta(\beta z, \theta)r}(1-o(1)) &\leq |Q_1(e^{\beta z})+Q_2(e^{-\beta z})|\cdot |f_0| \\ &\leq |f_0''|+ |P_1(e^{\alpha z})+P_2(e^{-\alpha z})| \cdot |f_0'| \\ &\leq |a_{1m_1}|e^{m_1\delta(\alpha z,\theta)r} n(n-1)(1+\varepsilon)|b_n|r^{n-1}(1+o(1))\\ &\leq M_1e^{m_1\cdot \frac{n_1c_1}{m_1}\delta(\beta z, \theta)r}r^{n-1}(1+o(1))\\ &\leq M_1e^{n_1c_1\delta(\beta z, \theta)r}r^{n-1}(1+o(1)), \end{aligned} \end{equation} where $M_1>0$ is some constant. Since $00$, we have \begin{equation}\label{waaaab} \begin{aligned} &(1-\varepsilon)|b_n|r^{n}| b_{2n_2}|e^{-n_2\delta(\beta z, \theta)r}(1-o(1))\\ &\leq |Q_1(e^{\beta z})+Q_2(e^{-\beta z})|\cdot |f_0| \\ &\leq |f_0''|+ |P_1(e^{\alpha z})+P_2(e^{-\alpha z})| \cdot |f_0'| \\ &\leq |a_{2m_2}|e^{-m_2\delta(\alpha z,\theta)r} n(n-1)(1+\varepsilon)|b_n|r^{n-1} (1+o(1))\\ &\leq M_2e^{-m_2\cdot \frac{n_2c_2}{m_2}\delta(\beta z, \theta)r}r^{n-1}(1+o(1))\\ &\leq M_2e^{-n_2c_2\delta(\beta z, \theta)r}r^{n-1}(1+o(1)), \end{aligned} \end{equation} where $M_2>0$ is some constant. Since $00$ such that for all $z$ satisfying $|z|=r \not\in [0,1]\cup E$, we have \begin{equation} \label{dddaaa} | \frac{f^{(j)}(z)}{f(z)} | \leq B[T(2r,f)]^{j+1}, \quad j=1,2. \end{equation} (1) Suppose $m_1\alpha=c_1n_1\beta\, (00$, then $\delta(\alpha z, \theta)=\frac{n_1c_1}{m_1}\delta(\beta z, \theta)>0$. From \eqref{qaaaaa}, \eqref{dddaaa}, that for a sufficiently large $r$ and $r\not\in [0,1]\cup E$, we have \begin{equation} \label{dddaaaa} \begin{aligned} &(1-\varepsilon)| b_{1n_1}|e^{n_1\delta(\beta z, \theta)r}(1-o(1))\\ & \leq |Q_1(e^{\beta z})+Q_2(e^{-\beta z})| \\ &\leq | \frac{f''(z)}{f(z)}|+|P_1(e^{\alpha z})+P_2(e^{-\alpha z})| | \frac{f'(z)}{f(z)} | \\ &\leq B[T(2r,f)]^3+(1+\varepsilon)|a_{1m_1}|e^{m_1\delta(\alpha z,\theta)r} B[T(2r,f)]^{2}(1+o(1)) \\ &\leq C[T(2r,f)]^3e^{m_1\cdot \frac{n_1c_1}{m_1}\delta(\beta z, \theta)r} (1+o(1)) \\ &\leq C[T(2r,f)]^3e^{n_1c_1\delta(\beta z, \theta)r}(1+o(1)) . \end{aligned} \end{equation} Since $0 0$, \begin{equation}\label{dddaab} T(r,f)\leq e^{\varepsilon r}. \end{equation} When taking $z=re^{i\theta}$, such that $\delta(\beta z, \theta)>0$, by \eqref{dddaaaa} and \eqref{dddaab}, we deduce that \begin{equation} \label{dddaac} \begin{aligned} (1-\varepsilon)| b_{1n_1}|e^{n_1\delta(\beta z, \theta)r}(1-o(1)) &\leq C[T(2r,f)]^3e^{n_1c_1\delta(\beta z, \theta)r}(1+o(1)) \\ &\leq C e^{6\varepsilon r} \cdot e^{n_1c_1\delta(\beta z, \theta)r}(1+o(1)). \end{aligned} \end{equation} We see that \eqref{dddaac} is a contradiction when $0<\varepsilon<\frac{1}{6}n_1\delta(\beta z,\theta)(1-c_1)$. Hence \eqref{qaaaaa} has no non-trivial subnormal solution and every solution $f$ satisfies $\sigma_2(f)=1$. \smallskip \noindent (2) Suppose $m_2\alpha=c_2n_2\beta\, (00$, then $\delta(\beta z,\theta)=\frac{m_1}{c_1n_1}\delta(\alpha z,\theta)>0$. From \eqref{qaaaaa} and Lemma \ref{lem1}, that for a sufficiently large $r$ and $\varepsilon>0$, we have \begin{equation} \label{waaaaa} \begin{aligned} &(1-\varepsilon)|b_n|n r^{n-1} |a_{1m_1}|e^{m_1\delta(\alpha z, \theta)r}(1-o(1)) &\leq | P_1(e^{\alpha z})+P_2(e^{-\alpha z}) |\cdot |f_0'| \\ &\leq |f_0''|+ |Q_1(e^{\beta z})+Q_2(e^{-\beta z})| \cdot |f_0| \\ &\leq |b_{1n_1}|e^{n_1\delta(\beta z, \theta)r} n(n-1)(1+\varepsilon)|b_n|r^{n}(1+o(1))\\ &\leq Me^{n_1\cdot \frac{m_1}{c_1n_1}\delta(\alpha z,\theta)r}r^{n}(1+o(1))\\ &\leq Me^{\frac{m_1}{c_1}\delta(\alpha z, \theta)r}r^{n}(1+o(1)), \end{aligned} \end{equation} where $M>0$ is some constant. Since $c_1>1$, we see that \eqref{waaaaa} is a contradiction. Thus we obtain that $f$ is transcendental. First step. We prove that $\sigma(f)=\infty$. We assume that $\sigma(f)=\sigma<\infty$. By Lemma \ref{lem3}, we know that for any given $\varepsilon>0$, there exists a set $E\subset [0, 2\pi)$ which has linear measure zero, such that if $\psi\in [0, 2\pi)\setminus E$, then there is a constant $R_0=R_0(\psi)>1$, such that for all $z$ satisfying $\arg z=\psi$ and $|z|=r \geq R_0$, we have \begin{equation} \label{dddaad} |\frac{f''(z)}{f'(z)}|\leq r^{\sigma-1+\varepsilon}. \end{equation} Let $H=\{\theta\in [0,2\pi): \delta(\alpha z, \theta)=0\}$; then $H$ is a finite set. Now we take a ray $\arg z=\theta \in [0,2\pi)\setminus(E\cup H)$, then $\delta(\alpha z, \theta)>0$ or $\delta(\alpha z, \theta)<0$. We divide the proof into the following two cases. \smallskip \noindent\textbf{Case 1.} If $\delta(\alpha z, \theta)>0$, then $\delta(\beta z,\theta)=\frac{m_1}{c_1n_1}\delta(\alpha z,\theta)>0$, $\delta(-\alpha z, \theta)<0$ and $\delta(-\beta z,\theta)<0$. We assert that $|f'(re^{i\theta})|$ is bounded on the ray $\arg z=\theta$. If $|f'(re^{i\theta})|$ is unbounded on the ray $\arg z=\theta$, then by Lemma \ref{lem4}, there exists a sequence of points $z_{t}=r_{t}e^{i\theta} (t=1, 2, \dots)$ such that as $r_{t}\to \infty$, $f'(z_{t})\to \infty$ and \begin{equation}\label{dddaae} | \frac{f(z_{t})}{f'(z_{t})} | \leq r_{t}(1+o(1)). \end{equation} By \eqref{qaaaaa}, we obtain that \begin{equation}\label{dddaaf} -[ P_1(e^{\alpha z_{t}})+P_2(e^{-\alpha z_{t}}) ] =\frac{f''(z_{t})}{f'(z_{t})}+ [ Q_1(e^{\beta z_{t}})+Q_2(e^{-\beta z_{t}})] \cdot \frac{f(z_{t})}{f'(z_{t})}. \end{equation} From $\delta(\alpha z, \theta)>0$, we have \begin{gather}\label{dddaag} | P_1(e^{\alpha z_{t}})+P_2(e^{-\alpha z_{t}}) |\geq (1-\varepsilon)|a_{1m_1}|e^{m_1\delta(\alpha z_{t}, \theta)r_{t}}(1-o(1)),\\ \label{dddaah} | Q_1(e^{\beta z_{t}})+Q_2(e^{-\beta z_{t}}) | \leq Me^{n_1\delta(\beta z_{t}, \theta)r_{t}}(1+o(1)). \end{gather} Substituting \eqref{dddaad}, \eqref{dddaae}, \eqref{dddaag} and \eqref{dddaah} in \eqref{dddaaf}, we obtain \begin{equation}\label{dddaai} \begin{aligned} &(1-\varepsilon)|a_{1m_1}|e^{m_1\delta(\alpha z_{t}, \theta)r_{t}}(1-o(1))\\ &\leq r_{t}^{\sigma-1+\varepsilon} + Me^{n_1\delta(\beta z_{t}, \theta)r_{t}}(1+o(1))r_{t} (1+o(1)) \\ &\leq Mr_{t}^{\sigma+\varepsilon}e^{\frac{m_1}{c_1}\delta(\alpha z_{t}, \theta)r_{t}} (1+o(1)). \end{aligned} \end{equation} Since $c_1>1$, $\delta(\alpha z_{t}, \theta)>0$, when $r_{t}\to \infty$, \eqref{dddaai} is a contradiction. Hence $|f'(re^{i\theta})|\leq C$. So \begin{equation}\label{dddaaj} |f(re^{i\theta})|\leq Cr. \end{equation} \smallskip \noindent\textbf{Case 2.} If $\delta(\alpha z, \theta)<0$, then $\delta(\beta z,\theta)=\frac{m_2}{c_2n_2}\delta(\alpha z,\theta)<0$, $\delta(-\alpha z, \theta)>0$ and $\delta(-\beta z,\theta)>0$. Using the similar method as above, we can obtain that \begin{equation}\label{dddaak} |f(re^{i\theta})|\leq Cr. \end{equation} Since the linear measure of $E\cup H$ is zero, by \eqref{dddaaj}, \eqref{dddaak} and Lemma \ref{lem5}, we know that $f(z)$ is a polynomial, which contradicts the assumption that $f(z)$ is transcendental. Therefore $\sigma(f)=\infty$. Second step. We prove that \eqref{qaaaaa} has no non-trivial subnormal solution. Now suppose that \eqref{qaaaaa} has a non-trivial subnormal solution $f_0$. By the conclusion in the first step, $\sigma(f_0)=\infty$. By Lemma \ref{lem6}, we see that $\sigma_2(f_0)\leq 1$. Set $\sigma_2(f_0)=\omega \leq 1$. By Lemma \ref{lem8}, we see that there exists a subset $E_1\subset(1, \infty)$ having finite logarithmic measure and a constant $B>0$ such that for all $z$ satisfying $|z|=r\not\in [0,1]\cup E_1$, we have \begin{equation}\label{dddaal} | \frac{f_0^{(j)}(z)}{f_0(z)} | \leq B [T(2r,f_0)]^3, \quad (j=1,2). \end{equation} From the Wiman-Valiron theory, there is a set $E_2\subset (1, \infty)$ having finite logarithmic measure, so we can choose $z$ satisfying $|z|=r \not\in E_2$ and $|f_0(z)|=M(r,f_0)$. Thus, we have \begin{equation}\label{dddaam} \frac{f_0^{(j)}(z)}{f_0(z)} = \big( \frac{\upsilon(r)}{z} \big)^{j}(1+o(1)), \quad j=1,2, \end{equation} where $\upsilon(r)$ is the central index of $f_0(z)$. By Lemma \ref{lem7}, we see that there exists a sequence $\{z_n=r_ne^{i\theta_n}\}$ such that $|f_0(z_n)|=M(r_n,f_0)$, $\theta_n\in [0,2\pi)$, $\lim_{n\to \infty} \theta_n=\theta_0\in[0,2\pi)$, $r_n\not\in [0,1]\cup E_1\cup E_2$, $r_n\to \infty$, and if $\omega>0$, we see that for any given $\varepsilon_1$ $(0<\varepsilon_1<\omega)$, and for sufficiently large $r_n$, \begin{equation}\label{dddaan} \exp\{r_n^{\omega-\varepsilon_1}\}< \upsilon(r_n) <\exp\{r_n^{\omega+\varepsilon_1}\}, \end{equation} and if $\omega=0$, then by $\sigma(f_0)=\infty$ and Lemma \ref{lem7}, we see that for any given $\varepsilon_2$ $(0<\varepsilon_2<1/2)$, and for any sufficiently large $M$, as $r_n$ is sufficiently large, \begin{equation}\label{dddaao} r_n^{M}< \upsilon(r_n)<\exp\{r_n^{\varepsilon_2}\}. \end{equation} From \eqref{dddaan} and \eqref{dddaao}, we obtain that \begin{equation}\label{jjjjjj} \upsilon(r_n)>r_n, \quad r_n\to \infty. \end{equation} For $\theta_0$, let $\delta=\delta(\alpha z, \theta_0)=|\alpha|\cos(\arg \alpha+\theta_0)$, then $\delta <0$, or $\delta>0$, or $\delta=0$. We divide this proof into three cases. \smallskip \noindent\textbf{Case 1.} $\delta >0$. By $\theta_n\to\theta_0$, we see that there is a constant $N(>0)$ such that, as $n>N$, $\delta(\alpha z_n, \theta_n)>0$. Since $f_0$ is a subnormal solution, for any given $\varepsilon (0< \varepsilon <\frac{1}{12}(1-\frac{1}{c_1}) \delta(\alpha z_n, \theta_n))$, we have \begin{equation}\label{dddaap} [T(2r_n,f_0)]^3\leq e^{6\varepsilon r_n} \leq e^{\frac{1}{2}(1-\frac{1}{c_1})\delta(\alpha z_n, \theta_n)r_n}. \end{equation} By \eqref{dddaal}, \eqref{dddaam}, \eqref{dddaap}, we have \begin{equation}\label{dddaaq} \begin{aligned} \big(\frac{\upsilon(r_n)}{r_n} \big)^{j}(1+o(1)) &= |\frac{f_0^{(j)}(z_n)}{f_0(z_n)}| \\ &\leq B[T(2r_n, f_0)]^3 \\ &\leq Be^{\frac{1}{2}(1-\frac{1}{c_1})\delta (\alpha z_n, \theta_n)r_n}, \quad j=1,2. \end{aligned} \end{equation} Since $\delta(\alpha z_n, \theta_n)>0$, from \eqref{qaaaaa}, \eqref{dddaam}, we obtain that \begin{equation}\label{dddaar} \begin{aligned} & (1-\varepsilon)\frac{\upsilon(r_n)}{r_n}|a_{1m_1}| e^{m_1\delta(\alpha z_n, \theta_n)r_n}(1-o(1))\\ &\leq|\frac{f_0'(z_n)}{f_0(z_n)} \big(P_1(e^{\alpha z_n})+P_2(e^{-\alpha z_n}) \big)| \\ & = | \frac{f''_0(z_n)}{f_0(z_n)}+[Q_1(e^{\beta z_n})+Q_2(e^{-\beta z_n}) ] | \\ & \leq \big(\frac{\upsilon(r_n)}{r_n}\big) ^{2}(1+o(1)) +(1+\varepsilon)|b_{1n_1}|e^{n_1\delta(\beta z_n, \theta_n)r_n}(1+o(1))\\ &\leq M_1\big(\frac{\upsilon(r_n)}{r_n}\big) ^{2} e^{\frac{m_1}{c_1}\delta(\alpha z_n, \theta_n)r_n}(1+o(1)). \end{aligned} \end{equation} From \eqref{dddaaq} and \eqref{dddaar}, we can obtain \begin{equation}\label{dddaas} \begin{aligned} &(1-\varepsilon)|a_{1m_1}|e^{m_1(1-\frac{1}{c_1}) \delta(\alpha z_n, \theta_n)r_n}(1-o(1)) \\ &\leq M_1Be^{\frac{1}{2}(1-\frac{1}{c_1}) \delta(\alpha z_n,\theta_n)r_n}(1+o(1)). \end{aligned} \end{equation} Since $c_1>1$ and $m_1\geq 1$, we see that \eqref{dddaas} is a contradiction. \smallskip \noindent\textbf{Case 2.} $\delta <0$. By $\theta_n\to\theta_0$, we see that there is a constant $N(>0)$ such that, as $n>N$, $\delta(\alpha z_n, \theta_n)<0$. Since $f_0$ is a subnormal solution, for any given $\varepsilon$ $ (0< \varepsilon <-\frac{1}{12}(1-\frac{1}{c_2})\delta(\alpha z_n, \theta_n))$, we have \begin{equation}\label{dddaat} [T(2r_n,f_0)]^3\leq e^{6\varepsilon r_n} \leq e^{-\frac{1}{2}(1-\frac{1}{c_2})\delta(\alpha z_n, \theta_n)r_n}. \end{equation} By \eqref{dddaal}, \eqref{dddaam}, \eqref{dddaat} we have \begin{equation}\label{dddaav} \begin{aligned} \big(\frac{\upsilon(r_n)}{r_n} \big)^{j}(1+o(1)) &= |\frac{f_0^{(j)}(z_n)}{f_0(z_n)}|\leq B[T(2r_n, f_0)]^3 \\ &\leq Be^{-\frac{1}{2}(1-\frac{1}{c_2})\delta (\alpha z_n, \theta_n)r_n}, \quad j=1,2. \end{aligned} \end{equation} By \eqref{dddaam} and \eqref{qaaaaa}, we obtain \begin{equation}\label{dddaau} \begin{aligned} & (1-\varepsilon)\frac{\upsilon(r_n)}{r_n}|a_{2m_2}|e^{-m_2 \delta(\alpha z_n, \theta_n)r_n}(1-o(1))\\ &\leq|\frac{f_0'(z_n)}{f_0(z_n)}\left(P_1(e^{\alpha z_n})+P_2(e^{-\alpha z_n}) \right)| \\ & = | \frac{f''_0(z_n)}{f_0(z_n)}+[Q_1(e^{\beta z_n})+Q_2(e^{-\beta z_n}) ] | \\ & \leq \big(\frac{\upsilon(r_n)}{r_n}\big) ^{2}(1+o(1))+(1+\varepsilon)|b_{2n_2}|e^{-n_2\delta(\beta z_n, \theta_n)r_n}(1+o(1)) \\ & \leq M_2\big(\frac{\upsilon(r_n)}{r_n}\big) ^{2}e^{-\frac{m_2}{c_2}\delta(\alpha z_n, \theta_n)r_n}(1+o(1)). \end{aligned} \end{equation} From \eqref{dddaav} and \eqref{dddaau}, we can deduce that \begin{equation}\label{dddaaw} \begin{aligned} &(1-\varepsilon)|a_{2m_2}|e^{-m_2(1-\frac{1}{c_2}) \delta(\alpha z_n, \theta_n)r_n}(1-o(1)) \\ &\leq M_2Be^{-\frac{1}{2}(1-\frac{1}{c_2})\delta(\alpha z_n,\theta_n)r_n}(1+o(1)). \end{aligned} \end{equation} Since $c_2>1$ and $m_2\geq 1$, we see that \eqref{dddaaw} is a contradiction. \smallskip \noindent\textbf{Case 3.} $\delta=0$. Then $\theta_0\in H=\{\theta|\theta\in[0,2\pi), \delta(\alpha z, \theta)=0\}$. Since $\theta_n\to \theta_0$, for any given $\varepsilon>0$, we see that there is an integer $N\, (>0)$, as $n>N$, $\theta_n\in [\theta_0-\varepsilon, \theta_0+\varepsilon]$ and $z_n=r_ne^{i\theta_n}\in \overline{\Omega}=\{z:\theta_0-\varepsilon \leq \arg z \leq \theta_0+\varepsilon\}$. By Lemma \ref{lem8}, there exists a subset $E_{3}\subset (1,\infty)$ having finite logarithmic measure and a constant $B>0$, such that for all $z$ satisfying $|z|=r\not\in[0,1]\cup E_{3}$, we have \begin{equation}\label{dddaax} |\frac{f_0''(z)}{f_0'(z)} |\leq B[T(2r,f_0')]^{2}. \end{equation} Now we consider the growth of $f_0(re^{i\theta})$ on a ray $\arg z=\theta \in \overline{\Omega}\setminus \{\theta_0\}$. Denote $\Omega_1=[\theta_0-\varepsilon, \theta_0)$, $\Omega_2=(\theta_0, \theta_0+\varepsilon]$. We can easily see that when $\theta_1\in \Omega_1, \theta_2\in \Omega_2$, then $\delta(\alpha z, \theta_1)\cdot\delta(\alpha z, \theta_2)<0$. Without loss of generality, we suppose that $\delta(\alpha z, \theta)>0 \, (\theta\in\Omega_1)$ and $\delta(\alpha z, \theta)<0 \, (\theta\in\Omega_2)$. Since when $\theta\in \Omega_1$, $\delta(\alpha z, \theta)>0$. Recall $f_0$ is subnormal, then for any given $\varepsilon$ $(0<\varepsilon<\frac{1}{8}(1-\frac{1}{c_1})\delta(\alpha z, \theta))$, \begin{equation}\label{dddaay} [T(2r,f_0')]^{2}\leq e^{4\varepsilon r} \leq e^{\frac{1}{2}(1-\frac{1}{c_1})\delta(\alpha z, \theta)r}. \end{equation} We assert that $|f_0'(re^{i\theta})|$ is bounded on the ray $\arg z=\theta$. If $|f_0'(re^{i\theta})|$ is unbounded on the ray $\arg z=\theta$, then by Lemma \ref{lem4}, there exists a sequence $\{y_j=R_je^{i\theta}\}$ such that $R_j\to \infty$, $f_0'(y_j)\to \infty$ and \begin{equation}\label{dddaaz} | \frac{f_0(y_j)}{f_0'(y_j)} | \leq R_j(1+o(1)). \end{equation} By \eqref{dddaax}, \eqref{dddaay}, we see that for sufficiently large $j$, \begin{equation}\label{dddbaa} |\frac{f_0''(y_j)}{f_0'(y_j)} |\leq B[T(2R_j,f_0')]^{2} \leq Be^{\frac{1}{2}(1-\frac{1}{c_1})\delta(\alpha y_j,\theta)R_j}. \end{equation} By \eqref{qaaaaa}, we deduce that \begin{equation}\label{dddbab} \begin{aligned} &(1-\varepsilon)|a_{1m_1}|e^{m_1\delta(\alpha y_j, \theta)R_j}(1-o(1))\\ &\leq|-\left(P_1(e^{\alpha y_j})+P_2(e^{-\alpha y_j})\right) | \\ &\leq | \frac{f_0''(y_j)}{f_0'(y_j)} |+ | Q_1(e^{\beta y_j})+ Q_2(e^{-\beta y_j}) |\cdot |\frac{f_0(y_j)}{f_0'(y_j)}| \\ &\leq C_1e^{\frac{1}{2}(1-\frac{1}{c_1})\delta(\alpha y_j, \theta)R_j} e^{n_1\delta(\beta y_j,\theta)R_j}R_j(1+o(1))\\ &\leq C_1e^{[\frac{1}{2}(1-\frac{1}{c_1})+\frac{m_1}{c_1}]\delta(\alpha y_j, \theta)R_j}R_j(1+o(1)). \end{aligned} \end{equation} Since $\delta(\alpha y_j, \theta)>0$, $c_1>1$, we know that when $R_j\to \infty$, \eqref{dddbab} is a contradiction. Hence \begin{equation}\label{dddbac} |f_0(re^{i\theta})|\leq Cr, \end{equation} on the ray $\arg z=\theta \in \Omega_1$. When $\theta\in \Omega_2$, $\delta(\alpha z, \theta)<0$. Recall $f_0$ is subnormal, then for any given $\varepsilon$ $(0<\varepsilon<-\frac{1}{8}(1-\frac{1}{c_2})\delta(\alpha z, \theta))$, \begin{equation}\label{dddbad} [T(2r,f_0')]^{2}\leq e^{4\varepsilon r} \leq e^{-\frac{1}{2}(1-\frac{1}{c_2})\delta(\alpha z, \theta)r}. \end{equation} We assert that $|f_0'(re^{i\theta})|$ is bounded on the ray $\arg z=\theta$. If $|f_0'(re^{i\theta})|$ is unbounded on the ray $\arg z=\theta$, using the similar proof as above, we can obtain that \begin{equation}\label{dddbae} \begin{aligned} & (1-\varepsilon) |a_{2m_2}|e^{-m_2(1-\frac{1}{c_2}) \delta(\alpha y_j, \theta)R_j}(1-o(1))\\ &\leq C_2e^{-\frac{1}{2}(1-\frac{1}{c_2}) \delta(\alpha y_j,\theta)R_j}R_j(1+o(1)) \end{aligned} \end{equation} Since $\delta(\alpha y_j, \theta)<0$ and $c_2>1$, we know that when $R_j\to \infty$, \eqref{dddbae} is a contradiction. Hence \begin{equation}\label{dddbaf} |f_0(re^{i\theta})|\leq Cr, \end{equation} on the ray $\arg z=\theta \in \Omega_2$. By \eqref{dddbac}, \eqref{dddbaf}, we see that $|f_0(re^{i\theta})|$ satisfies \begin{equation}\label{dddbag} |f_0(re^{i\theta})|\leq Cr, \end{equation} on the ray $\arg z=\theta \in \overline{\Omega}\setminus \{\theta_0\}$. However, since $f_0$ is transcendental and $\{z_n=r_ne^{i\theta_n}\}$ satisfies $|f_0(z_n)|=M(r_n,f_0)$, we see that for any large $N(>2)$, as $n$ is sufficiently large, \begin{equation}\label{dddbah} |f_0(z_n)|=|f_0(r_ne^{i\theta_n})|\geq r_n^{N}. \end{equation} Since $z_n\in \overline{\Omega}$, by \eqref{dddbag}, \eqref{dddbah}, we see that for sufficiently,large $n$, $$\theta_n=\theta_0.$$ Thus for sufficiently large $n$, $\delta(\alpha z_n, \theta_n)=0$ and \begin{equation}\label{dddbai} |P_1(e^{\alpha z_n})+P_2(e^{-\alpha z_n}) |\leq C, \quad |Q_1(e^{\beta z_n})+Q_2(e^{-\beta z_n}) |\leq C. \end{equation} By \eqref{qaaaaa}, \eqref{dddaam}, we obtain that \begin{equation}\label{dddbaj} \begin{aligned} &-\big(\frac{\upsilon(r_n)}{z_n}\big)^{2}(1+o(1))\\ &= \left(P_1(e^{\alpha z_n})+P_2(e^{-\alpha z_n})\right) \big(\frac{\upsilon(r_n)}{z_n} \big)(1+o(1)) +[Q_1(e^{\beta z_n})+Q_2(e^{-\beta z_n}) ]. \end{aligned} \end{equation} By \eqref{dddbai}, \eqref{dddbaj} and \eqref{jjjjjj} we obtain that \begin{equation}\label{dddbak} \upsilon(r_n)\leq 2Cr_n, \end{equation} by \eqref{dddaan} (or \eqref{dddaao}), we see that \eqref{dddbak} is a contradiction. Hence \eqref{qaaaaa} has no non-trivial subnormal solution. Third step. We prove that all solutions of \eqref{qaaaaa} satisfies $\sigma_2(f)=1$. If there is a solution $f_1$ satisfying $\sigma_2(f_1)<1$, then $\sigma_{e}(f_1)=0$, that is to say $f_1$ is subnormal, but this contradicts the conclusion in step 2. Hence $\sigma_2(f)=1$. This completes the proof of Theorem \ref{thm3}. \subsection*{Acknowledgements} The authors would like to thank the editor and the referee for their valuable suggestions. This work was supported by the NNSF of China (No. 11171013 and No. 11371225). \begin{thebibliography}{99} \bibitem{chenshon2011} Z.~X.~Chen; \emph{The growth of solutions of $f''+e^{-z}f'+Q(z)f=0$ where the order $\sigma(Q)=1$}, Sci. China Ser. A 45 (3) (2002) 290-300. \bibitem{chen2003} Z.~X.~Chen; \emph{On the growth of solutions of a class of higher order differtial equations,} Chin Ann of Math., \textbf{24B(4)} (2003), 501--508. \bibitem{chen2007} Z. X. Chen, K. H. Shon; \emph{On subnormal solutions of second order linear periodic differential equations,} Sci. China Ser. A., \textbf{50} (2007), no. 6,786--800 \bibitem{chenshon} Z.~X.~Chen, K.~H.~Shon; \emph{The hyper order of solutions of second order differential equations and subnormal solutions of periodic equations}, Taiwanese J.~Math.~\textbf{14} (2)(2010), 611--628. \bibitem{Gundersen1} G. Gundersen; \emph{Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates,} J. London Math. Soc, ~\textbf{37} (1988), 88--104. \bibitem{Gundersen2} G. Gundersen; \emph{Finite order solutions of second order linear differential equations,} Trans. Amer. Math. Soc., \textbf{305} (1988), 415--429. \bibitem{Gundersen1994} G. Gundersen, M. Steinbart; \emph{Subnormal solutions of second order linear differential equation with periodic coefficients,} Results in Math., ~\textbf{25} (1994), 270--289. \bibitem{Laine} I. Laine; \emph{Nevanlinna Theory and Complex Differential Equations,} W. de Gruyter, Berlin, (1993) \bibitem{Laine-Yang} I. Laine, R. Yang; \emph{Finite order solutions of complex linear differential equations,} Electron. J. Differential Equations., \textbf{65} (2004), 8 pp. \bibitem{Wittich} H. Wittich; \emph{Subnormale L\"{o}sungen der Differentialgleichung $\omega''+p(e^{z})\omega'+q(e^{z})\omega=0$,} Nagoya Math. J., \textbf{30} (1967), 29--37. \bibitem{Lpxiao} L. P. Xiao; \emph{Nonexistence of a subnormal solution of certain second order periodic differential equations,} J. Math. Anal. Appl., \textbf{402} (2013), 527-535. \bibitem{Yi1} H. X. Yi, C. C. Yang; \emph{Uniqueness theory of meromorphic functions.} Science Press, Beijing, (1995) \end{thebibliography} \end{document}