\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 64, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/64\hfil Periodic solutions] {Periodic solutions for non-autonomous second-order differential systems with $(q,p)$-Laplacian} \author[C. Li, Z.-Q. Ou, C.-L. Tang \hfil EJDE-2014/64\hfilneg] {Chun Li, Zeng-Qi Ou, Chun-Lei Tang} % in alphabetical order \address{Chun Li \newline School of Mathematics and Statistics, Southwest University, Chongqing 400715, China} \email{Lch1999@swu.edu.cn} \address{Zeng-Qi Ou \newline School of Mathematics and Statistics, Southwest University, Chongqing 400715, China} \email{ouzengq707@sina.com} \address{Chun-Lei Tang (corresponding author)\newline School of Mathematics and Statistics, Southwest University, Chongqing 400715, China\newline Tel +86 23 68253135, fax +86 23 68253135} \email{tangcl@swu.edu.cn} \thanks{Submitted March 18, 2012. Published March 5, 2014.} \subjclass[2000]{34C25, 35B38, 47J30} \keywords{Periodic solution; differential systems; $(q,p)$-Laplacian; \hfill\break\indent least action principle; saddle point theorem} \begin{abstract} Some existence theorems are obtained for periodic solutions of nonautonomous second-order differential systems with $(q,p)$-Laplacian by using the least action principle and the saddle point theorem. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} Consider the second-order system \begin{equation}\label{1} \begin{gathered} \frac{d}{dt} \big( | \dot{u}_1(t) |^{q-2} \dot{u}_1(t) \big) = \nabla_{u_1} F(t,u_1(t),u_2(t)),\\ \frac{d}{dt} ( | \dot{u}_2(t) |^{p-2} \dot{u}_2(t) ) = \nabla_{u_2} F(t,u_1(t),u_2(t)),\quad \text{a.e. } t\in [0,T],\\ u_1(0)-u_1(T) = \dot{u}_1(0)-\dot{u}_1(T) = 0,\\ u_2(0)-u_2(T) = \dot{u}_2(0)-\dot{u}_2(T)=0, \end{gathered} \end{equation} where $10$ and $|\cdot|$ denotes the Euclidean norm in $ \mathbb{R}^N$. $F:[0,T]\times \mathbb{R}^N \times \mathbb{R}^N\to \mathbb{R}$ satisfies the following assumption \begin{itemize} \item[(A1)] \begin{itemize} \item $F$ is measurable in $t$ for each $(x_1, x_2)\in \mathbb{R}^N\times \mathbb{R}^N$; \item $F$ is continuously differentiable in $(x_1, x_2)$ for a.e. $t\in [0,T]$; \item there exist $a_1, a_2 \in C( \mathbb{R}_+, \mathbb{R}_+)$ and $b \in L^1(0,T; \mathbb{R}_+)$ such that \[ |F(t,x_1,x_2)|, \text{ } |\nabla_{x_1}F(t,x_1,x_2)|, \text{ } |\nabla_{x_2}F(t,x_1,x_2)| \leq \big[a_1(|x_1|) + a_2(|x_2|)\big]b(t) \] for all $(x_1, x_2)\in \mathbb{R}^N\times \mathbb{R}^N$ and a.e. $t\in [0,T]$. \end{itemize} \end{itemize} We denote by $W_T^{1,p}$ the Sobolev space of functions $u\in L^p(0,T; \mathbb{R}^N)$ having a weak derivative $\dot{u} \in L^p(0,T; \mathbb{R}^N)$. The norm in $W_T^{1,p}$ is defined by \[ \|u \|_{W_T^{1,p}} = \Big( \int_0^T \big( |u(t)|^p + |\dot{u}(t)|^p\big)dt \Big)^{1/p}. \] The corresponding functional $\varphi:W\to \mathbb{R} $ given is \[ \varphi(u_1, u_2)= \frac{1}{q}\int_0^T |\dot{u}_1(t) |^q dt + \frac{1}{p}\int_0^T |\dot{u}_2(t) |^p dt + \int_0^T F(t,u_1(t),u_2(t))dt, \] where $W=W_T^{1,q}\times W_T^{1,p}$ is a reflexive Banach space and endowed with the norm \[ \|(u_1,u_2) \|_W = \|u_1\|_{W_T^{1,q}} + \|u_2\|_{W_T^{1,p}}. \] It follows from assumption (A1) that the functional $\varphi$ is continuously differentiable and weakly lower semicontinuous on $ W$. Moreover, \begin{align*} &\langle\varphi'(u_1,u_2),(v_1,v_2)\rangle\\ &=\int_0^{T}[( |\dot{u}_1 (t)|^{q-2}\dot{u}_1(t),\dot{v}_1(t)) + (\nabla_{u_1} F(t,u_1(t),u_2(t)),v_1(t))]dt\\ &\quad+\int_0^{T}[( |\dot{u}_2 (t)|^{p-2}\dot{u}_2(t),\dot{v}_2(t)) + (\nabla_{u_2} F(t,u_1(t),u_2(t)),v_2(t))]dt \end{align*} for all $(u_1,u_2),(v_1,v_2)\in W $. For each $u\in W_T^{1,p}$ can be written as $u(t)=\bar{u} + \tilde{u}(t)$ with \[ \bar{u} = \frac{1}{T}\int_0^T u(t)dt,\quad \int_0^T \tilde{u}(t)dt=0. \] We have the Sobolev's inequality (for a proof and details see \cite{mw}) \[ \| \tilde{u} \|_\infty \le C_1 \| \dot{u} \|_p,\ \| \tilde{v} \|_\infty \le C_1 \| \dot{v} \|_q\quad \text{for each } u \in W_T^{1,p},\ v \in W_T^{1,q}, \] and Wirtinger's inequality (see \cite{mw}) \[ \| \tilde{u} \|_p \le C_2 \| \dot{{u}} \|_p,\quad \| \tilde{v} \|_q \le C_2 \| \dot{{v}} \|_q\quad \text{for each } u \in W_T^{1,p},\ v \in W_T^{1,q}, \] where \[ \|u\|_p=\Big(\int_0^T|u(t)|^pdt\Big)^{1/p},\quad \|u\|_\infty=\max_{t\in[0,T]}|u(t)|. \] A function $G:\mathbb{R}^N\to \mathbb{R}$ is called to be $(\lambda,\mu)$-subconvex if \[ G(\lambda(x+y))\leq \mu(G(x)+G(y)) \] for some $\lambda, \mu>0$ and all $x,y\in \mathbb{R}^N$ (see \cite{Wu-Tang}). The existence of periodic solutions for the second-order Hamiltonian system \begin{equation}\label{HS} \begin{gathered} \ddot{u}(t) =\nabla F(t,u),\quad\text{a.e. }t\in[0,T],\\ u (0)-u (T) = \dot{u} (0)-\dot{u} (T) = 0, \end{gathered} \end{equation} has been extensively investigated in papers, such as \cite{Berger-Schechter,LongYM,Mawhin,mw,Tang1,Tang2,tang,Tang-Wu,Tang-Meng,Willem,Wu-Tang} and the reference therein. Many solvability conditions are given, such as the coercive condition (see \cite{Berger-Schechter}), the periodicity condition (see \cite{Willem}), the convexity condition (see \cite{ Mawhin}), the boundedness condition (see \cite{mw}), the subadditive condition (see \cite{Tang1}), and the sublinear condition (see \cite{tang}). When the gradient $\nabla F(t,x)$ is bounded; that is, there exists $g \in L^1( 0,T;\mathbb{R}_+)$ such that \[ |\nabla F(t,x)|\leq g(t) \] for all $x\in \mathbb{R}^N$ and a.e. $t\in [0,T]$. Mawhin and Willem \cite{mw} obtained the existence of solutions for problem \eqref{HS} under the condition \[ \int_0^TF(t,x)dt\to+\infty\text{(or $-\infty$)},\quad\text{as } |x|\to\infty. \] Tang \cite{tang} proved the existence of solutions for problem \eqref{HS} when \begin{equation}\label{sub} |\nabla F(t,x)|\leq f(t)|x|^\alpha+g(t) \end{equation} for all $x\in \mathbb{R}^N$ and a.e. $t\in [0,T]$, where $f,g \in L^1( 0,T;\mathbb{R}_+)$ and $\alpha\in[0,1)$. And, $F$ satisfies the condition \[ |x|^{-2\alpha} \int_0^TF(t,x)dt\to+\infty\ (or\ -\infty),\ \text{as}\ |x|\to\infty. \] Tang and Meng \cite{Tang-Meng} studied the existence of solutions for problem \eqref{HS} under the conditions \eqref{sub} or \[ |\nabla F(t,x)|\leq f(t)|x| +g(t) \] for all $x\in \mathbb{R}^N$ and a.e. $t\in [0,T]$, where $f,g \in L^1(0,T;\mathbb{R}_+)$. The results in \cite{Tang-Meng} complement those in \cite[Theorem 1 and 2]{tang}. Recently, Pa\c{s}ca and Tang \cite{P-Tang} established the existence results for problem \eqref{1} which extend \cite[Theorems 1 and 2]{tang}. By applying the least action principle, Pa\c{s}ca \cite{Pasca-Simon} proved some existence theorems for problem \eqref{1} which generalize the corresponding Theorems of \cite{Wu-Tang}. Using the Saddle Point Theorem, Pa\c{s}ca and Tang \cite{Pasca-Tang} obtained some existence results for problem \eqref{1}. Pa\c{s}ca \cite{Pasca-Singap} studied the existence of periodic solutions for nonautonomous second-order differential inclusions systems with ($q,p)$-Laplacian which extend the results of \cite{ Pasca-PanAmer,Pasca-Commun,P-Tang,tang}. In this paper, motivated by references \cite{Pasca-Simon,P-Tang,tang,Tang-Meng}, we consider the existence of periodic solutions for problem \eqref{1} by using the least action principle and the Saddle Point Theorem. Our main results are the following theorems. \begin{theorem}\label{Th1} Suppose that $F=F_1+F_2$, where $F_1$ and $F_2$ satisfy assumption {\rm (A1)} and the following conditions: \begin{itemize} \item[(H0)] $F_1(t,\cdot,\cdot)$ is $(\lambda,\mu)$-subconvex with $\lambda>1/2$ and $1/2<\mu<2^{r-1}\lambda^r$ for $ a.e. t\in[0,T]$, where $r=\min\{p,q\}$; \item[(H1)] there exist $f_i, g_i, h_i \in L^1(0,T; \mathbb{R}_+)$, $i=1,2$, $\alpha_1 \in [0,q-1)$, $\alpha_2 \in [0,p-1)$, $\beta_1\in [0, p/q')$, $\beta_2\in [0, q/p')$, $q'=q/(q-1)$ and $p'=p/(p-1)$ \begin{gather*} |\nabla_{x_1} F_2(t,x_1,x_2)| \leq f_1(t) |x_1|^{\alpha_1} + g_1(t) |x_2|^{\beta_1}+h_1(t) \\ |\nabla_{x_2} F_2(t,x_1,x_2)| \leq f_2(t) |x_2|^{\alpha_2} + g_2(t) |x_1|^{\beta_2}+h_2(t) \end{gather*} for all $(x_1, x_2)\in \mathbb{R}^N \times \mathbb{R}^N$ and a.e. $t\in [0,T]$; \item[(H2)] \[ \lim_{|x|\to \infty}\frac{1}{|x_1|^{\gamma_1} + |x_2|^{\gamma_2}} \Big(\frac{1}{\mu}\int_0^T F_1(t,\lambda x_1,\lambda x_2)dt+\int_0^T F_2(t,x_1,x_2)dt\Big)>2K, \] where $|x|= \sqrt{|x_1|^2 + |x_2|^2} $, $\gamma_1=\max\{q'\alpha_1,\,\beta_2p' \}, \,\gamma_2=\max\{p'\alpha_2,\,\beta_1q'\}$ and \begin{align*} K=\max\Big\{&\frac{4^{q'/q}(2^{q-1}\|f_1\|_{L^1}C_1)^{q'} }{q'},\frac{4^{p'/p}(2^{p-1}\|f_2\|_{L^1}C_1)^{p'} }{p'},\\ &\frac{4^{q'/q}(2^{\beta_1} \|g_1\|_{L^1}C_1)^{q'} }{q'}, \frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1)^{p'} }{p'} \Big\}. \end{align*} \end{itemize} Then problem \eqref{1} has at least one solution in $W$. \end{theorem} \begin{corollary}\label{cor1} Suppose that $F=F_1+F_2$, satisfies {\rm (H0), (H1)} and \begin{itemize} \item [(H2')] \[ \frac{1}{|x_1|^{\gamma_1} + |x_2|^{\gamma_2}}\Big(\frac{1}{\mu}\int_0^T F_1(t,\lambda x_1,\lambda x_2)dt+\int_0^T F_2(t,x_1,x_2)dt\Big)\to \infty \] \end{itemize} as $|x| \to +\infty$. Then problem \eqref{1} has at least one solution in $W$. \end{corollary} \begin{remark}\label{rem1} \rm Corollary \ref{cor1} generalizes Theorem 1 of \cite{Pasca-Simon}. In fact, it follows from Corollary \ref{cor1} by letting $\beta_1=\beta_2=0$. There are functions satisfying the assumptions of our Corollary \ref{cor1} and not satisfying the assumptions in \cite{Pasca-Simon,P-Tang}. For example, Let $\alpha_1=\alpha_2=15/4$, $\beta_1=\beta_2=11/4$, $p=q=5$, $p'=q'=5/4$, and \begin{gather*} F_1(t,x_1)=5+\sin(|x_1|^6+|x_2|^6), \\ F_2(t,x_1,x_2)=\big(\frac{2T}{3}-t\big)(|x_1|^{19/4} +|x_2|^{19/4}+|x_1|^{5/4}|x_2|^{5/4}). \end{gather*} \end{remark} \begin{theorem}\label{Th2} Suppose that $F(t,x_1,x_2)$ satisfies {\rm (H1)} and \begin{itemize} \item [(H3)] \[ \lim_{|x|\to \infty}\frac{1}{|x_1|^{\gamma_1} + |x_2|^{\gamma_2}} \int_0^T F(t,x_1,x_2)dt <-( 2q'+ 2p'+1) 2K. \] \end{itemize} Then problem \eqref{1} has at least one solution in $W$. \end{theorem} \begin{corollary}\label{cor2} Suppose that $F(t,x_1,x_2)$ satisfies {\rm (H1)} and \begin{itemize} \item [(H3')] \[ \frac{1}{|x_1|^{\gamma_1} + |x_2|^{\gamma_2}} \int_0^T F(t,x_1,x_2)dt \to -\infty \] \end{itemize} as $|x| \to \infty$. Then problem \eqref{1} has at least one solution in $W$. \end{corollary} \begin{remark}\label{rem2}\rm Corollary \ref{cor2} extends \cite[Theorem 2]{P-Tang}. In fact, it follows from Corollary \ref{cor2} by letting $\beta_1=\beta_2=0$. There are functions satisfying the assumptions of our Corollary \ref{cor2} and not satisfying the assumptions in \cite{P-Tang}. For example, Let $\alpha_1=\alpha_2=15/4$, $\beta_1=\beta_2=11/4$, $p=q=5$, $p'=q'=5/4$, and \[ F(t,x_1,x_2)=\big(\frac{ T}{3}-t\big)(|x_1|^{19/4} +|x_2|^{19/4}+|x_1|^{5/4}|x_2|^{5/4}). \] \end{remark} \section{Proofs of main results} Tian and Ge \cite{tg} proved the following result which generalizes a very well known result proved by Jean Mawhin and Michel Willem \cite[Theorem 1.4]{mw}. \begin{lemma}[\cite{tg}] \label{lem1} Let $L:[0,T]\times \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$, $(t, x_1, x_2, y_1, y_2) \to L(t, x_1, x_2, y_1, y_2)$ be measurable in $t$ for each $(x_1, x_2, y_1, y_2)$, and continuously differentiable in $(x_1, x_2, y_1, y_2)$ for a.e. $t\in [0,T]$. If there exist $a_i \in C(\mathbb{R}_+, \mathbb{R}_+)$, $i=1,2$, $b\in L^1(0,T; \mathbb{R}_+)$, and $c_1 \in L^p(0,T; \mathbb{R}_+)$, $c_2 \in L^q(0,T; \mathbb{R}_+)$, $1< p, q < \infty$, such that for a.e. $t\in [0,T]$ and every $(x_1, x_2, y_1, y_2)\in \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N$, one has \begin{gather*} |L(t,x_1,x_2,y_1,y_2)|\leq (a_1(|x_1|)+a_2(|x_2|))(b(t)+|y_1|^q + |y_2|^p), \\ |D_{x_1}L(t,x_1,x_2,y_1,y_2)|\leq (a_1(|x_1|)+a_2(|x_2|))(b(t) + |y_2|^p), \\ |D_{x_2}L(t,x_1,x_2,y_1,y_2)|\leq (a_1(|x_1|)+a_2(|x_2|))(b(t)+|y_1|^q),\\ |D_{y_1}L(t,x_1,x_2,y_1,y_2)|\leq (a_1(|x_1|) + a_2(|x_2|))(c_1(t)+|y_1|^{q-1}), \\ |D_{y_2}L(t,x_1,x_2,y_1,y_2)|\leq ( a_1(|x_1|) + a_2(|x_2|))(c_2(t)+|y_2|^{p-1}), \end{gather*} then the function $\varphi: W_T^{1,q}\times W_T^{1,p} \to \mathbb{R}$ defined by \[ \varphi(u_1,u_2) = \int_0^T L(t,u_1(t), u_2(t), \dot{u}_1(t), \dot{u}_2(t))dt \] is continuously differentiable on $W_T^{1,q}\times W_T^{1,p}$ and \begin{align*} \langle \varphi'(u_1,u_2), (v_1,v_2)\rangle &= \int_0^T ((D_{x_1}L(t,u_1(t), u_2(t), \dot{u}_1(t), \dot{u}_2(t)), v_1(t)) \\ &\quad +(D_{y_1}L(t,u_1(t), u_2(t), \dot{u}_1(t), \dot{u}_2(t)), \dot{v}_1(t))\\ &\quad + (D_{x_2}L(t,u_1(t), u_2(t), \dot{u}_1(t), \dot{u}_2(t)), v_2(t))\\ &\quad +(D_{y_2}L(t,u_1(t), u_2(t), \dot{u}_1(t), \dot{u}_2(t)), \dot{v}_2(t))) dt. \end{align*} \end{lemma} \begin{corollary}\label{cor3} Let $L:[0,T]\times \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ be defined by \[ L(t, x_1, x_2, y_1, y_2) = \frac{1}{q}|y_1|^q + \frac{1}{p}|y_2|^p + F(t, x_1, x_2) \] where $F:[0,T]\times \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ satisfies condition {\rm (A1)}. If $(u_1, u_2)\in W_T^{1,q}\times W_T^{1,p}$ is a solution of the corresponding Euler equation $\varphi'(u_1,u_2)=0$, then $(u_1, u_2)$ is a solution of problem \eqref{1}. \end{corollary} \begin{remark}\label{rem3} \rm The function $\varphi$ is weakly lower semi-continuous (w.l.s.c.) on $W$ as the sum of two convex continuous functions and of a weakly continuous one. \end{remark} We will prove Theorem \ref{Th1} by using the least action principle \cite[Theorem 1.1]{mw}, and Theorem \ref{Th2} by using the saddle point theorem \cite[Theorem 4.6]{rab}. \begin{proof}[Proof of Theorem \ref{Th1}] Let $\beta= \log_{2\lambda}(2\mu)$. Then $0<\beta1$, there exists a positive integer $n$ such that \[ n-1<\log_{2\lambda}|x|\leq n. \] So, we have $|x|^\beta>(2\lambda)^{(n-1)\beta}=(2\mu)^{n-1}$ and $|x|\leq (2\lambda)^n$. Then, by (A1) and (H0), one has \begin{align*} F_1(t,x_1,x_2)&\leq 2\mu F_1(t,x_1/(2\lambda),x_2/(2\lambda))\leq\dots\\ &\leq (2\mu)^nF_1 (t,x_1/(2\lambda),x_2/(2\lambda))\\ &\leq 2\mu|x|^\beta (a_{10}+a_{20})b(t) \end{align*} for a.e. $t\in [0,T] $ and all $|x|>1$, where $a_{i0}=\max_{0\leq s\leq 1}a_i(s)$, $i=1,2$. Therefore, \begin{equation}\label{F1-leq} F_1(t,x_1,x_2)\leq (2^{\beta/2+1}\mu(|x_1|^\beta+|x_2|^\beta)+1)(a_{10}+a_{20})b(t) \end{equation} for a.e. $t\in [0,T] $ and all $(x_1, x_2)\in \mathbb{R}^N \times \mathbb{R}^N$. It follows from (H1), Sobolev's inequality and Young's inequality that \begin{align*} &\Big| \int_0^T ( F_2(t,u_1(t),\bar{u}_2) - F_2(t,\bar{u}_1,\bar{u}_2))dt \Big| \\ &=\Big| \int_0^T \int_0^1 ( \nabla_{x_1} F_2(t,\bar{u}_1 + s \tilde{u}_1(t),\bar{u}_2) , \tilde{u}_1(t) ) ds dt \Big| \\ &\leq \int_0^T \int_0^1 f_1(t) |\bar{u}_1 + s\tilde{u}_1(t)|^{\alpha_1} |\tilde{u}_1(t)| ds dt + \int_0^T \int_0^1 g_1(t)|\bar{u}_2|^{\beta_1} |\tilde{u}_1(t)| ds dt \\ &\quad + \int_0^T \int_0^1 h_1(t) |\tilde{u}_1(t)| ds dt\\ &\leq 2^{q-1} ( |\bar{u}_1|^{\alpha_1} + \|\tilde{u}_1\|_{\infty}^{\alpha_1} ) \|\tilde{u}_1\|_{\infty} \|f_1\|_{L^1}+|\bar{u}_2|^{\beta_1} \|\tilde{u}_1\|_{\infty} \|g_1\|_{L^1} +\|\tilde{u}_1\|_{\infty}\|h_1\|_{L^1}\\ &\leq 2^{q-1}C_1^{\alpha_1 +1}\|f_1\|_{L^1}\| {\dot{u}}_1\|_{q}^{\alpha_1 +1} + 2^{q-1}\|f_1\|_{L^1}C_1|\bar{u}_1|^{\alpha_1} \| \dot{u}_1\|_q\\ &\quad +C_1\|g_1\|_{L^1}|\bar{u}_2|^{\beta_1}\|\dot{u}_1\|_{q} + C_1\|h_1\|_{L^1}\|\dot{u}_1\|_{q}\\ &\leq 2^{q-1}C_1^{\alpha_1 +1}\|f_1\|_{L^1}\|\dot{u}_1\|_q^{\alpha_1 +1} + \frac{1}{4q} \|\dot{u}_1\|_q^q + \frac{4^{q'/q}(2^{q-1}\|f_1\|_{L^1}C_1)^{q'} }{q'}|\bar{u}_1|^{q'\alpha_1}\\ &\quad + \frac{1}{4q}\|\dot{u}_1\|_q^q +\frac{4^{q'/q}( \|g_1\|_{L^1}C_1)^{q'} }{q'} |\bar{u}_2|^{q'\beta_1}+C_1\|h_1\|_{L^1}\|\dot{u}_1\|_q \\ &= \frac{1}{2q} \|\dot{u}_1\|_q^q+ 2^{q-1}C_1^{\alpha_1 +1}\|f_1\|_{L^1}\|\dot{u}_1\|_q^{\alpha_1 +1} + \frac{4^{q'/q}(2^{q-1}\|f_1\|_{L^1}C_1)^{q'} }{q'}|\bar{u}_1|^{q'\alpha_1}\\ &\quad +\frac{4^{q'/q}( \|g_1\|_{L^1}C_1)^{q'} }{q'} |\bar{u}_2|^{q'\beta_1}+C_1\|h_1\|_{L^1}\|\dot{u}_1\|_q \end{align*} and \begin{align*} &\Big| \int_0^T ( F_2(t,u_1(t),u_2(t)) - F_2(t,u_1(t),\bar{u}_2) )dt \Big| \\ &= \Big| \int_0^T \int_0^1 ( \nabla_{x_2} F_2(t,u_1(t),\bar{u}_2 + s \tilde{u}_2(t)), \tilde{u}_2(t)) ds dt \Big|\\ &\leq \int_0^T \int_0^1 f_2(t) |\bar{u}_2 + s\tilde{u}_2(t)|^{\alpha_2} |\tilde{u}_2(t)| ds dt + \int_0^T \int_0^1 g_2(t)| u _1 |^{\beta_2} |\tilde{u}_2(t)| ds dt \\ &\quad+ \int_0^T\int_0^1 h_2(t) |\tilde{u}_2(t)| ds dt\\ &\leq 2^{p-1}(|\bar{u}_2|^{\alpha_2}+ \|\tilde{u}_2\|_{\infty}^{\alpha_2}) \|\tilde{u}_2\|_{\infty} \|f_2\|_{L^1} + 2^{\beta_2}(|\bar{u}_1|^{\beta_2} + \|\tilde{u}_1\|_{\infty}^{\beta_2}) \|\tilde{u}_2\|_{\infty} \|g_2\|_{L^1}\\ &\quad +\|\tilde{u}_2\|_{\infty} \|h_2\|_{L^1}\\ &\leq 2^{p-1}C_1^{\alpha_2 +1}\|f_2\|_{L^1} \|\dot{u}_2\|_{p}^{\alpha_2 +1} + 2^{p-1}C_1\|f_2\|_{L^1}|\bar{u}_2|^{\alpha_2} \|\dot{u}_2\|_{p} + C_1\|h_2\|_{L^1}\|\dot{u}_2\|_{p}\\ &\quad +2^{\beta_2}\|g_2\|_{L^1}C_1^{\beta_2+1}\|\dot{u}_2\|_{p} \|\dot{u}_1\|_{q}^{\beta_2} +2^{\beta_2}\|g_2\|_{L^1}C_1\|\dot{u}_2\|_{p}|\bar{u } _1|^{\beta_2}\\ &\leq 2^{p-1}C_1^{\alpha_2 +1}\|f_2\|_{L^1}\|\dot{u}_2\|_p^{\alpha_2 +1} + \frac{1}{4p} \|\dot{u}_2\|_p^p +\frac{4^{p'/p}(2^{p-1}\|f_2\|_{L^1}C_1)^{p'}}{p'} |\bar{u}_2|^{p'\alpha_2}\\ &\quad + \frac{1}{4p}\|\dot{u}_2\|_p^p +\frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1^{\beta_2+1})^{p'}}{p'} \|\dot{u}_1\|_q^{\beta_2p'} +\frac{1}{4p}\|\dot{u}_2\|_p^p\\ &\quad +\frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1)^{p'}}{p'}|\bar{u}_1|^{\beta_2p'} +C_1\|h_2\|_{L^1}\|\dot{u}_2\|_p\\ &= \frac{3}{4p} \|\dot{u}_2\|_p^p + 2^{p-1}C_1^{\alpha_2 +1}\|f_2\|_{L^1}\|\dot{u}_2\|_p^{\alpha_2 +1} + \frac{4^{p'/p}(2^{p-1}\|f_2\|_{L^1}C_1)^{p'}}{p'}|\bar{u}_2|^{p'\alpha_2}\\ &\quad +\frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1^{\beta_2+1})^{p'}}{p'} \|\dot{u}_1\|_q^{\beta_2p'}+\frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1)^{p'} }{p'}|\bar{u}_1|^{\beta_2p'}\\ &\quad +C_1\|h_2\|_{L^1}\|\dot{u}_2\|_p \end{align*} for all $(u_1,u_2)\in W$. So, one has \begin{align*} &\Big| \int_0^T (F_2(t,u_1(t),u_2(t))-F_2(t,\bar{u}_1,\bar{u}_2) )dt \Big|\\ &\leq \Big| \int_0^T ( F_2(t,u_1(t),\bar{u}_2) -F_2(t,\bar{u}_1,\bar{u}_2) )dt \Big|\\ &\quad +\Big| \int_0^T( F_2(t,u_1(t),u_2(t))-F_2(t,u_1(t),\bar{u}_2))dt \Big|\\ &\leq \frac{1}{2q}\|\dot{u}_1\|_q^q+\frac{3}{4p} \|\dot{u}_2\|_p^p+C_1\|h_1\|_{L^1}\|\dot{u}_1\|_q+C_1\|h_2\|_{L^1}\|\dot{u}_2\|_p\\ &\quad + 2^{q-1}C_1^{\alpha_1 +1}\|f_1\|_{L^1}\|\dot{u}_1\|_q^{\alpha_1 +1} + 2^{p-1}C_1^{\alpha_2 +1}\|f_2\|_{L^1}\|\dot{u}_2\|_p^{\alpha_2 +1}\\ &\quad + \frac{4^{q'/q}(2^{q-1}\|f_1\|_{L^1}C_1)^{q'}}{q'}|\bar{u}_1|^{q'\alpha_1} +\frac{4^{q'/q}( \|g_1\|_{L^1}C_1)^{q'}}{q'} |\bar{u}_2|^{q'\beta_1}\\ &\quad + \frac{4^{p'/p}(2^{p-1}\|f_2\|_{L^1}C_1)^{p'} }{p'}|\bar{u}_2|^{p'\alpha_2}+\frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1)^{p'} }{p'}|\bar{u}_1|^{p'\beta_2}\\ &\quad +\frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1^{\beta_2+1})^{p'}}{p'} \|\dot{u}_1\|_q^{\beta_2p'} \end{align*} for all $(u_1,u_2)\in W$. Hence, we obtain from (H0), \eqref{F1-leq} and the above expression that \begin{align*} \varphi(u_1,u_2) &= \frac{1}{q} \int_0^T |\dot{u}_1(t)|^q dt + \frac{1}{p} \int_0^T |\dot{u}_2(t)|^p dt+\int_0^T F_1(t,u_1(t),u_2(t))dt \\ &\quad + \int_0^T(F_2(t,u_1(t),u_2(t)) - F_2(t, \bar{u}_1,\bar{u}_2) ) dt + \int_0^T F_2(t, \bar{u}_1,\bar{u}_2) dt \\ &\geq \frac{1}{2q} \|\dot{u}_1\|_q^q + \frac{1}{4p} \|\dot{u}_2\|_p^p -C_1\|h_1\|_{L^1}\|\dot{u}_1\|_q -C_1\|h_2\|_{L^1}\|\dot{u}_2\|_p\\ &\quad - 2^{q-1}C_1^{\alpha_1 +1}\|f_1\|_{L^1}\|\dot{u}_1\|_q^{\alpha_1 +1} - 2^{p-1}C_1^{\alpha_2 +1}\|f_2\|_{L^1}\|\dot{u}_2\|_p^{\alpha_2 +1}\\ &\quad -\frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1^{\beta_2+1})^{p'} }{p'} \|\dot{u}_1\|_q^{p'\beta_2}- \frac{4^{q'/q}(2^{q-1}\|f_1\|_{L^1}C_1)^{q'} }{q'}|\bar{u}_1|^{q'\alpha_1}\\ &\quad -\frac{4^{q'/q}( \|g_1\|_{L^1}C_1)^{q'} }{q'} |\bar{u}_2|^{q'\beta_1}- \frac{4^{p'/p}(2^{p-1}\|f_2\|_{L^1}C_1)^{p'} }{p'}|\bar{u}_2|^{p'\alpha_2}\\ &\quad -\frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1)^{p'} }{p'}|\bar{u}_1|^{\beta_2p'} + \int_0^T F_2(t,\bar{u}_1,\bar{u}_2) dt\\ &\quad +\frac{1}{\mu}\int_0^T F_1(t,\lambda\bar{u}_1,\lambda\bar{u}_2)dt -\int_0^T F_1(t,- \tilde{ u }_1,-\tilde{ u }_2)dt\\ &\geq \frac{1}{2q} \|\dot{u}_1\|_q^q + \frac{1}{4p} \|\dot{u}_2\|_p^p -\frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1^{\beta_2+1})^{p'} }{p'} \|\dot{u}_1\|_q^{p'\beta_2}\\ &\quad - 2^{q-1}C_1^{\alpha_1 +1}\|f_1\|_{L^1}\|\dot{u}_1\|_q^{\alpha_1 +1} - 2^{p-1}C_1^{\alpha_2 +1}\|f_2\|_{L^1}\|\dot{u}_2\|_p^{\alpha_2 +1}\\ &\quad -C_1\|h_1\|_{L^1}\|\dot{u}_1\|_q -C_1\|h_2\|_{L^1}\|\dot{u}_2\|_p\\ &-(2^{\beta/2+1}C_1^\beta\mu(\|\dot{u}_1\|_q^\beta +\|\dot{u}_2\|_p^\beta)+1)(a_{10}+a_{20})\int_0^Tb(t)dt\\ &\quad +( |\bar{u}_1|^{\gamma_1}+|\bar{u}_2|^{\gamma_2} ) (\frac{1}{|\bar{u}_1|^{\gamma_1}+|\bar{u}_2|^{\gamma_2}} (\frac{1}{\mu}\int_0^T F_1(t,\lambda\bar{u}_1,\lambda\bar{u}_2)dt\\ &\quad + \int_0^T F_2(t,\bar{u}_1,\bar{u}_2) dt)-2K)-K_0 \end{align*} for all $(u_1,u_2)\in W$ and some positive constants $K$ and $K_0$. It follows that $\varphi(u_1,u_2) \to +\infty$ as $\|(u_1,u_2)\|_W \to \infty$ due to (H2). By \cite[Theorem 1.1]{mw} and Corollary \ref{cor3}, The proof is complete. \end{proof} \begin{proof}[Proof of Theorem \ref{Th2}] Firstly, we prove that $\varphi$ satisfies the $(PS)$ condition. Suppose that $\{(u_{1n},u_{2n})\}$ is a $(PS)$ sequence for $\varphi$, that is, $\varphi'(u_{1n},u_{2n}) \to 0$ as $n\to \infty$ and $\{\varphi(u_{1n},u_{2n})\}$ is bounded. In a way similar to the proof of Theorem \ref{Th1}, we have \begin{align*} &\Big| \int_0^T ( \nabla_{x_1} F(t,u_{1n}(t),u_{2n}(t)), \tilde{u}_{1n}(t) ) dt \Big|\\ &\leq 2^{q-1}C_1^{\alpha_1 +1}\|f_1\|_{L^1} \|\dot{u}_{1n}\|_q^{\alpha_1 +1} + \frac{3}{4q} \|\dot{u}_{1n}\|_q^q + \frac{4^{q'/q}(2^{q-1}\|f_1\|_{L^1}C_1)^{q'} }{q'}|\bar{u}_{1n}|^{q'\alpha_1}\\ &\quad+\frac{4^{q'/q}(2^{\beta_1}\|g_1\|_{L^1}C_1^{\beta_1+1})^{q'}}{q'} \|\dot{u}_{2n}\|^{\beta_1q'}_p + \frac{4^{q'/q}(2^{\beta_1}\|g_1\|_{L^1}C_1)^{q'} }{q'}|\bar{u}_{2n}|^{q'\beta_1}\\ &\quad+ C_1\|h_1\|_{L^1}\|\dot{u}_{1n}\|_q \end{align*} and \begin{align*} & \Big| \int_0^T ( \nabla_{x_2} F(t,u_{1n}(t),u_{2n}(t)), \tilde{u}_{2n}(t) ) dt \Big| \\ &\leq 2^{p-1}C_1^{\alpha_2 +1}\|f_2\|_{L^1} \|\dot{u}_{2n}\|_p^{\alpha_2 +1} + \frac{3}{4p} \|\dot{u}_{2n}\|_p^p + \frac{4^{p'/p}(2^{p-1}\|f_2\|_{L^1}C_1)^{p'} }{p'}|\bar{u}_{2n}|^{p'\alpha_2}\\ &\quad +\frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1^{\beta_2+1})^{p'}}{p'} \|\dot{u}_{1n}\|^{\beta_2p'}_q + \frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1)^{p'} }{p'}|\bar{u}_{1n}|^{p'\beta_2}\\ &\quad + C_1\|h_2\|_{L^1}\|\dot{u}_{2n}\|_p \end{align*} for all $n$. Hence, one has \begin{equation}\label{u-1n} \begin{aligned} &\|(\tilde{u}_{1n},\tilde{u}_{2n} )\|_W \\ &\geq \langle \varphi' (u_{1n}, u_{2n}), (\tilde{u}_{1n},\tilde{u}_{2n}) \rangle\\ &= \int_0^T ( ( \nabla_{x_1} F(t,u_{1n}(t),u_{2n}(t)), \tilde{u}_{1n}(t) ) + ( |\dot{u}_{1n}(t)|^{q-2} \dot{u}_{1n}(t), \dot{{u}}_{1n}(t) )\\ &+( \nabla_{x_2} F(t,u_{1n}(t),u_{2n}(t)), \tilde{u}_{2n}(t) ) + ( |\dot{u}_{2n}(t)|^{p-2} \dot{u}_{2n}(t), \dot{{u}}_{2n}(t) ) )dt \\ &\geq \frac{4q-3}{4q} \|\dot{u}_{1n}\|_q^q+\frac{4p-3}{4p} \|\dot{u}_{2n}\|_p^p - 2^{q-1}C_1^{\alpha_1 +1}\|f_1\|_{L^1} \|\dot{u}_{1n}\|_q^{\alpha_1+1}\\ &\quad -\frac{4^{q'/q}(2^{\beta_1}\|g_1\|_{L^1}C_1^{\beta_1+1})^{q'} }{q'}\|\dot{u}_{2n}\|^{\beta_1q'}_p -\frac{4^{q'/q}(2^{q-1}\|f_1\|_{L^1}C_1)^{q'}}{q'}|\bar{u}_{1n}|^{q'\alpha_1}\\ &\quad - \frac{4^{q'/q}(2^{\beta_1}\|g_1\|_{L^1}C_1)^{q'} }{q'}|\bar{u}_{2n}|^{q'\beta_1}- 2^{p-1}C_1^{\alpha_2 +1}\|f_2\|_{L^1} \|\dot{u}_{2n}\|_p^{\alpha_2 +1}\\ &\quad -\frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1^{\beta_2+1})^{p'}}{p'} \|\dot{u}_{1n}\|^{\beta_2p'}_q - \frac{4^{p'/p}(2^{p-1}\|f_2\|_{L^1}C_1)^{p'} }{p'}|\bar{u}_{2n}|^{p'\alpha_2} \\ &\quad -\frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1)^{p'} }{p'}|\bar{u}_{1n}|^{p'\beta_2}-C_1\|h_2\|_{L^1} \|\dot{u}_{2n}\|_p- C_1\|h_1\|_{L^1}\|\dot{u}_{1n}\|_q \end{aligned} \end{equation} for large $n$. It follows from Wirtinger's inequality that \begin{equation}\label{W_ineq} \begin{aligned} \|(\tilde{u}_{1n}, \tilde{u}_{2n})\|_W &= \|\tilde{u}_{1n}\|_{W_T^{1,q}} + \|\tilde{u}_{2n}\|_{W_T^{1,p}}\\ &\leq (1+C^q_2)^{1/q} \|\dot{{u}}_{1n}\|_q + (1+C^p_2)^{1/p} \|\dot{{u}}_{2n}\|_p \\ &\leq \max \big\{(1+C^q_2)^{1/q}, (1+C^p_2)^{1/p} \big\} \big( \|\dot{{u}}_{1n}\|_q + \|\dot{{u}}_{2n}\|_p \big) \end{aligned} \end{equation} for all $n$. So, it follows from \eqref{u-1n} and \eqref{W_ineq} that \begin{align*} &K( |\bar{u}_{1n}|^{p'\beta_2}+|\bar{u}_{2n}|^{p'\alpha_2}+ |\bar{u}_{1n}|^{q'\alpha_1}+|\bar{u}_{2n}|^{q'\beta_1})\\ &\geq \frac{4^{q'/q}(2^{q-1}\|f_1\|_{L^1}C_1)^{q'} }{q'}|\bar{u}_{1n}|^{q'\alpha_1}+ \frac{4^{q'/q}(2^{\beta_1}\|g_1\|_{L^1}C_1)^{q'} }{q'}|\bar{u}_{2n}|^{q'\beta_1}\\ &\quad +\frac{4^{p'/p}(2^{p-1}\|f_2\|_{L^1}C_1)^{p'} }{p'}|\bar{u}_{2n}|^{p'\alpha_2} +\frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1)^{p'} }{p'}|\bar{u}_{1n}|^{p'\beta_2}\\ &\geq \frac{4q-3}{4q} \|\dot{u}_{1n}\|_q^q+\frac{4p-3}{4p} \|\dot{u}_{2n}\|_p^p \\ &\quad - 2^{q-1}C_1^{\alpha_1 +1}\|f_1\|_{L^1} \|\dot{u}_{1n}\|_q^{\alpha_1 +1}-\frac{4^{q'/q}(2^{\beta_1}\|g_1\|_{L^1}C_1^{\beta_1+1})^{q'}}{q'} \|\dot{u}_{2n}\|^{\beta_1q'}_p\\ &\quad - 2^{p-1}C_1^{\alpha_2 +1}\|f_2\|_{L^1} \|\dot{u}_{2n}\|_p^{\alpha_2 +1}-\frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1^{\beta_2+1})^{p'}}{p'} \|\dot{u}_{1n}\|^{\beta_2p'}_q\\ &\quad -C_1\|h_2\|_{L^1}\|\dot{u}_{2n}\|_p-C_1\|h_1\|_{L^1}\|\dot{u}_{1n}\|_q -\|(\tilde{u}_{1n},\tilde{u}_{2n} )\|_W\\ &\geq \frac{4q-3}{4q} \|\dot{u}_{1n}\|_q^q+\frac{4p-3}{4p} \|\dot{u}_{2n}\|_p^p-C_1\|h_2\|_{L^1}\|\dot{u}_{2n}\|_p- C_1\|h_1\|_{L^1}\|\dot{u}_{1n}\|_q \\ &\quad - 2^{q-1}C_1^{\alpha_1 +1}\|f_1\|_{L^1} \|\dot{u}_{1n}\|_q^{\alpha_1 +1}-\frac{4^{q'/q}(2^{\beta_1}\|g_1\|_{L^1}C_1^{\beta_1+1})^{q'}}{q'} \|\dot{u}_{2n}\|^{\beta_1q'}_p\\ &\quad - 2^{p-1}C_1^{\alpha_2 +1}\|f_2\|_{L^1} \|\dot{u}_{2n}\|_p^{\alpha_2 +1}-\frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1^{\beta_2+1})^{p'}}{p'} \|\dot{u}_{1n}\|^{\beta_2p'}_q\\ &\quad -(1+C^p_2)^{1/p} \|\dot{{u}}_{2n}\|_p -(1+C^q_2)^{1/q} \|\dot{{u}}_{1n}\|_q\\ &\geq \frac{ q-1}{q} \|\dot{u}_{1n}\|_q^q+\frac{ p-1}{ p} \|\dot{u}_{2n}\|_p^p -K_1\\ &= \frac{ 1}{q'} \|\dot{u}_{1n}\|_q^q+\frac{ 1}{ p'} \|\dot{u}_{2n}\|_p^p-K_1 \end{align*} for large $n$ and some positive constant $K_1$. Hence, by the above expression, we obtain \begin{equation}\label{u-1n-k1} 2K( |\bar{u}_{1n}|^{\gamma_1}+|\bar{u}_{2n}|^{\gamma_2}) \geq \min\big\{ \frac{ 1}{q'},\frac{ 1}{ p'}\big\} \big(\|\dot{u}_{1n}\|_q^q+\|\dot{u}_{2n}\|_p^p\big) -K_2 \end{equation} for large $n$ and some positive constant $K_2$. By the proof of Theorem \ref{Th1}, we have \begin{align*} &\Big| \int_0^T ( F(t,u_{1n}(t),u_{2n}(t))-F(t,\bar{u}_{1n},\bar{u}_{2n}))dt \Big|\\ &\leq \frac{1}{2q}\|\dot{u}_{1n}\|_q^q+\frac{3}{4p} \|\dot{u}_{2n}\|_p^p+C_1\|h_1\|_{L^1}\|\dot{u}_{1n}\|_q +C_1\|h_2\|_{L^1}\|\dot{u}_{2n}\|_p \\ &\quad + 2^{q-1}C_1^{\alpha_1 +1}\|f_1\|_{L^1}\|\dot{u}_{1n}\|_q^{\alpha_1 +1}+ 2^{p-1}C_1^{\alpha_2 +1}\|f_2\|_{L^1}\|\dot{u}_{2n}\|_p^{\alpha_2 +1}\\ &\quad + \frac{4^{q'/q}(2^{q-1}\|f_1\|_{L^1}C_1)^{q'} }{q'}|\bar{u}_{1n}|^{q'\alpha_1}+\frac{4^{q'/q}( \|g_1\|_{L^1}C_1)^{q'} }{q'} |\bar{u}_{2n}|^{q'\beta_1}\\ &\quad + \frac{4^{p'/p}(2^{p-1}\|f_2\|_{L^1}C_1)^{p'} }{p'}|\bar{u}_{2n}|^{p'\alpha_2}+\frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1)^{p'} }{p'}|\bar{u}_{1n}|^{p'\beta_2}\\ &\quad +\frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1^{\beta_2+1})^{p'} }{p'} \|\dot{u}_{1n}\|_q^{\beta_2p'} \end{align*} for all $n$. It follows from the boundedness of $\{\varphi(u_{1n}, u_{2n}) \}$, \eqref{u-1n-k1} and the above inequality that \begin{align*} K_3 &\leq \varphi(u_{1n}, u_{2n})\\ &= \frac{1}{q} \int_0^T |\dot{u}_{1n}(t)|^q dt + \frac{1}{p} \int_0^T |\dot{u}_{2n}(t)|^p dt\\ &\quad + \int_0^T \big[ F(t,u_{1n}(t),u_{2n}(t)) - F(t, \bar{u}_{1n},\bar{u}_{2n}) \big] dt + \int_0^T F(t, \bar{u}_{1n},\bar{u}_{2n}) dt \\ &\leq \frac{3}{2q} \|\dot{u}_{1n}\|_q^q+\frac{7}{4p} \|\dot{u}_{2n}\|_p^p+C_1\|h_1\|_{L^1}\|\dot{u}_{1n}\|_q+C_1\|h_2\|_{L^1}\|\dot{u}_{2n}\|_p \\ &\quad + 2^{q-1}C_1^{\alpha_1 +1}\|f_1\|_{L^1}\|\dot{u}_{1n}\|_q^{\alpha_1 +1}+ 2^{p-1}C_1^{\alpha_2 +1}\|f_2\|_{L^1}\|\dot{u}_{2n}\|_p^{\alpha_2 +1}\\ &\quad + \frac{4^{q'/q}(2^{q-1}\|f_1\|_{L^1}C_1)^{q'} }{q'}|\bar{u}_{1n}|^{q'\alpha_1}+\frac{4^{q'/q}( \|g_1\|_{L^1}C_1)^{q'} }{q'} |\bar{u}_{2n}|^{q'\beta_1}\\ &\quad + \frac{4^{p'/p}(2^{p-1}\|f_2\|_{L^1}C_1)^{p'}}{p'}|\bar{u}_{2n}|^{p'\alpha_2} +\frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1)^{p'} }{p'}|\bar{u}_{1n}|^{p'\beta_2}\\ &\quad +\frac{4^{p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1^{\beta_2+1})^{p'} }{p'} \|\dot{u}_{1n}\|_q^{\beta_2p'} +\int_0^T F(t, \bar{u}_{1n},\bar{u}_{2n}) dt\\ &\leq 2(\|\dot{u}_{1n}\|_q^q+ \|\dot{u}_{2n}\|_p^p)+ 2K( |\bar{u}_{1n}|^{\gamma_1}+|\bar{u}_{2n}|^{\gamma_2}) +\int_0^T F(t,\bar{u}_{1n},\bar{u}_{2n}) dt+K_4\\ &\leq (2\max \{ q', p' \}+1 ) 2K( |\bar{u}_{1n}|^{\gamma_1}+|\bar{u}_{2n}|^{\gamma_2}) +\int_0^T F(t,\bar{u}_{1n},\bar{u}_{2n}) dt+K_5\\ &\leq ( 2q'+ 2p'+1 ) 2K( |\bar{u}_{1n}|^{\gamma_1}+|\bar{u}_{2n}|^{\gamma_2}) +\int_0^T F(t,\bar{u}_{1n},\bar{u}_{2n}) dt+K_5\\ &\leq (|\bar{u}_{1n}|^{\gamma_1} + |\bar{u}_{2n}|^{\gamma_2}) ( \frac{1}{ |\bar{u}_{1n}|^{\gamma_1} +|\bar{u}_{2n}|^{\gamma_2}} \int_0^T F(t, \bar{u}_{1n},\bar{u}_{2n}) dt\\ &\quad + ( 2q'+ 2p'+1 ) 2K ) + K_5 \end{align*} for large $n$ and some real constants $K_3$, $K_4$ and $K_5$. The above inequality and (H3) imply that $ (|\bar{u}_{1n}|^{\gamma_1} + |\bar{u}_{2n}|^{\gamma_2} )$ is bounded. Hence, $(u_{1n}, u_{2n})$ is bounded by \eqref{W_ineq} and \eqref{u-1n-k1}. By the compactness of the embedding $W^{1,p}_{T}$( or $W^{1,q}_{T}$) $\subset C(0,T;\mathbb{R}^N)$, the sequence $\{u_{1n}\}$ (or $\{u_{2n}\}$) has a subsequence, still denoted by $\{u_{1n}\}$ (or $\{u_{2n}\}$), such that \begin{gather}\label {12} u_{1n} \text{ (or $u_{2n}$) }\rightharpoonup u_1\text{ (or $u_{2}$) } \quad \text{ weakly in } W_{T}^{1,p}\text{ (or in $W_{T}^{1,q}$)},\\ \label {13} u_{1n}\text{ (or $u_{2n}$) } \to u_1\text{ (or $u_{2}$)} \quad \text{strongly in } C( 0,T;\mathbb{R}^N) . \end{gather} Note that \begin{equation}\label{varphi} \begin{aligned} &\langle \varphi'(u_{1n},u_{2n}),(u_1-u_{1n},0)\rangle\\ &= \int_{0}^{T}|\dot{u}_{1n}(t)|^{p-2}(\dot{u}_{1n}(t), \dot{u}_1 - \dot{u}_{1n}(t))dt\\ &\quad - \int_{0}^{T}(\nabla_{x_1} F(t,u_{1n}(t),u_{2n}(t)), u_1(t)-u_{1n}(t))dt \to 0 \end{aligned} \end{equation} as $n\to\infty$. From \eqref{13}, $\{u_{1n}\}$ is bounded in $C(0,T;\mathbb{R}^N)$. Then we have \begin{align*} &\Big|\int_{0}^{T}(\nabla_{x_1} F(t,u_{1n}(t),u_{2n}(t)),u_1(t)-u_{1n}(t))dt\Big|\\ &\leq \int_{0}^{T}|\nabla_{x_1} F(t,u_{1n}(t),u_{2n}(t))|\cdot |u_1(t)-u_{1n}(t)|dt \\ &\leq K_6\int_{0}^{T}b(t)|u_1(t)-u_{1n}(t)|dt \\ &\leq K_6\|b\|_{L^{1}} \|u_1-u_{1n}\|_{\infty} \end{align*} for some positive constant $K_6$, which combines with \eqref{13} implies that \[ \int_{0}^{T}(\nabla_{x_1} F(t,u_{1n}(t),u_{2n}(t)),u_1(t)-u_{1n}(t))dt\to 0 \quad \text{as } n\to\infty. \] Hence, by \eqref{varphi}, one has \[ \int_{0}^{T}|\dot{u}_{1n}(t)|^{p-2}(\dot{u}_{1n}(t),\dot{u}_1(t) -\dot{u}_{1n}(t))dt \to 0 \quad \text{as } n\to\infty \ . \] Moreover, from \eqref{13} we obtain \[ \int_{0}^{T}|u_{1n}(t)|^{p-2}(u_{1n}(t),u_1(t)-u_{1n}(t))dt\to 0 \quad \text{as } n\to\infty \,. \] Setting \[ \psi(u_1,u_2)=\frac{1}{p}\int_{0}^{T}(|u_1(t)|^p+|\dot{u}_1(t)|^p)dt +\frac{1}{q}\int_{0}^{T}(|u_2(t)|^q+|\dot{u}_2(t)|^q)dt, \] one obtains \begin{align*} \langle \psi'(u_{1n},u_{2n}),(u_1-u_{1n},0)\rangle &= \int_{0}^{T}|u_{1n}(t)|^{p-2}(u_{1n}(t),u_1(t)-u_{1n}(t))dt\\ &\quad +\int_{0}^{T}|\dot{u}_{1n}(t)|^{p-2}(\dot{u}_{1n}(t),\dot{u}_1(t) -\dot{u}_{1n}(t))dt \end{align*} and \begin{equation}\label{14} \langle \psi'(u_{1n},u_{2n}),(u_1-u_{1n},0)\rangle\to 0 \ \ \text{as} \ n\to\infty \,. \end{equation} By the H\"{o}lder's inequality, we have \[ 0\leq (\|u_{1n}\|^{p-1}-\|u_1\|^{p-1})(\|u_{1n}\|-\|u_1\|) \leq \langle \psi'(u_{1n},u_{2n})-\psi'(u_1,u_2),(u_1-u_{1n},0)\rangle, \] which together with \eqref{14} yields $\|u_{1n}\|\to \|u_1\|$. It follows that $u_{1n}\to u_1$ strongly in $W^{1,p}_{T}$ by the uniform convexity of $W^{1,p}_{T}$. Similarly, we have $u_{2n}\to u_2$ strongly in $W^{1,q}_{T}$. Hence, the $(PS)$ condition is satisfied. Let $\widetilde{W} = \widetilde{W}_T^{1,q} \times \widetilde{W}_T^{1,p}$ be the subspace of $W$ given by \[ \widetilde{W}= \{ (u_1,u_2) \in W ~ \mid ~ (\bar{u}_1, \bar{u}_2) = (0,0) \}. \] Then \begin{equation}\label{6} \varphi (u_1, u_2) \to +\infty \end{equation} as $\|(u_1,u_2)\|_W \to \infty$ in $\widetilde{W}$. In fact, by the proof of Theorem \ref{Th1}, one has \begin{align*} \varphi(u_1,u_2) &= \frac{1}{q} \int_0^T |\dot{u}_1(t)|^q dt + \frac{1}{p} \int_0^T |\dot{u}_2(t)|^p dt\\ &\quad + \int_0^T (F(t,u_1(t),u_2(t)) - F(t, \bar{u}_1,\bar{u}_2) ) dt + \int_0^T F(t, \bar{u}_1,\bar{u}_2) dt \\ &\geq \frac{1}{2q}\|\dot{u}_1\|_q^q+\frac{1}{4p} \|\dot{u}_2\|_p^p - 2^{q-1}C_1^{\alpha_1 +1}\|f_1\|_{L^1} \|\dot{u}_1\|_q^{\alpha_1 +1}\\ &\quad- 2^{p-1}C_1^{\alpha_2 +1}\|f_2\|_{L^1}\|\dot{u}_2\|_p^{\alpha_2 +1} -\frac{4^{ p'/p}(2^{\beta_2}\|g_2\|_{L^1}C_1^{\beta_2+1})^{p'} }{p'} \|\dot{u}_1\|_q^{\beta_2p'}\\ &\quad - C_1\|h_1\|_{L^1}\|\dot{u}_1\|_q- C_1\|h_2\|_{L^1}\|\dot{u}_2\|_p +\int_0^T F(t, \bar{u}_1,\bar{u}_2) dt \end{align*} for all $(u_1,u_2)\in \widetilde{W}$. By Wirtinger's inequality, the norm \[ \||(u_1,u_2) \|| = \|(\dot{u}_1, \dot{u}_2)\|_{L^q \times L^p} = \|\dot{u}_1\|_q + \|\dot{u}_2\|_p \] is an equivalent norm on $\widetilde{W}$. Hence, \eqref{6} follows from the above inequality. On the other hand, one has \begin{equation}\label{7} \varphi (x_1, x_2) \to -\infty \end{equation} as $|(x_1,x_2)| \to \infty$ in $ \mathbb{R}^N \times \mathbb{R}^N$, which follows from (H3). Now, Theorem \ref{Th2} is proved by \eqref{6}, \eqref{7} and the Saddle Point Theorem (see \cite[Theorem 4.6]{rab}). \end{proof} \subsection*{Acknowledgements} This research was supported by the National Natural Science Foundation of China (No. 11071198) and the Fundamental Research Funds for the Central Universities (No. XDJK2010C055). \begin{thebibliography}{00} \bibitem{Berger-Schechter} M. S. Berger, M. Schechter; \emph{On the solvability of semilinear gradient operator equations}, Adv. Math. 25 (1977), 97-132. \bibitem{LongYM}Y.-M. Long; \emph{Nonlinear oscillations for classical Hamiltonian systems with bi-even subquadratic potentials}, Nonlinear Anal. 24 (12) (1995), 1665-1671. \bibitem{Mawhin} J. Mawhin; \emph{Semi-coercive monotone variational problems}, Acad. Roy. Belg. Bull. Cl. Sci. 73 (1987), 118-130. \bibitem{mw} J. Mawhin, M. Willem; \emph{Critical Point Theory and Hamiltonian Systems}, Springer-Verlag, Berlin/New York, 1989. \bibitem{Pasca-PanAmer} D. Pa\c{s}ca; \emph{Periodic solutions for second order differential inclusions with sublinear nonlinearity}, PanAmer. Math. J. 10(4) (2000), 35-45. \bibitem{Pasca-Commun} D. Pa\c{s}ca; \emph{Periodic solutions for nonautonomous second order differential inclusions systems with p-Laplacian}, Commun. Appl. Nonlinear Anal. 16(2) (2009), 13-23. \bibitem{Pasca-Simon} D. Pa\c{s}ca; \emph{ Periodic solutions of a class of nonautonomous second order diffrential systems with (q,p)-Laplacian}, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), no. 5, 841-850. \bibitem{Pasca-Singap} D. Pa\c{s}ca; \emph{Periodic solutions of second-order diffrential inclusions systems with $(q,p)$-Laplacian}, Anal. Appl. (Singap.) 9 (2011), no. 2, 201-223. \bibitem{P-Tang} D. Pa\c{s}ca, C.-L. Tang; \emph{Some existence results on periodic solutions of nonautonomous second-order differential systems with ($q,p$)-Laplacian}, Appl. Math. Lett. 23 (2010), 246-251. \bibitem{Pasca-Tang} D. Pa\c{s}ca, C.-L. Tang; \emph{Some existence results on periodic solutions of ordinary $(q,p)$-Laplacian systems}, J. Appl. Math. Inform. 29 (2011), no. 1-2, 39-48. \bibitem{rab} P. H. Rabinowitz; \emph{Minimax methods in critical point theory with applications to differential equations}, CBMS Reg. Conf. Ser. in Math. No. 65, AMS, Providence, RI, 1986. \bibitem{Tang1} C.-L. Tang; \emph{Periodic solutions of nonautonomous second order systems with $\gamma$-quasi\-subadditive potential}, J. Math. Anal. Appl. 189 (1995), 671-675. \bibitem{Tang2} C.-L. Tang; \emph{Periodic solutions of nonautonomous second order systems}, J. Math. Anal. Appl. 202 (1996), 465-469. \bibitem{tang} C.-L. Tang; \emph{Periodic solutions for nonautonomous second order systems with sublinear nonlinearity}, Proc. Amer. Math. Soc. 126(11) (1998), 3263-3270. \bibitem{Tang-Wu} C.-L. Tang, X. P. Wu; \emph{Periodic solutions for second order systems with not uniformly coercive potential}, J. Math. Anal. Appl. 259 (2001), 386-397. \bibitem{Tang-Meng} X. H. Tang, Q. Meng; \emph{Solutions of a second-order Hamiltonian system with periodic boundary conditions}, Nonlinear Anal. 11 (2010) 3722-3733. \bibitem{tg} Y. Tian, W. Ge; \emph{Periodic solutions of non-autonomous second-order systems with a $p$-Laplacian}, Nonlinear Anal. 66 (1) (2007), 192-203. \bibitem{Willem} M. Willem; \emph{Oscillations forc\'{e}es de syst\`{e}mes hamiltoniens}, in: Public. S\'{e}min. Analyse Non Lin\'{e}aire, Univ. Besancon, 1981. \bibitem{Wu-Tang} X.-P. Wu, C.-L. Tang; \emph{Periodic solutions of a class of nonautonomous second order systems}, J. Math. Anal. Appl. 236 (1999), 227-235. \end{thebibliography} \end{document}