\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 73, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/73\hfil Oscillation of meromorphic solutions] {Oscillation of meromorphic solutions to linear differential equations with coefficients of $[p,q]$-order} \author[H.-Y. Xu, J. Tu \hfil EJDE-2014/73\hfilneg] {Hong-Yan Xu, Jin Tu} \address{Hong-Yan Xu \newline Department of Informatics and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi 333403, China} \email{xhyhhh@126.com} \address{Jin Tu \newline Institute of Mathematics and informatics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China} \email{tujin2008@sina.com} \thanks{Submitted June 20, 2013. Published March 16, 2014.} \subjclass[2000]{34M10, 30D35} \keywords{Linear differential equation; oscillation; small function; $[p,q]$-order} \begin{abstract} We study the relationship between ``small functions'' and the derivative of solutions to the higher order linear differential equation $$ f^{(k)}+A_{k-1}f^{(k-1)}+\dots+A_0f=0,\quad (k\geq 2) $$ Here $A_j(z)$ $(j=0,1,\dots,k-1)$ are entire functions or meromorphic functions of $[p,q]$-order. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction and statement of main results} The study of oscillation theory for linear differential equations in the complex plane $\mathbb{C}$ was started by Bank and Laine \cite{2,3}. After their well-known work, many important results have been obtained, see for example \cite{16, 17}. We assume that the reader knows the standard notations and the fundamental results of the Nevanlinna value distribution theory of meromorphic functions \cite{11,14}. In addition, we use $\sigma(f)$, $\lambda(f)$ and $\overline{\lambda}(f)$ to denote the order, the exponent of convergence of the zero-sequence, and the exponent of convergence of the nonzero zero sequence of a meromorphic function $f(z)$, respectively. We also denote by $\tau(f)$ the type of an entire function $f(z)$ with $0<\sigma(f)=\sigma<+\infty$ (see \cite{14}). We use $mE=\int_Edt$ and $m_l E=\int_E\frac{dt}{t}$ to denote the linear measure and the logarithmic measure of a set $E\subset[1,+\infty)$, respectively. We denote by $S(r,f)$ any quantity satisfying $S(r,f)=o(T(r,f)),$ as $r\to+\infty$, possibly outside of a set with finite linear measure. A meromorphic function $\psi(z)$ is called a small function with respect to $f$ if $T(r,\psi)=S(r,f)$. For results on the growth of solutions to equations of the form \begin{equation} \label{e1} f''+A(z)f'+B(z)f=0, \end{equation} with $A(z)$ and $B(z)(\not\equiv0)$ are entire functions, the reader is referred to \cite{1,6,7,10,13}. In 1996, Kwon \cite{15} investigated the hyper-order of the solutions of \eqref{e1} and obtained the following result. \begin{theorem}[\cite{15}] \label{thmA} Let $A(z)$ and $B(z)$ be entire functions such that $\sigma(A)<\sigma(B)$ or $\sigma(B)<\sigma(A)< 1/2$. Then every solution $f\not\equiv0$ of \eqref{e1} satisfies $\sigma_2(f)\geq \max\{\sigma(A),\sigma(B)\}$. \end{theorem} In 2006, Chen and Shon \cite{8} investigated the zeros concerning small functions and fixed points of solutions of second order linear differential equations and obtained the following results. \begin{theorem}[\cite{8}] \label{thmB} Let $A_{j}(z)\not\equiv0 $ $(j=1,2)$ be entire functions with $\sigma(A_{j})<1$, suppose that $a,b$ are complex numbers that satisfy $ab\neq0$ and $\arg a\neq\arg b$ or $a=cb$ $(0q\geq1$. \begin{definition} \label{def1.1} \rm If $f(z)$ is a transcendental entire function, the $[p,q]$-order of $f(z)$ is defined by $$ \sigma_{[p,q]}(f)=\limsup_{r\to\infty} \frac{\log_{p+1}M(r,f)}{\log_q r} =\limsup_{r\to\infty}\frac{\log_pT(r,f)}{\log_q r}, $$ where $p,q$ are two integers and $p>q\geq1$. \end{definition} \begin{remark} \label{rmk1.1}\rm For sufficiently large $r\in[1,\infty)$, we define $\log_{i+1} r=\log_{i}(\log r)$ $(i\in \mathbb{N})$ and $\exp_{i+1} r=\exp(\exp_{i} r)$ $(i\in \mathbb{N})$ and $\exp_{0} r=r=\log_{0} r$, $\exp_{-1} r=\log r$. \end{remark} \begin{definition} \label{def1.2} \rm The $[p,q]$-type of an entire function $f$ of $[p,q]$-order $\sigma$ $(0<\sigma<\infty)$ is defined by $$ \tau_{[p,q]}=\tau_{[p,q]}(f) =\limsup_{r\to\infty}\frac{\log_{p}M(r,f)}{(\log_{q-1} r)^\sigma}. $$ And the $[p,q]$ exponent of convergence of the zero sequence of $f$ is defined by $$ \lambda_{[p,q]}=\lambda_{[p,q]}(f)=\limsup_{r\to\infty} \frac{\log_{p}n(r,\frac{1}{f})}{\log_q r} =\limsup_{r\to\infty}\frac{\log_pN(r,\frac{1}{f})}{\log_q r}, $$ and the $[p,q]$ exponent of convergence of the distinct zero sequence of $f$ is defined by $$ \overline{\lambda}_{[p,q]}=\overline{\lambda}_{[p,q]}(f) =\limsup_{r\to\infty}\frac{\log_{p}\overline{n}(r,\frac{1}{f})}{\log_q r}=\limsup_{r\to\infty}\frac{\log_p\overline{N}(r,\frac{1}{f})}{\log_q r}. $$ \end{definition} Let $\varphi(z)$ be an entire function with $\sigma_{[p,q]}(\varphi)<\sigma_{[p,q]}(f)$, the $[p,q]$ exponent of convergence of zeros and distinct zeros of $f(z)-\varphi(z)$ are defined to be $$ \lambda_{[p,q]}(f-\varphi)=\limsup_{r\to\infty} \frac{\log_pN(r,\frac{1}{f-\varphi})}{\log_q r}, \overline{\lambda}_{[p,q]}(f-\varphi)=\limsup_{r\to\infty} \frac{\log_pN(r,\frac{1}{f-\varphi})}{\log_q r}, $$ especially if $\varphi(z)=z$, we use $\lambda_{[p,q]}(f-z)$ and $\overline{\lambda}_{[p,q]}(f-z)$ to denote the $[p,q]$ exponent of convergence of fixed points and distinct fixed points of $f(z)$, respectively. Next we state our main results. \begin{theorem} \label{thm1.1} It $A_j(z)$ $(j=0,1,\dots,k-1)$ are entire functions and satisfy one of the following two conditions: \begin{itemize} \item[(i)] $\max\{\sigma_{[p,q]}(A_j): j=1,2,\dots,k-1\}<\sigma_{[p,q]}(A_0)<\infty$; \item[(ii)] $\max\{\sigma_{[p,q]}(A_j): j=1,2,\dots,k-1\}\leq\sigma_{[p,q]}(A_0)<\infty$ and\\ $\max\{\tau_{[p,q]}$ $(A_j)|\sigma_{[p,q]}(A_j) =\sigma_{[p,q]}(A_0)>0\}=\tau_1<\tau_{[p,q]}(A_0)=\tau$, \end{itemize} then for every solution $f\not\equiv0$ of \eqref{e2} and for any entire function $\varphi(z)\not\equiv0$ satisfying $\sigma_{[p+1,q]}(\varphi)<\sigma_{[p,q]}(A_0)$. Moreover \begin{align*} \overline{\lambda}_{[p+1,q]}(f-\varphi) &=\overline{\lambda}_{[p+1,q]}(f'-\varphi) =\overline{\lambda}_{[p+1,q]}(f''-\varphi)\\ &=\overline{\lambda}_{[p+1,q]}(f^{(i)}-\varphi)=\sigma_{[p+1,q]}(f)\\ &=\sigma(A_0), \quad (i\in \mathbb{N}). \end{align*} \end{theorem} Throughout this paper we assume that $A_0$ does not vanish identically. \begin{theorem} \label{thm1.2} If $A_j(z)$, $j=0,1,\dots,k-1$ are meromorphic functions satisfying $\max\{\sigma_{[p,q]}$ $(A_j): j=1,2,\dots,k-1\}<\sigma_{[p,q]}(A_0)$ and $ \delta(\infty,A_0)>0$, then for every meromorphic solution $f\not\equiv0$ of \eqref{e2} and for any meromorphic function $\varphi(z)\not\equiv0$ satisfying $\sigma_{[p+1,q]}(\varphi)<\sigma_{[p,q]}(A_0)$, we have \[ \overline{\lambda}_{[p+1,q]}(f^{(i)}-\varphi) =\lambda_{[p+1,q]}(f^{(i)}-\varphi)\geq \sigma_{[p,q]}(A_0) (i=0,1,\dots), \] where $f^{(0)}=f$. \end{theorem} \begin{example} \label{examp1.1} \rm For the equation \begin{equation} f''+\frac{e^{2z}+e^z-1}{1-e^z}f'+\frac{-e^{2z}}{1-e^z}f=0, \label{esharp} \end{equation} we can easily see that this equation has a solution $f(z)=e^{e^z}+e^z$. The functions $\frac{e^{2z}+e^z-1}{1-e^z},\frac{-e^{2z}}{1-e^z}$ are meromorphic and satisfy $\sigma(\frac{e^{2z}+e^z-1}{1-e^z})= \sigma(\frac{-e^{2z}}{1-e^z})=1$ and $\delta\big(\infty,\frac{-e^{2z}}{1-e^z}\big)=\frac{1}{2}$. Taking $\varphi(z)=e^z$, then $\sigma_{[2,1]}(\varphi)<\sigma_{[1,1]}(\frac{-e^{2z}}{1-e^z})$. Thus, we get that $\overline{\lambda}_{[2,1]}(f'-\varphi) =\overline{\lambda}_{[2,1]}(e^{e^z}e^z) =0\neq1=\sigma_{[1,1]}(\frac{-e^{2z}}{1-e^z})$. \end{example} For $p>q\geq1$, we have the following example. \begin{example} \label{examp1.2} \rm Consider the equation $$ f''+A_1f'+A_0f=0, \label{esharp1} $$ where $$ A_1=-\frac{1+e^z-2e^{e^z}+e^{2e^z}-2e^{e^z}e^z+e^{3e^z}e^z}{(1-e^{e^z})^2}, \quad A_0=\frac{e^{3e^z}e^{2z}-e^{2e^z}e^{2z}}{(1-e^{e^z})^2}. $$ Obviously, $A_0, A_1$ are meromorphic functions, $\sigma_{[2,1]}(A_1)=\sigma_{[2,1]}(A_0)=1$ and $\delta(\infty,A_0)>0$. By calculating, the equation \eqref{esharp1} has a solution $f(z)=e^{e^{e^z}}+e^{e^z}$. Taking $\varphi(z)=e^{e^z}e^z$, then $\sigma_{[3,1]}(\varphi)<\sigma_{[2,1]}(A_0)$. Thus, we can get that $\overline{\lambda}_{[3,1]}(f'-\varphi) =\overline{\lambda}_{[3,1]}(e^{e^{e^z}}e^{e^z}e^z) =0\neq 1=\sigma_{[2,1]}(A_0)$. \end{example} From Theorems \ref{thm1.1} and \ref{thm1.2}, we obtain the following corollaries. \begin{corollary} \label{coro1.1} Under the assumptions of Theorem \ref{thm1.1}, if $\varphi(z)=z$, for every solution $f\not\equiv0$ of \eqref{e2}, we have \begin{align*} \overline{\lambda}_{[p+1,q]}(f-z) &=\overline{\lambda}_{[p+1,q]}(f'-z) =\overline{\lambda}_{[p+1,q]}(f''-z)\\ &=\overline{\lambda}_{[p+1,q]}(f^{(i)}-z)=\sigma_{[p+1,q]}(f)\\ &=\sigma_{[p,q]}(A_0), \quad (i\in \mathbb{N}). \end{align*} \end{corollary} \begin{corollary} \label{coro1.2} Under the assumptions of Theorem \ref{thm1.2}, if $\varphi(z)=z$, for every meromorphic solution $f\not\equiv0$ of \eqref{e2}, we have $\overline{\lambda}_{[p+1,q]}(f^{(i)}-z)=\lambda_{[p+1,q]}(f^{(i)}-z)\geq \sigma_{[p+1,q]}(A_0), (i=0,1,\dots)$, where $f^{(0)}=f$. \end{corollary} \section{Preliminary results} To prove our theorems, we require the following lemmas. \begin{lemma}[{\cite[Lemma 2.1]{xtz}}] \label{lem2.1} Assume $f\not\equiv0$ is a solution of \eqref{e2}, set $g=f-\varphi$, then $g$ satisfies the equation \begin{equation} \label{e3} g^{(k)}+A_{k-1}g^{(k-1)}+\dots+A_0g =-[\varphi^{(k)}+A_{k-1}\varphi^{(k-1)}+\dots+A_0\varphi]. \end{equation} \end{lemma} \begin{lemma}[{\cite[Lemma 2.2]{xtz}}] \label{lem2.2} Assume $f\not\equiv0$ is a solution of equation \eqref{e2}, set $g_1=f'-\varphi$ , then $g_1$ satisfies the equation \begin{equation} \label{e4} g_1^{(k)}+U^1_{k-1}g_1^{(k-1)}+\dots+U^1_0g_1 =-[\varphi^{(k)}+U^1_{k-1}\varphi^{(k-1)}+\dots+U^1_0\varphi], \end{equation} where $U_j^1=A'_{j+1}+A_j-\frac{A'_0}{A_0}A_{j+1}$, $j=0,1,2,\dots,k-1$ and $A_k\equiv1$. \end{lemma} \begin{lemma}[{\cite[Lemma 2.5]{xtz}}] \label{lem2.3} Assume $f\not\equiv0$ is a solution of equation \eqref{e2}, set $g_i=f^{(i)}-\varphi$, then $g_i$ satisfies the equation \begin{equation} \label{e5} g_i^{(k)}+U^i_{k-1}g_i^{(k-1)}+\dots+U^i_0g_i =-[\varphi^{(k)}+U^i_{k-1}\varphi^{(k-1)}+\dots+U^i_0\varphi], \end{equation} where $U_j^i={U^{i-1}_{j+1}}'+U^{i-1}_j-\frac{{U^{i-1}_0}'}{U^{i-1}_0}U^{i-1}_{j+1}$, $j=0,1,2,\dots,k-1$, $U^{i-1}_k\equiv1$ and $ i\in \mathbb{N}$. \end{lemma} \begin{lemma}[{\cite[Lemma 3.9]{Liu-Tu}}] \label{lem2.4} Let $f(z)$ be an entire function of $[p,q]$-order, then $\sigma_{[p,q]}(f)=\sigma_{[p,q]}(f')$. \end{lemma} \begin{lemma}[{\cite[Lemma 3.10]{Liu-Tu}}] \label{lem2.5} Let $f(z)$ be an entire function of $[p,q]$-order satisfying $\sigma_{[p,q]}(f)=\sigma_2$, then there exists a set $E\subset[1,+\infty)$ with infinite logarithmic measure such that for all $r\in E$, we have $$ \lim_{r\to\infty}\frac{\log_p T(r,f)}{\log_q r}=\sigma_2, \quad r\in E. $$ \end{lemma} \begin{lemma} \label{lem2.6} Let $A_0(z), A_1(z), \dots, A_{k-1}(z)$ be entire functions with $[p,q]$-order and satisfy $\max\{\sigma_{[p,q]}(A_j): j=1,2,\dots,k-1\}=\sigma_1<\sigma_{[p,q]}(A_0)<\infty$, and set $$ U_j^1=A'_{j+1}+A_j-\frac{A'_0}{A_0}A_{j+1} $$ and $$ U_j^i={U^{i-1}_{j+1}}'+U^{i-1}_j-\frac{{U^{i-1}_0}'}{U^{i-1}_0}U^{i-1}_{j+1}, $$ where $j=0,1,2,\dots,k-1$, $A_k\equiv1$, $U^{i-1}_k\equiv1$ and $i\in \mathbb{N}$. Then there exists a set $E$ with infinite logarithmic measure such that for $r\in E$, we have \begin{equation} \label{e6} \begin{aligned} \sigma_{[p,q]}(A_0) &=\lim_{r\to\infty}\frac{\log_p m(r,U_0^i)}{\log_q r}\\ &>\limsup_{r\to\infty}\frac{\max_{1\leq j\leq k-1}\{\log_p m(r, U_j^i)\}}{\log_q r}=\sigma_1. \end{aligned} \end{equation} \end{lemma} \begin{proof} We will use the inductive method to prove it. First, when $i=1$, it follows that $U_j^1=A'_{j+1}+A_j-\frac{A'_0}{A_0}A_{j+1}$ for $j=0,1,2,\dots,k-1$ and $A_k\equiv1$. When $j=0$, that is, $U_0^1=A'_{1}+A_0-\frac{A'_0}{A_0}A_{1}$. Then, we have \begin{equation} \label{e7} m(r,U_0^1)\leq m(r,A_1)+m(r,A_0)+m\big(r,\frac{A'_1}{A_1}\big)+m\big(r,\frac{A'_0}{A_0}\big)+O(1). \end{equation} From $A_0=-A'_1+U_0^1+\frac{A'_0}{A_0}A_{1}$, we have \begin{equation} \label{e8} m(r,A_0) \leq m(r,A_1)+m(r,U_0^1)+m\big(r,\frac{A'_1}{A_1}\big) +m\big(r,\frac{A'_0}{A_0}\big)+O(1). \end{equation} When $j\neq0$, from the definitions of $U_j^1(j=1\dots,k)$, we have \begin{equation} \label{e9} \begin{aligned} m\left(r,U_j^1\right) &\leq m(r,A_{j+1})+m(r,A_j)+m\big(r,\frac{A'_0}{A_0}\big)\\ &\quad +m\big(r,\frac{A'_{j+1}}{A_{j+1}}\big)+O(1),\quad j=1,2,\dots,k-1. \end{aligned} \end{equation} Since $A_0(z),\dots, A_{k-1}(z)$ are entire functions with $\max\{\sigma_{[p,q]}(A_j): j=1,2,\dots,k-1\}<\sigma_{[p,q]}(A_0)<\infty$ and \eqref{e9}, we have \begin{equation} \label{e10} \begin{aligned} &\max_{1\leq j\leq k-1}\{m(r,U_j^1)t\}\\ &\leq \max_{1\leq j\leq k-1}\{m(r,A_j)+o(m(r,A_0)+ O(\log(rT(r,f)))\}+O(1), \end{aligned} \end{equation} holds for all $r\in E_1-E_2$ (where $E_1$ is a set of infinite logarithmic measure and $E_2$ is a set of finite linear measure). From \eqref{e7}, \eqref{e8}, \eqref{e10} and Lemma \ref{lem2.5}, there exists a set $E\subset[1,+\infty)$ with infinite logarithmic measure such that \begin{equation} \label{e11} \begin{aligned} \sigma_{[p,q]}(A_0) &= \lim_{r\to\infty}\frac{\log_p m(r,U_0^1)}{\log_q r}\\ &>\sigma_1=\limsup_{r\to\infty}\frac{\max_{1\leq j\leq k-1} \{\log_p m(r, A_j)\}}{\log_q r}\\ &\geq\limsup_{r\to\infty}\frac{\max_{1\leq j\leq k-1}\{\log_p m (r, U_j^1)\}}{\log_q r}, ~r\in E. \end{aligned} \end{equation} Now, suppose that \eqref{e6} holds for $i\leq n(n\in \mathbb{N})$, thus, there exists a set $E$ with infinite logarithmic measure such that \begin{equation} \label{e12} \begin{aligned} \sigma_{[p,q]}(A_0) &= \lim_{r\to\infty}\frac{\log_p m(r,U_0^n)}{\log_q r}\\ &>\limsup_{r\to\infty}\frac{\max_{1\leq j\leq k-1}\{\log_p m(r, U_j^n)\}}{\log_q r}=\sigma_1. \end{aligned} \end{equation} Next, we prove that \eqref{e6} holds for $i=n+1$. From the assumptions of this lemma, we have $U_j^{n+1}={U^{n}_{j+1}}'+U^{n}_j-\frac{{U^{n}_0}'}{U^{n}_0}U^{n}_{j+1}$, $(j=0,1,2,\dots,k-1)$ and $U^{n}_k\equiv1$ for $i=n+1$. Thus, when $j=0$, it follows that $ U_0^{n+1}={U^{n}_{1}}'+U^{n}_0-\frac{{U^{n}_0}'}{U^{n}_0}U^{n}_{1}$. Then, we have \begin{equation} \label{e13} m\left(r,U_0^{n+1}\right)\leq m\left(r,U^n_0\right)+m(r,U_1^n)+m(r,\frac{{U_0^n}'}{U_0^n}) +m(r,\frac{{U_1^n}'}{U_1^n})+O(1). \end{equation} And since $U^{n}_0=-{U^{n}_{1}}'+U_0^{n+1}+\frac{{U^{n}_0}'}{U^{n}_0}U^{n}_{1}$, we have \begin{equation} \label{e14} m(r,U^n_0) \leq m(r,U_0^{n+1})+m(r,U_1^n)+m(r,\frac{{U_0^n}'}{U_0^n}) +m(r,\frac{{U_1^n}'}{U_1^n})+O(1). \end{equation} When $j\neq0$, it follows from the definitions of $U_j^{n+1}$ $(j=1,2,\dots,k-1)$ and $U_k^{n}\equiv1$ that \begin{equation} \label{e15} m(r,U_j^{n+1}) \leq m(r,U_{j+1}^n)+m(r,U_j^n) +m(r,\frac{{U_{j+1}^n}'}{U_{j+1}^n})+m(r,\frac{{U_0^n}'}{U_0^n})+O(1). \end{equation} From \eqref{e12}--\eqref{e15}, there exists a set $E$ with infinite logarithmic measure such that \begin{equation} \label{e16} \begin{aligned} \lim_{r\to\infty}\frac{\log_p m\left(r,U_0^{n+1}\right)}{\log_q r} &=\lim_{r\to\infty}\frac{\log_p m\left(r,U_0^n\right)}{\log_q r}=\sigma_{[p,q]}(A_0)\\ &>\sigma_1=\limsup_{r\to\infty}\frac{\max_{1\leq j\leq k-1}\{\log_p m\left(r, U_j^n\right)\}}{\log_q r}\\ &=\limsup_{r\to\infty}\frac{\max_{1\leq j\leq k-1}\{\log_p m(r, U_j^{n+1})\}}{\log_q r},\quad r\in E. \end{aligned} \end{equation} Thus, the proof is complete. \end{proof} \begin{lemma} \label{lem2.7} Let $H_j(z)$ $(j=0,1,\dots,k-1)$ be meromorphic functions of finite $[p,q]$-order. If $$ \limsup_{r\to\infty}\frac{\max_{1\leq j\leq k-1}\{\log_p m(r,H_j)\}}{\log_q r} =\beta_1 $$ and there exists a set $E_1$ with infinite logarithmic measure such that $$ \lim_{r\to\infty}\frac{\log_p m(r,H_0)}{\log_q r}=\beta_2>\beta_1 $$ holds for all $r\in E_1$, then every meromorphic solution $f\not\equiv0$ of \begin{equation} \label{e17} f^{(k)}+H_{k-1}f^{(k-1)}+\dots+H_1f'+H_0f=0 \end{equation} satisfies $\sigma_{[p+1,q]}(f)\geq \beta_2$. \end{lemma} \begin{proof} Assume that $f(z)\not\equiv0$ is a meromorphic solution of \eqref{e17}. From \eqref{e17}, we have \begin{equation} \label{e18} m(r,H_0)\leq m(r,\frac{f^{(k)}}{f}) +\dots+m(r,\frac{f'}{f}) +\sum_{j=1}^{k-1}m(r,H_j)+O(1). \end{equation} By the logarithmic derivative lemma and \eqref{e18}, we have \begin{equation} \label{e19} m(r,H_0)\leq O\{\log rT(r,f)\}+\sum_{j=1}^{k-1}m(r,H_j),\quad r\not\in E_2, \end{equation} where $E_2\subset[1,+\infty)$ is a set with finite linear measure. From the assumptions of Lemma \ref{lem2.7}, there exists a set $E_1$ with infinite logarithmic measure such that for all $|z|=r\in E_1-E_2$, we have \begin{equation} \label{e20} \exp_p\{(\beta_2-\varepsilon)\log_q r\}\leq O\{\log rT(r,f)\}+(k-1)\exp_p\{(\beta_1+\varepsilon)\log_qr\}, \end{equation} where $0<2\varepsilon<\beta_2-\beta_1$. From (20), we have $\sigma_{[p+1,q]}(f)\geq \beta_2$. \end{proof} \begin{lemma}[\cite{12}] \label{lem2.8} Let $f(z)$ be a transcendental meromorphic function and $\alpha>1$ be a given constant. Then for any given $\varepsilon>0$, there exists a set $E_{7}\subset[1,\infty)$ that has finite logarithmic measure and a constant $M>0$ that depends only on $\alpha$ and $(m,n) (m,n\in\{0,\dots,k\}$ with $m\beta (\log_{q-1}r)^{\sigma}. $$ \end{lemma} \begin{lemma} \label{lem2.10} Let $A_0(z), A_1(z), \dots, A_{k-1}(z)$ be entire functions with finite $[p,q]$-order and satisfy $\max\{\sigma_{[p,q]}(A_{j}): j=1,2,\dots,k-1\} \leq\sigma_{[p,q]}(A_0)=\sigma_2<\infty$ and $\max\{\tau_{[p,q]}(A_j)$ $|\sigma_{[p,q]}$ $(A_{j})=\sigma_{[p,q]}(A_0)>0\}=\tau_1<\tau_{[p,q]}(A_0)=\tau$, and let $U_j^1, U_j^i$ be as stated in Lemma \ref{lem2.6}. Then for any given $\varepsilon(0<2\varepsilon<\tau-\tau_1)$, there exists a set $E_5$ with infinite logarithmic measure such that \begin{equation} \label{e21} |U_j^i|\leq \exp_p\{(\tau_1+\varepsilon)(\log_{q-1}r)^{\sigma_2}\},\quad |U_0^i| \geq\exp_p\{(\tau-\varepsilon)(\log_{q-1}r)^{\sigma_2}\}, \end{equation} where $i\in \mathbb{N}$ and $j=1,2,\dots,k-1$. \end{lemma} \begin{proof} We will use the induction method for this proof. (i) First, we prove that $U_j^i(j=0,1,\dots,k-1)$ satisfy \eqref{e21} when $i=1$. From the definition $U_j^1=A'_{j+1}+A_j-\frac{A'_0}{A_0}A_{j+1} (j\neq0)$ and $U_0^1=A'_{1}+A_0-\frac{A'_0}{A_0}A_{1}$, we have \begin{equation} \label{e22} |U_0^1|\geq-|A_{1}|\left(|\frac{A_{1}'}{A_{1}}| +|\frac{A_0'}{A_0}|\right)+ |A_0| \end{equation} and \begin{equation} \label{e23} |U_j^1|\leq|A_{j+1}|\big(|\frac{A_{j+1}'}{A_{j+1}}|+|\frac{A_0'}{A_0}|\big)+|A_j|, \quad j=1,2,\dots,k-1;\, A_k\equiv1. \end{equation} From Lemma \ref{lem2.8}, Lemma \ref{lem2.9} and \eqref{e22}--\eqref{e23}, for any $\varepsilon(0<4\varepsilon<\tau-\tau_1)$, there exists a set $E_5$ with infinite logarithmic measure such that \begin{equation} \label{e24} \begin{aligned} |U_0^1| &\geq-2M\exp_p\{(\tau_1+\frac{\varepsilon}{8}) (\log_{q-1}r)^{\sigma_2}\}(T(2r,A_0))^2\\ &\quad +\exp_p\{(\tau-\frac{\varepsilon}{4})(\log_{q-1}r)^{\sigma_2}\} \\ &\geq -2M\exp_p\{(\tau_1+\frac{\varepsilon}{8})(\log_{q-1}r)^{\sigma_2}\} \big(\exp_p\{(\sigma_2+\frac{\varepsilon}{8})(\log_{q}2r)\}\big)^2 \\ &\quad +\exp_p\{\left(\tau-\frac{\varepsilon}{4}\right)(\log_{q-1}r)^{\sigma_2}\} \\ &\geq\exp_p\{\left(\tau-\frac{\varepsilon}{2}\right)(\log_{q-1}r)^{\sigma_2}\} \end{aligned} \end{equation} and \begin{equation} \label{e25} \begin{aligned} |U_j^1| &\leq 2M\exp_p\{(\tau_1+\frac{\varepsilon}{4})(\log_{q-1}r)^{\sigma_2}\} (T(2r,A_0))^2\\ &\quad +\exp_p\{(\tau_1+\frac{\varepsilon}{4})(\log_{q-1}r)^{\sigma_2}\}\\ &\leq 2M\exp_p\{(\tau_1+\frac{\varepsilon}{4})(\log_{q-1}r)^{\sigma_2}\} \big(\exp_p\{(\sigma_2+\frac{\varepsilon}{8})(\log_{q}2r)\}\big)^2 \\ &\quad +\exp_p\{(\tau_1+\frac{\varepsilon}{4})(\log_{q-1}r)^{\sigma_2}\} \\ &\leq \exp_p\{(\tau_1+\frac{\varepsilon}{2})(\log_{q-1}r)^{\sigma_2}\},\quad j\neq0, \end{aligned} \end{equation} where $M>0$ is a constant, not necessarily the same at each occurrence. (ii) Next, we show that $U_j^i$ $(j=0,1,2,\dots,k-1)$ satisfy \eqref{e21} when $i=2$. From $U_0^2={U_{1}^1}'+U_0^1-\frac{{U_0^1}'}{U_0^1}U_{1}^1$ and $U_j^2={U_{j+1}^1}'+U_j^1-\frac{{U_0^1}'}{U_0^1}U_{j+1}^1$ $(j=0,1,\dots,k-1)$ and $U_k^1\equiv1$, we have \begin{equation} \label{e26} |U_0^2|\geq |U_0^1|-|U_{1}^1|\Big(|\frac{{U_{1}^1}'}{U_{1}^1}| +|\frac{{U_{0}^1}'}{U_{0}^1}|\Big) \end{equation} and \begin{equation} \label{e27} |U_j^2|\leq |U_j^1|+|U_{j+1}^1|\Big(|\frac{{U_{j+1}^1}'}{U_{j+1}^1}| +|\frac{{U_{0}^1}'}{U_{0}^1}|\Big), \quad j=1,2,\dots,k-1. \end{equation} By the conclusions in (i), Lemma \ref{lem2.8} and Lemma \ref{lem2.9}, \eqref{e24}--\eqref{e25}, for all $|z|=r\in E_5$, we have \begin{equation} \label{e28} \begin{aligned} |U_0^2|&\geq-2M\exp_p\big\{(\tau_1+\frac{\varepsilon}{2}) (\log_{q-1}r)^{\sigma_2}\big\} \big(\exp_p\big\{(\sigma_2+\frac{\varepsilon}{8})(\log_{q}2r)\big\}\big)^2 \\ &\quad +\exp_p\{\left(\tau-\frac{\varepsilon}{2}\right)(\log_{q-1}r)^{\sigma_2}\} \\ &\geq \exp_p\{(\tau-\varepsilon)(\log_{q-1}r)^{\sigma_2}\} \end{aligned} \end{equation} and \begin{equation} \label{e29} \begin{aligned} |U_j^2| &\leq2M\exp_p\{(\tau_1+\frac{\varepsilon}{2})(\log_{q-1}r)^{\sigma_2}\} \exp_p\{(\sigma_2+\frac{\varepsilon}{8})(\log_{q}2r)\} \\ &\quad +\exp_p\{(\tau_1+\frac{\varepsilon}{2})(\log_{q-1}r)^{\sigma_2}\} \\ &\leq \exp_p\{(\tau_1+\varepsilon)(\log_{q-1}r)^{\sigma_2}\},\quad j\neq0. \end{aligned} \end{equation} (iii) Now, suppose that \eqref{e21} holds for $i\leq n (n\in \mathbb{N})$. Thus, for any given $\varepsilon(0<4\varepsilon<\tau-\tau_1)$, there exists a set $E_5$ with infinite logarithmic measure such that \begin{equation} \label{e30} |U_j^i|\leq \exp_p\{(\tau_1+\varepsilon)(\log_{q-1}r)^{\sigma_2}\}, |U_0^i|\geq\exp_p\{(\tau-\varepsilon)(\log_{q-1}r)^{\sigma_2}\}, \end{equation} where $i\leq n$ and $j=1,2,\dots,k-1$. From $U_0^{n+1}={U_{1}^n}'+U_0^n-\frac{{U_0^n}'}{U_0^n}U_{1}^n$ and $U_j^{n+1}={U_{j+1}^n}'+U_j^n-\frac{{U_0^n}'}{U_0^n}U_{j+1}^n$ $(j=0,1,\dots,k-1)$ and $U_k^n\equiv 1$, we have \begin{equation} |U_0^{n+1}|\geq |U_0^n|-|U_{1}^n|\Big(|\frac{{U_{1}^n}'}{U_{1}^n}| +|\frac{{U_{0}^n}'}{U_{0}^n}|\Big) \end{equation} and \begin{equation} \label{e32} |U_j^{n+1}|\leq |U_j^n|+|U_{j+1}^n|\Big(|\frac{{U_{j+1}^n}'}{U_{j+1}^n}| +|\frac{{U_{0}^n}'}{U_{0}^n}|\Big), \quad j=1,2,\dots,k-1. \end{equation} Then, from Lemma \ref{lem2.8}, Lemma \ref{lem2.9} and \eqref{e30}--\eqref{e32}, for all $|z|=r\in E_5$, we have \begin{equation} \label{e33} \begin{aligned} |U_j^{n+1}| &\leq 2M\exp_p\{(\tau_1+\varepsilon)(\log_{q-1}r)^{\sigma_2}\} \big(\exp_p\{(\sigma_2+\frac{\varepsilon}{8})(\log_{q}2r)\}\big)^2\\ &\quad +\exp_p\{(\tau_1+\varepsilon)(\log_{q-1}r)^{\sigma_2}\}\\ &\leq \exp_p\{(\tau_1+2\varepsilon)(\log_{q-1}r)^{\sigma_2}\},\quad j\neq0, \end{aligned} \end{equation} and \begin{equation} \label{e34} \begin{aligned} |U_0^{n+1}| &\geq-2M\exp\{(\tau_1+\varepsilon)(\log_{q-1}r)^{\sigma_2}\} (\exp_p\{(\sigma_2+\frac{\varepsilon}{8})(\log_{q}2r)\})^2 \\ &\quad + \exp_p\{(\tau-\varepsilon)(\log_{q-1}r)^{\sigma_2}\} \\ &\geq \exp_p\{(\tau-2\varepsilon)(\log_{q-1}r)^{\sigma_2}\}. \end{aligned} \end{equation} Thus, the proof is complete. \end{proof} \begin{lemma} \label{lem2.11} Let $B_j(z)$ $(j=0,1,\dots,k-1)$ be meromorphic functions such that $\max\{\sigma_{[p,q]}(B_j): j=1,2,\dots,k-1\}=\sigma_4<\sigma_{[p,q]}(B_0)=\sigma_3$ and $\delta:=\delta(\infty,B_0)=\lim_{\overline{r\to\infty}}\frac{m(r,B_0)}{T(r,B_0)}>0$. Then every meromorphic solution $f\not\equiv0$ of equation \begin{equation} \label{e35} f^{(k)}+B_{k-1}f^{(k-1)}+\dots+B_1f'+B_0f=0 \end{equation} satisfies $\sigma_{[p+1,q]}(f)\geq \sigma_3$. \end{lemma} \begin{proof} Let $f\not\equiv0$ be a meromorphic solution of equation \eqref{e35}. Then from \eqref{e35}, we have \begin{equation} \label{e36} \begin{aligned} m(r,B_0) &\leq m(r,\frac{f^{(k)}}{f}) +m(r,\frac{f^{(k-1)}}{f})+\dots+m(r,\frac{f'}{f}) +\sum_{j=1}^{k-1}m(r,B_j)+O(1) \\ &\leq O\{\log rT(r,f)\}+\sum_{j=1}^{k-1}T(r,B_j), \quad r\not\in E_6, \end{aligned} \end{equation} where $E_6\subset[1,+\infty)$ is a set with finite linear measure. By Lemma \ref{lem2.5}, there exists a set $E$ with infinite logarithmic measure such that for all $|z|=r\in E$, we have \begin{equation} \label{e37} \lim_{r\to\infty}\frac{\log_p T(r,B_0)}{\log_q r}=\sigma_3. \end{equation} Since $\delta:=\delta(\infty,B_0)>0$, then for any given $\varepsilon(0<2\varepsilon<\min\{\delta,\sigma_3-\sigma_4\})$ and for all $r\in E$, by (37), we have \begin{equation} \label{e38} m(r,B_0)\geq (\delta-\varepsilon)\exp_p\{(\sigma_3-\varepsilon)\log_qr\}. \end{equation} From \eqref{e36} and \eqref{e38}, we have \begin{equation} \label{e39} (\delta-\varepsilon)\exp_p\{(\sigma_3-\varepsilon)\log_qr\}\leq O\{\log rT(r,f)\}+(k-1)\exp_p\{(\sigma_4+\varepsilon)\log_qr\}, \end{equation} where $ r\in E-E_6.$ From \eqref{e39}, we obtain $\sigma_{[p+1,q]}(f)\geq \sigma_3=\sigma_{[p,q]}(B_0)$. \end{proof} \begin{lemma} \label{lem2.12} Let $B_j(z)$, $j=0,1,\dots,k-1$ be meromorphic functions of finite $[p,q]$ order. If there exist positive constants $\sigma_5, \beta_{3}, \beta_{4} (0<\beta_{3}<\beta_{4})$ and a set $E_{8}$ with infinite logarithmic measure such that $$ \max\{|B_j(z)|:j=1,2,\dots,k-1\}\leq\exp_p\{\beta_{3}(\log_{q-1}r)^{\sigma_5}\}, $$ and $$ |B_0(z)|\geq\exp_p\{\beta_{4}(\log_{q-1}r)^{\sigma_5}\} $$ hold for all $|z|=r\in E_{8}$, then every meromorphic solution $f\not\equiv0$ of \eqref{e35} satisfies $\sigma_{[p+1,q]}(f)\geq\sigma_5$. \end{lemma} \begin{proof} Suppose that $f\not\equiv0$ is a meromorphic function of \eqref{e35}. Then it follows that \begin{equation} \label{e40} |B_0(z)|\leq |\frac{f^{(k)}}{f}|+\sum_{j=1}^{k-1}|B_j(z)||\frac{f^{(j)}}{f}|. \end{equation} By Lemma \ref{lem2.8}, there exists a set $E_7$ with finite logarithmic measure such that for all $|z|=r\not\in E_7$, we have \begin{equation} \label{e41} |\frac{f^{(j)}}{f}|\leq M[T(2r,f)]^{2j}, \quad j=1,2,\dots,k. \end{equation} By \eqref{e40}, \eqref{e41} and the assumptions of Lemma \ref{lem2.12}, for all $|z|=r\in E_8-E_7$, we have \begin{equation} \label{e42} \exp_p\{\beta_4(\log_{q-1}r)^{\sigma_5}\}\leq Mk[T(2r,f)]^{2k}\exp_p\{\beta_3(\log_{q-1}r)^{\sigma_5}\}. \end{equation} Since $0<\beta_3<\beta_4$ and by \eqref{e42}, we have $\sigma_{[p+1,q]}(f)\geq \sigma_5$. \end{proof} \begin{lemma}[{\cite[Lemma 3.12]{Liu-Tu}}] \label{lem2.13} Let $A_{0}, A_{1},\dots, A_{k-1}$, $F\not\equiv0$ be meromorphic functions, if $f$ is a meromorphic solution of the equation $$ f^{(k)}+A_{k-1}f^{(k-1)}+\cdot\cdot\cdot+A_{0}f=F, $$ satisfying $\max\{\sigma_{[p,q]}(F), \sigma_{[p,q]}(A_{j}); j=0,1,\dots,k-1\}<\sigma_{[p,q]}(f)$, then we have $\sigma_{[p,q]}(f)=\lambda_{[p,q]}(f)=\overline{\lambda}_{[p,q]}(f)$. \end{lemma} \begin{lemma}[{\cite[Theorem 2.3]{Liu-Tu}}] \label{lem2.14} Let $A_j(z)$ $(j=0,1,\dots,k-1)$ be entire functions satisfying $\max\{\sigma_{[p,q]}(A_{j}): j=1,2,\dots,k-1\}\leq\sigma_{[p,q]}(A_0)<\infty$ and $$ \max\{\tau_{[p,q]}(A_j)|\sigma_{[p,q]}(A_{j}) =\sigma_{[p,q]}(A_0)>0\}<\tau_{[p,q]}(A_0). $$ Then every nontrivial solution $f$ of \eqref{e2} satisfies $\sigma_{[p+1,q]}(f)=\sigma_{[p,q]}(A_0)$. \end{lemma} \section{Proofs of Theorems} \begin{proof}[Proof of Theorem \ref{thm1.1}] We will consider two cases as follows. \textbf{Case 1}. Suppose that $\max\{\sigma_{[p,q]}(A_j): j=1,2,\dots,k-1\}<\sigma_{[p,q]}(A_0)<\infty$. (i) First, we prove that $\overline{\lambda}_{[p+1,q]}(f-\varphi)=\sigma_{[p+1,q]}(f)$. Assume that $f$ is a nontrivial solution of \eqref{e2}, from \cite[Theorem 2.2]{Liu-Tu}, we have $\sigma_{[p+1,q]}(f)=\sigma_{[p,q]}(A_0)$. Set $g=f-\varphi$. Since $\sigma_{[p+1,q]}(\varphi)<\sigma_{[p,q]}(A_0)$, then $\sigma_{[p+1,q]}(g)=\sigma_{[p+1,q]}(f)=\sigma_{[p,q]}(A_0)$ and $\overline{\lambda}_{[p+1,q]}(g)=\overline{\lambda}_{[p+1,q]}(f-\varphi)$. By Lemma \ref{lem2.1}, we get that $g$ satisfies the equation \eqref{e3}. Set $F=\varphi^{(k)}+A_{k-1}\varphi^{(k-1)}+\dots+A_0\varphi$. If $F\equiv0$, then from \cite{Liu-Tu}, we have $\sigma_{[p+1,q]}(\varphi)=\sigma_{[p,q]}(A_0)$, a contradiction. Then $F\not\equiv0$. From Lemma \ref{lem2.4} and assumption of Case 1, we have $$ \sigma_{[p+1,q]}(F)\leq\max\{\sigma_{[p+1,q]}(\varphi),\sigma_{[p+1,q]}(A_0)\} =\max\{\sigma_{[p+1,q]}(\varphi),0\}. $$ Since $\sigma_{[p+1,q]}(\varphi)<\sigma_{[p,q]}(A_0)$, we have $$ \max\{\sigma_{[p+1,q]}(F),\sigma_{[p+1,q]}(A_j): j=0,1,2,\dots,k-1\}<\sigma_{[p+1,q]}(f). $$ By Lemma \ref{lem2.13}, we have $\overline{\lambda}_{[p+1,q]}(g)=\lambda_{[p+1,q]}(g)=\sigma_{[p+1,q]}(g)=\sigma_{[p,q]}(A_0)$. Thus, we have $$ \overline{\lambda}_{[p+1,q]}(f-\varphi) =\lambda_{[p+1,q]}(f-\varphi)=\sigma_{[p+1,q]}(f)=\sigma_{[p,q]}(A_0). $$ (ii) Second, we prove that $\overline{\lambda}_{[p+1,q]}(f'-\varphi)=\sigma_{[p+1,q]}(f)$. Set $g_1=f'-\varphi$, then $\sigma_{[p+1,q]}(g_1)=\sigma_{[p+1,q]}(f)=\sigma_{[p,q]}(A_0)$. From Lemma \ref{lem2.2}, we get that $g_1$ satisfies the equation \eqref{e4}. Set $F_1=\varphi^{(k)}+U^1_{k-1}\varphi^{(k-1)}+\dots+U^1_0\varphi$, where $U^1_j (j=0,1,\dots,k-1)$ are stated as in Lemma \ref{lem2.2}. If $F_1\equiv0$, from Lemma \ref{lem2.6} and Lemma \ref{lem2.7}, we have $\sigma_{[p+1,q]}(\varphi)\geq \sigma_{[p,q]}(A_0)$, a contradiction with $\sigma_{[p+1,q]}(\varphi)<\sigma_{[p,q]}(A_0)$. Hence $F_1\not\equiv0$. From the definition of $U_j^1 (j=0,1,\dots,k-1)$, we have $\sigma_{[p+1,q]}(U_j^1)\leq \sigma_{[p+1,q]}(A_j)$ $j=0,1,\dots,k-1$. Thus, we can get $\sigma_{[p+1,q]}(F_1)\leq\max\{\sigma_{[p+1,q]}(\varphi),\sigma_{[p+1,q]}(U_j^1): j=0,1,\dots,k-1\}$. Since $\sigma_{[p+1,q]}(\varphi)<\sigma_{[p,q]}(A_0)$, we have $\max\{\sigma_{[p+1,q]}(F_1),\sigma_{[p+1,q]}(U_j^1): j=0,1,\dots,k-1\}<\sigma_{[p,q]}(A_0)=\sigma_{[p+1,q]}(g_1)$. By Lemma \ref{lem2.13}, we obtain $$ \overline{\lambda}_{[p+1,q]}(f'-\varphi)=\lambda_{[p+1,q]}(f'-\varphi) =\sigma_{[p+1,q]}(f). $$ (iii) We will prove that $\overline{\lambda}_{[p+1,q]}(f^{(i)}-\varphi)=\sigma_{[p+1,q]}(f), (i>1, i\in \mathbb{N})$. Set $g_i=f^{(i)}-\varphi$, then $\sigma_{[p+1,q]}(g_i)=\sigma_{[p+1,q]}(f)=\sigma_{[p,q]}(A_0)$. From Lemma \ref{lem2.3}, we have $g_i$ satisfies equation \eqref{e5}. Set $F_i=\varphi^{(k)}+U^i_{k-1}\varphi^{(k-1)}+\dots+U^i_0\varphi$, where $U^i_j (j=0,1,\dots,k-1; i\in \mathbb{N})$ are stated as in Lemma \ref{lem2.3}. If $F_i\equiv0$, from Lemma \ref{lem2.6} and Lemma \ref{lem2.7}, we have $\sigma_{[p+1,q]}(\varphi)\geq \sigma_{[p,q]}(A_0)$, a contradiction with $\sigma_{[p+1,q]}(\varphi)<\sigma_{[p,q]}(A_0)$. Hence $F_i\not\equiv0$. By using the same argument as in Case 1(ii), we can get $$ \overline{\lambda}_{[p+1,q]}(f^{(i)}-\varphi) =\lambda_{[p+1,q]}(f^{(i)}-\varphi)=\sigma_{[p+1,q]}(f). $$ \textbf{Case 2}. Suppose that $\max\{\sigma_{[p,q}(A_{j}): j=1,2,\dots,k-1\}\leq\sigma_{[p,q]}(A_0)<\infty$ and $\max\{\tau_{[p,q]}(A_j)|\sigma_{[p,q]}$ $(A_{j})=\sigma_{[p,q]}(A_0)>0\}<\tau_{[p,q]}(A_0)$. (i) We first prove that $\overline{\lambda}_{[p+1,q]}(f-\varphi)=\sigma_{[p+1,q]}(f)$. Since $f$ is a nontrivial solution of \eqref{e2}, by Lemma \ref{lem2.14}, we have $\sigma_{[p+1,q]}(f)=\sigma_{[p,q]}(A_0)>0$. Set $g=f-\varphi$. Since $\varphi\not\equiv0$ is an entire function satisfying $\sigma_{[p+1,q]}(\varphi)<\sigma_{[p,q]}(A_0)$, then we have $\sigma_{[p+1,q]}(g)=\sigma_{[p+1,q]}(f)=\sigma_{[p,q]}(A_0)$ and $\overline{\lambda}_{[p+1,q]}(g)=\overline{\lambda}_{[p+1,q]}(f-\varphi)$. From Lemma \ref{lem2.1}, we get that $g$ satisfies equation \eqref{e3}. We will affirm $F\not\equiv0$. If $F\equiv0$, by Lemma \ref{lem2.14}, we get $\sigma_{[p+1,q]}(\varphi)=\sigma_{[p,q]}(A_0)$, a contradiction. Hence $F\not\equiv0$. From the assumptions of Case 2, we get $$ \max\{\sigma_{[p+1,q]}(F), \sigma_{[p+1,q]}(A_j): j=0,1,\dots,k-1\}< \sigma_{[p+1,q]}(g)=\sigma_{[p,q]}(A_0). $$ From Lemma \ref{lem2.13}, we have $$ \overline{\lambda}_{[p+1,q]}(f-\varphi) =\lambda_{[p+1,q]}(f-\varphi)=\sigma_{[p+1,q]}(f)=\sigma_{[p,q]}(A_0). $$ (ii) Now we prove that $\overline{\lambda}_{[p+1,q]}(f'-\varphi)=\sigma_{[p+1,q]}(f)$. Let $g_1=f'-\varphi$. Since $\sigma_{[p+1,q]}(\varphi)<\sigma_{[p,q]}(A_0)$, we have $\sigma_{[p+1,q]}(g_1)=\sigma_{[p+1,q]}(f)=\sigma_{[p,q]}(A_0)$. By Lemma \ref{lem2.2}, we get that $g_1$ satisfies equation \eqref{e4}. If $F_1\equiv0$, from Lemma \ref{lem2.10} and Lemma \ref{lem2.12}, we have $\sigma_{[p+1,q]}(\varphi)\geq \sigma_{[p,q]}(A_0)$. Then we can get a contradiction with $\sigma_{[p+1,q]}(\varphi)< \sigma_{[p,q]}(A_0)$. Therefore, we have $F_1\not\equiv0$. By \eqref{e4} and Lemma \ref{lem2.13}, we have $$ \overline{\lambda}_{[p+1,q]}(f'-\varphi)=\lambda_{[p+1,q]}(f'-\varphi) =\sigma_{[p+1,q]}(f)=\sigma _{[p,q]}(A_0). $$ Similar to the arguments as in Case 1 (iii) and by using Lemmas \ref{lem2.3}, \ref{lem2.10} and \ref{lem2.12}, we obtain $$ \overline{\lambda}_{[p+1,q]}(f^{(i)}-\varphi) =\lambda_{[p+1,q]}(f^{(i)}-\varphi)=\sigma_{[p+1,q]}(f) =\sigma_{[p,q]}(A_0), \quad (i\in \mathbb{N}). $$ Thus, the proof is complete. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.2}] According to the conditions of Theorem 1.2, we can easily obtain the conclusions by using the similar argument as in Theorem \ref{thm1.1} and Lemma \ref{lem2.11}. \end{proof} \subsection*{Acknowledgments} This work was supported by the NSF of China (11301233, 61202313) and the Natural Science Foundation of Jiang-Xi Province in China (20132BAB211001 and 20132BAB211002). \begin{thebibliography}{00} \bibitem{1} I. Amemmiya, M. Ozawa; \emph{Non-existence of finite order solutions of $\omega''+e^{-z}\omega'+Q(z)\omega=0$}, Hokkaido Math. J. 10 (1981), 1-17. \bibitem{2} S. Bank, I. Laine; \emph{On the oscillation theory of $f'' + Af = 0$ where $A$ is entire}, Trans. Amer. Math. Soc. 273 (1982), 351-363. \bibitem{3} S. Bank, I. Laine; \emph{On the zeros of meromorphic solutions of second order linear differential equations}, Comment. Math. Helv. 58(1983), 656-677. \bibitem{4} B. Bela\"{\i}di; \emph{Growth and oscillation theory of solutions of some linear differential equations}, Matemati\v{c}ki Vesnik 60 (4) (2008), 233-246. \bibitem{Bela} B. Bela\"{\i}di; \emph{Growth of solutions to linear differential equations with analytic coefficients of $[p,q]$-order in the unit disc}, Electron. J. Diff. Equ. 2011 (2011), No. 156, 1-11. \bibitem{5} B. Bela\"{\i}di, A. El Farissi; \emph{Differential polynomials generated by some complex linear differential equations with meromorphic coefficients}, Glasnik Matemati\v{c}ki 43 (2) (2008), 363-373. \bibitem{6} Z. X. Chen; \emph{On the hyper order of solutions of some second order linear differential equations}, Acta Math. Sinica B 18(1) (2002), 79-88. \bibitem{7} Z. X. Chen; \emph{The growth of solutions of the differential equation $f''+e^{-z}f'+Q(z)f=0$}, Sci. China Ser. A 31(2001), 775-784 (in Chinese). \bibitem{8} Z. X. Chen, K. H. Shon; \emph{The relation between solutions of a class of second order differential equation with functions of small growth}, Chinese. Ann. Math. 27(A4) (2006), 431-442(Chinese). \bibitem{fb} A. EL Farissi , M. Benbachir; \emph{Oscillation of fixed points of solutions of some linear differential equations}, Electron. J. Diff. Equ. 2013 (2013), No. 41, pp. 1-9. \bibitem{10} M. Frei; \emph{Uber die subnormalen losungen der differentialgeichung $\omega''+e^{-z}\omega'+(konst.)\omega=0$}, Comment Math. Helv. 36 (1962), 1-8. \bibitem{11} S. A. Gao, Z. X. Chen, T. W. Chen; \emph{Oscillation Theory on Linear Differential Equations}, Wuhan: Press in Central China Institute of Technology, 1998. \bibitem{12} G. G. Gundersen; \emph{Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates}, J. London Math. Soc. 305(2) (1988), 88-104. \bibitem{13} G. G. Gundersen; \emph{On the question of whether $f''+e^{-z}f'+B(z)f=0$ can admit a solution $f\not\equiv0$ of finite order}, Proc R.S.E. 102 A (1986), 9-17. \bibitem{14} W. K. Hayman; \emph{Meromorphic Functions}, Clarendon, Oxford, 1964. \bibitem{Jun-Kap1} O.P. Juneja, G. P. Kapoor, S. K. Bajpai; \emph{On the $(p,q)$-order and lower $(p, q)$-order of an entire function}, J. Reine Angew. Math. 282 (1976), 53-67. \bibitem{Jun-Kap2} O. P. Juneja, G. P. Kapoor, S. K. Bajpai; \emph{On the $(p, q)$-type and lower $(p, q)$-type of an entire function}, J. Reine Angew. Math. 290 (1977), 180-190. \bibitem{15} K. H. Kwon; \emph{On the growth of entire functions satisfying second order linear differential equation}, Bull. Korean. Math. Soc. 3 (1996), 487-496. \bibitem{16} I. Laine; \emph{Nevanlinna theory and complex differential equations}, W. de Gruyter, Berlin, 1993. \bibitem{17} I. Laine; \emph{Complex differential equations}, Handbook of Differential Equations: Ordinary Differential Equations, 4 (2008), 269-363. \bibitem{Liu-Tu} J. Liu, J. Tu, L. Z. Shi; \emph{Linear differential equations with entire coefficients of $[p,q]$-order in the complex plane}, J. Math. Anal. Appl. 372(2010), 55-67. \bibitem{18} M. S. Liu, X. M. Zhang; \emph{Fixed points of meromorphic solutions of higher order linear differential equations}, Ann.Acad Sci. Fenn. Ser. A. I. Math. 31 (2006), 191-211. \bibitem{19} J. Tu, T. Long; \emph{Oscillation of complex high order linear differential equations with coefficients of finite iterated order}, Electon. J. Qualitative Theory of Diff. Equ. 66 (2009), 1-13. \bibitem{wc} Z. J. Wu, Y. X. Chen; \emph{The fixed points of solutions of some second order differential equation}, Acta Math. Scientia 32 (A) 2012, 779-784. \bibitem{xtz}H. Y. Xu, J. Tu, X. M. Zheng; \emph{On the hyper exponent of convergence of zeros of $f^{(j)}-\varphi$ of higher order linear differential equations}, Advances in Difference Equations 2012, 2012: 114, doi: 10.1186/1687-1847-2012-114. \end{thebibliography} \end{document}