\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2014 (2014), No. 84, pp. 1--17.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2014 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2014/84\hfil Existence of two positive solutions] {Existence of two positive solutions for a singular Neumann problem} \author[J.-F. Liao, J. Liu, C.-L. Tang, P. Zhang\hfil EJDE-2014/84\hfilneg] {Jia-Feng Liao, Jiu Liu, Chun-Lei Tang, Peng Zhang} % in alphabetical order \address{Jia-Feng Liao \newline School of Mathematics and Statistics, Southwest University, Chongqing 400715, China. \newline School of Mathematics and Computational Science, Zunyi Normal College, Zunyi 563002, China} \email{liaojiafeng@163.com} \address{Jiu Liu \newline School of Mathematics and Statistics, Southwest University, Chongqing 400715, \newline China} \email{jiuliu2011@163.com} \address{Chun-Lei Tang (corresponding author) \newline School of Mathematics and Statistics, Southwest University, Chongqing 400715, \newline China} \email{tangcl@swu.edu.cn, Tel +86 23 68253135, fax +86 23 68253135} \address{Peng Zhang \newline School of Mathematics and Computational Science, Zunyi Normal College, \newline Zunyi 563002, China} \email{gzzypd@sina.com} \thanks{Submitted January 23, 2014. Published March 28, 2014.} \subjclass[2000]{35B09, 35J20, 35J75} \keywords{Neumann problem; singularity; positive solution; Nehari method} \begin{abstract} We obtain two positive solutions for Neumann boundary problems with singularity and subcritical term, by using the Nehari method. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction and main result} In this article, we consider the Neumann problem \begin{equation}\label{e1.1} \begin{gathered} -\Delta u+u=\lambda P(x)u^{p}+Q(x)u^{-\gamma}, \quad\text{in }\Omega,\\ u>0,\quad\text{in }\Omega,\\ \frac{\partial u}{\partial \nu}=0, \quad\text{on }\partial \Omega, \end{gathered} \end{equation} where $\Omega\subset R^{N}$ $(N\geq 3)$ is a bounded domain with smooth boundary $\partial \Omega$ and $\lambda$ is a positive parameter. The exponent $p$ of the superlinear satisfies $1\frac{2^{*}}{2^{*}-p-1}$ and $r_{2}>\frac{2^{*}}{2^{*}+\gamma-1}$ are two constants. A function $u\in H^{1}(\Omega)$ is called a weak solution of problem \eqref{e1.1} if $u(x)>0$ in $\Omega$ satisfies \begin{equation}\label{e1.10} \int_{\Omega}\big((\nabla u,\nabla \phi)+u\phi-\lambda P(x)u^{p}\phi-Q(x)u^{-\gamma}\phi\big)dx=0,\quad \forall \phi\in H^{1}(\Omega), \end{equation} where $H^{1}(\Omega)$ is a Sobolev space equipped with the norm $\|u\|=[\int_{\Omega}(|\nabla u|^{2}+u^{2})dx]^{1/2}$. This is the space we work on in this paper. The Dirichlet boundary value problem \begin{equation}\label{e1.2} \begin{gathered} -\Delta u=u^{p}+\lambda u^{-\gamma}, \quad\text{in }\Omega,\\ u>0, \quad\text{in }\Omega,\\ u=0, \quad\text{on }\partial \Omega, \end{gathered} \end{equation} have been extensively studied in \cite{MMC,CP,MAP,LM,AA,LZ,NSS,SL,SL08,SW,SWL01,WZZ,HY,Z,ZL,ZY}. In particular, in \cite{CP} it has been shown that problem \eqref{e1.2} possesses at least one solution for $\lambda>0$ small enough, and has no solution when $\lambda$ is large. This result has been extended in \cite{MAP,NSS,SL,SL08,SW,SWL01,WZZ,HY,Z,ZL,ZY}. When the exponent satisfies $00$ is small enough by the Nehari manifold. When the exponent is the critical exponent, the existence and the multiplicity of solutions have been studied in \cite{NSS,SL,SW,WZZ,HY}. Recently, Chabrowski in \cite{JC} studied the Neumann problems with singular superlinear nonlinearities; that is, \begin{gather*} -\Delta u=P(x)u^{p}+\lambda Q(x)u^{-\gamma}, \quad\text{in }\Omega,\\ u>0,\quad\text{in }\Omega,\\ \frac{\partial u}{\partial \nu}=0, \quad\text{on }\partial \Omega, \end{gather*} where $P\in C(\overline{\Omega})$ changes sign on $\Omega$ and satisfies $$ \int_{\Omega}P(x)dx<0, $$ and $Q\in C(\overline{\Omega})$ with $Q>0$. When $10$ small enough by approximation and variational methods. Inspired by \cite{SWL01} and \cite{JC}, we study problem \eqref{e1.1} with $10$ is small by the Nehari method. Moreover, we obtain uniform lower bounds for $\lambda$, namely $T_{p,\gamma}$. We denote by $|\cdot|_{q}$ the usual $L^{q}$-norm. Let $S$ be the best Sobolev constant and $T_{p,\gamma}$ be a constant, respectively \begin{gather}\label{e1.0} S:=\inf\big\{\frac{\int_{\Omega}(|\nabla u|^{2}+u^{2})dx}{(\int_{\Omega}|u|^{2^{*}}dx)^\frac{2}{2^{*}}}: u\in H^{1}(\Omega), u\neq0\big\}, \\ T_{p,\gamma}=\frac{1+\gamma}{p-1}\big(\frac{p-1}{p+\gamma}\big)^{\frac{p+\gamma}{1+\gamma}} \frac{S^{\frac{p+\gamma}{1+\gamma}}}{|P|_{r_1}|Q|_{r_2}^{\frac{p-1}{1+\gamma}}} |\Omega|^{-\frac{r_{1}r_{2}(p+\gamma)(2^{*}-2)-2^{*} [r_{1}(p-1)+r_{2}(1-\gamma)]}{2^{*}r_{1}r_{2}(1+\gamma)}}. \nonumber \end{gather} For all $u\in H^{1}(\Omega)$, we define \begin{equation*} I_{\lambda}(u) =\frac{1}{2}\int_{\Omega}(|\nabla u|^{2}+|u|^{2})dx -\frac{\lambda}{p+1}\int_{\Omega}P(x)|u|^{p+1}dx -\frac{1}{1-\gamma}\int_\Omega Q(x)|u|^{1-\gamma}dx. \end{equation*} It is well known that the singular term leads to the functional $I_{\lambda}\not\in C^1(H^{1}(\Omega), R)$. However, we may obtain the multiplicity of solutions for problem \eqref{e1.1} by investigating suitable minimization problems for the functional $I_{\lambda}$. Notice that $u$ is a weak solution of problem \eqref{e1.1}, then $u>0$ in $\Omega$ and satisfies the equation \begin{equation*} \int_{\Omega}(|\nabla u|^{2}+u^{2})dx -\lambda\int_{\Omega}P(x)u^{p+1}dx-\int_{\Omega}Q(x)u^{1-\gamma}dx=0. \end{equation*} So if such a solution exists then it must lie in Nehari manifold $\Lambda$, which is defined by \begin{equation*} \Lambda=\big\{u\in H^{1}(\Omega): \int_{\Omega}(|\nabla u|^{2}+u^{2} -\lambda P(x)|u|^{p+1}-Q(x)|u|^{1-\gamma})dx=0\big\}. \end{equation*} To obtain the multiplicity of positive solutions, we split $\Lambda=\Lambda^+\cup\Lambda^0\cup\Lambda^-$ where \begin{gather*} \Lambda^+=\big\{u\in \Lambda: (1+\gamma) \int_{\Omega}(|\nabla u|^{2}+u^{2})dx-\lambda(p+\gamma) \int_{\Omega}P(x)|u|^{p+1}dx>0\big\}, \\ \Lambda^0=\big\{u\in \Lambda: (1+\gamma)\int_{\Omega}(|\nabla u|^{2}+u^{2})dx -\lambda(p+\gamma)\int_{\Omega}P(x)|u|^{p+1}dx=0\big\}, \\ \Lambda^-=\big\{u\in \Lambda: (1+\gamma)\int_{\Omega}(|\nabla u|^{2}+u^{2})dx -\lambda(p+\gamma)\int_{\Omega}P(x)|u|^{p+1}dx<0\big\}. \end{gather*} When $\lambda\in(0,T_{p,\gamma})$, we can prove that $\Lambda^{\pm}\neq\emptyset$ and $\Lambda^{0}=\{0\}$. Then we can find two minimizers of $I_{\lambda}$ on $\Lambda^{+}$ and $\Lambda^{-}$ respectively, which are local minimizers of $I_{\lambda}$ on $\Lambda$. Finally, we prove that a local minimizer of $I_{\lambda}$ on $\Lambda$ is indeed a positive solution of \eqref{e1.1}. The main result can be described as follows. \begin{theorem} \label{thm1.1} Suppose $P\in L^{r_1}(\Omega),Q\in L^{r_2}(\Omega)$ are nonzero and nonnegative, $1\frac{2^{*}}{2^{*}-p-1}$ and $r_{2}>\frac{2^{*}}{2^{*}+\gamma-1}$ are two constants. \end{theorem} To the best knowledge, up to now there is no study of the exact estimate of $\lambda$ such that problem \eqref{e1.1} has at least two positive solutions. For the case $10$ and $\int_{\Omega}Q(x)|u|^{1-\gamma}dx>0$. Let $\Phi\in C(R^+,R)$ satisfy $$ \Phi(t)=t^{1-p}\|u\|^2-t^{-\gamma-p}\int_{\Omega}Q(x)|u|^{1-\gamma}dx, $$ then $$ \Phi'(t)=(1-p)t^{-p}\|u\|^2+(p+\gamma)t^{-\gamma-p-1} \int_{\Omega}Q(x)|u|^{1-\gamma}dx. $$ Let $\Phi'(t)=0$, we can verify $$ t_{\rm max}=\Big[\frac{(p+\gamma)\int_{\Omega}Q(x)|u|^{1-\gamma}dx}{(p-1)\|u\|^{2}} \Big]^{1/(1+\gamma)}. $$ Easy computations show that $\Phi'(t)>0$ for all $0t_{\rm max}$. Thus $\Phi(t)$ attains its maximum at $t_{\rm max}$, that is, \begin{equation*} \Phi(t_{\rm max})=\frac{1+\gamma}{p-1}\big(\frac{p-1}{p+\gamma} \big)^{\frac{p+\gamma}{1+\gamma}}\frac{\|u\| ^{\frac{2(p+\gamma)}{1+\gamma}}} {\big(\int_{\Omega}Q(x)|u|^{1-\gamma}dx\big)^{\frac{p-1}{1+\gamma}}}. \end{equation*} From \eqref{e1.0}, we have \begin{equation}\label{e2.0} S|u|^{2}_{2^{*}}< \|u\|^{2}, \end{equation} and by H\"older's inequality, one has \begin{gather}\label{e2.1} \int_{\Omega} P(x)|u|^{p+1}dx\leq|P|_{r_1}|u|_{2^{*}}^{p+1} |\Omega|^{\frac{r_{1}(2^{*}-p-1)-2^{*}}{r_{1}2^{*}}}, \\ \label{e2.2} \int_{\Omega} Q(x)|u|^{1-\gamma}dx\leq|Q|_{r_2}|u|_{2^{*}}^{1-\gamma} |\Omega|^{\frac{r_{2}(2^{*}+\gamma-1)-2^{*}}{r_{2}2^{*}}}. \end{gather} Then from \eqref{e2.0}-\eqref{e2.2}, one gets \begin{equation}\label{e2.3} \begin{aligned} &\Phi(t_{\rm max})-\lambda \int_{\Omega}P(x)|u|^{p+1}dx\\ &>\frac{1+\gamma}{p-1}\big(\frac{p-1}{p+\gamma}\big)^{\frac{p+\gamma}{1+\gamma}} \frac{(S|u|^{2}_{2^{*}})^{\frac{p+\gamma}{1+\gamma}}}{(|Q|_{r_2}|u|_{2^{*}}^{1-\gamma}|\Omega|^{\frac{r_{2}(2^{*}+\gamma-1)-2^{*}}{r_{2}2^{*}}}) ^{\frac{p-1}{1+\gamma}}}\\ &\quad -\lambda|P|_{r_1}|u|_{2^{*}}^{p+1}|\Omega| ^{\frac{r_{1}(2^{*}-p-1)-2^{*}}{r_{1}2^{*}}}\\ &=\Big[\frac{1+\gamma}{p-1}\big(\frac{p-1}{p+\gamma}\big) ^{\frac{p+\gamma}{1+\gamma}} \frac{S^{\frac{p+\gamma}{1+\gamma}}} {\big(|Q|_{r_2}|\Omega|^{\frac{r_{2}(2^{*}+\gamma-1)-2^{*}}{r_{2}2^{*}}}\big) ^{\frac{p-1}{1+\gamma}}}\\ &\quad -\lambda|P|_{r_1}|\Omega|^{\frac{r_{1}(2^{*}-p-1)-2^{*}}{r_{1}2^{*}}}\Big]|u|_{2^{*}}^{p+1}\\ &= |P|_{r_1}|\Omega|^{\frac{r_{1}(2^{*}-p-1)-2^{*}}{r_{1}2^{*}}} (T_{p,\gamma}-\lambda)|u|_{2^{*}}^{p+1} > 0, \end{aligned} \end{equation} for all $\lambda\in(0,T_{p,\gamma})$. Consequently, there exist $t^{+}_{0}$ and $t^{-}_{0}$ satisfying $00$, for all $\varphi\in H^{1}(\Omega)$, $\varphi>0$, there exist $\varepsilon>0$ and a continuous function $t=t(s)>0$, $s\in\mathbb{R}$, $|s|<\varepsilon$ satisfying \begin{equation*} t(0)=1,\quad t(s)(u+s\varphi)\in\Lambda^{-}\; \text{ (respectively $\Lambda^{+}$)}, \quad \forall s\in\mathbb{R},\; |s|<\varepsilon. \end{equation*} \end{lemma} \begin{proof} We define $f: \mathbb{R}\times\mathbb{R}\to R$ by: \begin{align*} f(t,s)&= t^{\gamma+1}\int_{\Omega}\big[|\nabla(u+s\varphi)|^{2}+(u+s\varphi)^{2}\big] dx-\lambda t^{p+\gamma}\int_{\Omega}P(x)(u+s\varphi)^{p+1}dx\\ &\quad -\int_{\Omega}Q(x)(u+s\varphi)^{1-\gamma}dx. \end{align*} Then \begin{align*} f_{t}(t,s)&=(\gamma+1)t^{\gamma}\int_{\Omega}\big[|\nabla(u+s\varphi)|^{2} +(u+s\varphi)^{2}\big]dx\\ &\quad-\lambda(p+\gamma)t^{p+\gamma-1}\int_{\Omega}P(x)(u+s\varphi)^{p+1}dx, \end{align*} is continuous in $\mathbb{R}\times\mathbb{R}$. Since $u\in \Lambda^{-}\subset \Lambda$, we have $f(1,0)=0$, and moreover \begin{equation*} f_{t}(1,0)=(1+\gamma)\int_{\Omega}(|\nabla u|^{2}+u^{2})dx -\lambda ({p+\gamma})\int_{\Omega}P(x)u^{p+1}dx<0. \end{equation*} Then by applying the implicit function theorem to $f$ at the point $(1,0)$, we obtain $\overline{\varepsilon}>0$ and a continuous function $t=t(s)>0$, $s\in\mathbb{R}$, $|s|<\overline{\varepsilon}$ satisfying that \begin{equation*} t(0)=1,\quad t(s)(u+s\varphi)\in\Lambda,\quad \forall s\in\mathbb{R},\; |s|<\overline{\varepsilon}. \end{equation*} Moreover, taking $\varepsilon>0$ possibly smaller ($\varepsilon<\overline{\varepsilon}$), we obtain \begin{equation*} t(s)(u+s\varphi)\in\Lambda^{-},\quad \forall s\in\mathbb{R},\; |s|<\varepsilon. \end{equation*} The case $u\in\Lambda^{+}$ may be obtained in the same way. Thus the proof is complete. \end{proof} \section{Proof of main theorem} For all $u\in\Lambda$, we have \begin{align*} I_{\lambda}(u) &= \frac{1}{2}\|u\|^{2}-\frac{\lambda}{p+1}\int_{\Omega}P(x)|u|^{p+1}dx -\frac{1}{1-\gamma}\int_\Omega Q(x)|u|^{1-\gamma}dx\\ &=\big(\frac{1}{2}-\frac{1}{p+1}\big)\|u\|^{2}-\big(\frac{1}{1-\gamma} -\frac{1}{p+1}\big)\int_\Omega Q(x)|u|^{1-\gamma}dx. \end{align*} Since $10, $$ and consequently, since $20$ such that $|u_{n}|_{2^{*}}\leq C<\infty$. From \eqref{e2.2}, for every $\varepsilon>0$, setting $$ \delta=\Big(\frac{\varepsilon}{|Q|_{r_2}C^{1-\gamma}}\Big) ^{\frac{r_{2}2^{*}}{r_{2}(2^{*}+\gamma-1)-2^{*}}}, $$ when $E\subset\Omega$ with $mes E<\delta$, we have \begin{align*} \int_{E} Q(x)|u_{n}|^{1-\gamma}dx &\leq |Q|_{r_2}|u|_{2^{*}}^{1-\gamma}\big( \operatorname{meas} E \big)^{\frac{r_{2}(2^{*}+\gamma-1)-2^{*}}{r_{2}2^{*}}}\\ &\leq |Q|_{r_2}C^{1-\gamma}\delta^{\frac{r_{2}(2^{*}+\gamma-1)-2^{*}}{r_{2}2^{*}}} <\varepsilon. \end{align*} Thus, our claim is true. Similarly, \begin{equation}\label{e3.2} \lim_{n\to \infty}\int_{\Omega}P(x)|u_n|^{p+1}dx=\int_{\Omega}P(x)|u_*|^{p+1}dx. \end{equation} By the weakly lower semicontinuity of the norm, combining \eqref{e3.1} and \eqref{e3.2}, we have \begin{align*} I_{\lambda}(u_*) &= \frac{1}{2}\|u_*\|^{2}-\frac{\lambda}{p+1}\int_{\Omega}P(x)|u_*|^{p+1}dx -\frac{1}{1-\gamma}\int_\Omega Q(x)|u_{*}|^{1-\gamma}dx\\ &\leq \liminf_{n\to \infty}\Big[\frac{1}{2}\|u_n\|^{2}-\frac{\lambda}{p+1}\int_{\Omega}P(x)|u_n|^{p+1}dx\\ &\quad -\frac{1}{1-\gamma}\int_\Omega Q(x)|u_n|^{1-\gamma}dx\Big]\\ &=\liminf_{n\to \infty}I_{\lambda}(u_n)=m^{+}<0, \end{align*} which implies that $u_{*}(x)\not\equiv0$ in $\Omega$. Secondly, we prove that $u_{*}(x)>0$ a.e. in $\Omega$. From $u_{n}\in\Lambda^{+}$, we can claim that there exists a constant $C_1>0$ such that \begin{equation}\label{e3.3} (1+\gamma)\|u_n\|^{2}-\lambda(p+\gamma)\int_{\Omega}P(x)|u_n|^{p+1}dx\geq C_1. \end{equation} In fact, \eqref{e3.3} is equivalent to \begin{equation}\label{e3.4} (1+\gamma)\int_\Omega Q(x)|u_{n}|^{1-\gamma}dx -\lambda(p-1)\int_{\Omega}P(x)|u_n|^{p+1}dx\geq C_1. \end{equation} Since $u_{n}\in\Lambda^{+}$, one has $$ (1+\gamma)\int_\Omega Q(x)|u_{n}|^{1-\gamma}dx -\lambda(p-1)\int_{\Omega}P(x)|u_n|^{p+1}dx>0, $$ and consequently, from \eqref{e3.1} and \eqref{e3.2} it follows that \begin{align*} &\lim_{n\to \infty}\Big[(1+\gamma)\int_\Omega Q(x)|u_{n}|^{1-\gamma}dx -\lambda(p-1)\int_{\Omega}P(x)|u_n|^{p+1}dx\Big]\\ &=(1+\gamma)\int_\Omega Q(x)|u_{*}|^{1-\gamma}dx-\lambda(p-1) \int_{\Omega}P(x)|u_{*}|^{p+1}dx \geq0. \end{align*} Thus we only need to prove that \begin{equation}\label{e3.00} (1+\gamma)\int_\Omega Q(x)|u_{*}|^{1-\gamma}dx -\lambda(p-1)\int_{\Omega}P(x)|u_{*}|^{p+1}dx>0. \end{equation} By contradiction, we assume that \begin{equation}\label{e3.03} (1+\gamma)\int_\Omega Q(x)|u_{*}|^{1-\gamma}dx -\lambda(p-1)\int_{\Omega}P(x)|u_{*}|^{p+1}dx=0. \end{equation} Since \begin{equation}\label{e3.000} \|u_n\|^{2}-\lambda\int_{\Omega}P(x)|u_n|^{p+1}dx -\int_\Omega Q(x)|u_{n}|^{1-\gamma}dx=0, \end{equation} by the weakly lower semicontinuity of the norm, and combining \eqref{e3.1}-\eqref{e3.2} and \eqref{e3.03}, we have \begin{equation}\label{e3.0} \begin{aligned} 0&\geq \|u_{*}\|^{2}-\lambda\int_{\Omega}P(x)|u_{*}|^{p+1}dx -\int_\Omega Q(x)|u_{*}|^{1-\gamma}dx\\ &= \|u_{*}\|^{2}-\frac{p+\gamma}{p-1}\int_\Omega Q(x)|u_{*}|^{1-\gamma}dx\\ &= \|u_{*}\|^{2}-\frac{\lambda(p+\gamma)}{1+\gamma}\int_{\Omega}P(x)|u_{*}|^{p+1}dx, \end{aligned} \end{equation} and consequently, from \eqref{e2.3} one has \begin{align*} 0&<\Big[\frac{1+\gamma}{p-1}\big(\frac{p-1}{p+\gamma} \big)^{\frac{p+\gamma}{1+\gamma}} \frac{S^{\frac{p+\gamma}{1+\gamma}}}{(|Q|_{r_2}|\Omega| ^{\frac{r_{2}(2^{*}+\gamma-1)-2^{*}}{r_{2}2^{*}}}) ^{\frac{p-1}{1+\gamma}}}\\ &\quad -\lambda|P|_{r_1}|\Omega|^{\frac{r_{1}(2^{*}-p-1)-2^{*}} {r_{1}2^{*}}}\Big]|u_{*}|_{2^{*}}^{p+1}\\ &< \frac{1+\gamma}{p-1}\big(\frac{p-1}{p+\gamma}\big)^{\frac{p+\gamma}{1+\gamma}} \frac{\|u_{*}\|^{\frac{2(p+\gamma)}{1+\gamma}}} {\big(\int_{\Omega}Q(x)|u_{*}|^{1-\gamma}dx\big)^{\frac{p-1}{1+\gamma}}} -\lambda\int_{\Omega}P(x)|u_{*}|^{p+1}dx\\ &= \frac{1+\gamma}{p-1}\big(\frac{p-1}{p+\gamma}\big)^{\frac{p+\gamma}{1+\gamma}} \frac{\|u_{*}\|^{\frac{2(p+\gamma)}{1+\gamma}}} {\big(\frac{p-1}{p+\gamma}\|u_{*}\|^{2}\big)^{\frac{p-1}{1+\gamma}}} -\frac{1+\gamma}{p+\gamma}\|u_{*}\|^{2}=0 \end{align*} for all $\lambda\in(0,T_{p,\gamma})$, which is impossible. So \eqref{e3.00} is obtained and our claim is true. Applying Lemma \ref{lem2.2} with $u=u_{n}$, and $\varphi\in H^{1}(\Omega),\ \varphi\geq0$, $ t>0$ small enough, we find a sequence of continuous functions $t_{n}=t_{n}(s)$ such that $t_{n}(0)=1$ and $t_{n}(s)(u_{n}+s\varphi)\in\Lambda^{+}$. Noting that $t_{n}(s)(u_{n}+s\varphi)\in\Lambda^{+}$ and $u_{n}\in\Lambda^{+}$, one has \begin{align*} & t_{n}^{2}(s)\|u_{n}+s\varphi\|^{2} -\lambda t_{n}^{p+1}(s)\int_{\Omega}P(x)|u_n+s\varphi|^{p+1}dx\\ &-t_{n}^{1-\gamma}(s)\int_{\Omega}Q(x)(u_{n}+s\varphi)^{1-\gamma}dx=0, \end{align*} consequently, from \eqref{e3.000} it follows that \begin{align*} 0&=[t_{n}^{2}(s)-1]\|u_{n}+s\varphi\|^{2}+(\|u_{n}+s\varphi\|^{2}-\|u_{n}\|^{2})\\ &\quad -\lambda[t_{n}^{p+1}(s)-1]\int_{\Omega}P(x)|u_{n}+s\varphi|^{p+1}dx\\ &\quad -\lambda\int_{\Omega}P(x)(|u_{n}+s\varphi|^{p+1}-|u_{n}|^{p+1})dx\\ &\quad -[t_{n}^{1-\gamma}(s)-1]\int_{\Omega}Q(x)(u_{n}+s\varphi)^{1-\gamma}dx\\ &\quad -\int_{\Omega}Q(x)[(u_{n}+s\varphi)^{1-\gamma}-|u_{n}|^{1-\gamma}]dx\\ &\leq [t_{n}^{2}(s)-1]\|u_{n}+s\varphi\|^{2}+(\|u_{n}+s\varphi\|^{2}-\|u_{n}\|^{2})\\ &\quad -\lambda[t_{n}^{p+1}(s)-1]\int_{\Omega}P(x)|u_{n}+s\varphi|^{p+1}dx\\ &\quad -\lambda\int_{\Omega}P(x)(|u_{n}+s\varphi|^{p+1}-|u_{n}|^{p+1})dx\\ &\quad -[t_{n}^{1-\gamma}(s)-1]\int_{\Omega}Q(x)(u_{n}+s\varphi)^{1-\gamma}dx, \end{align*} then dividing by $s>0$, we have \begin{equation}\label{e3.01} \begin{aligned} 0&\leq \Big[(t_{n}(s)+1)\|u_{n}+s\varphi\|^{2} -\lambda\frac{t_{n}^{p+1}(s)-1}{t_{n}(s)-1} \int_{\Omega}P(x)|u_{n}+s\varphi|^{p+1}dx\\ &\quad -\frac{t_{n}^{1-\gamma}(s)-1}{t_{n}(s)-1} \int_{\Omega}Q(x)(u_{n}+s\varphi)^{1-\gamma}dx\Big] \frac{t_{n}(s)-1}{s}+s\|\varphi\|^{2}\\ &\quad +2\int_{\Omega}((\nabla u_{n},\nabla \varphi)+u_{n}\varphi)dx -\lambda\int_{\Omega}P(x)\frac{|u_{n}+s\varphi|^{p+1}-|u_{n}|^{p+1}}{s}dx. \end{aligned} \end{equation} Let \begin{equation}\label{e3.5} A_{n}(s)=\frac{t_{n}(s)-1}{s}, \end{equation} \begin{align*} K_{1,n}(s)&=(t_{n}(s)+1)\|u_{n}+s\varphi\|^{2} -\lambda\frac{t_{n}^{p+1}(s)-1}{t_{n}(s)-1}\int_{\Omega}P(x)|u_{n} +s\varphi|^{p+1}dx\\ &-\frac{t_{n}^{1-\gamma}(s)-1}{t_{n}(s)-1} \int_{\Omega}Q(x)(u_{n}+s\varphi)^{1-\gamma}dx, \end{align*} and \begin{align*} K_{2,n}(s)&= s\|\varphi\|^{2}+2\int_{\Omega}((\nabla u_{n},\nabla \varphi) +u_{n}\varphi)dx\\ &\quad -\lambda\int_{\Omega}P(x)\frac{|u_{n}+s\varphi|^{p+1}-|u_{n}|^{p+1}}{s}dx. \end{align*} Then, according to \eqref{e3.000} and \eqref{e3.3} we have \begin{align*} \lim_{s\to 0^{+}}K_{1,n}(s) &=2\|u_{n}\|^{2}-\lambda(p+1)\int_{\Omega}P(x)u_{n}^{p+1}dx -(1-\gamma)\int_{\Omega}Q(x)u_{n}^{1-\gamma}dx\\ &=(1+\gamma)\|u_{n}\|^{2}-\lambda(p+\gamma)\int_{\Omega}P(x)u_{n}^{p+1}dx\\ &=: K_{1,n}\geq C_{1}>0, \end{align*} and $$ \lim_{s\to 0^{+}}K_{2,n}(s)=2\int_{\Omega}((\nabla u_{n},\nabla \varphi) +u_{n}\varphi)dx-\lambda(p+1)\int_{\Omega}P(x)u_{n}^{p}\varphi dx =: K_{2,n}. $$ Thus, from \eqref{e3.01} and the continuity of $K_{1,n}(s)$, one obtains $$ A_{n}(s)\geq\frac{-K_{2,n}(s)}{K_{1,n}(s)}, $$ for $s>0$ small. Since $\{u_{n}\}$ is bounded in $H^{1}(\Omega)$ there exists a positive constant $C_{2}$ such that $|K_{2,n}|0$, it follows that \begin{equation}\label{e3.04} \begin{aligned} &\frac{|t_{n}(s)-1|}{s}\frac{\|u_{n}\|}{n}+t_{n}(s)\frac{\|\varphi\|}{n}\\ &\geq \frac{1}{1-\gamma}\Big[\frac{1+\gamma}{2}\|u_{n}+s\varphi\|^{2}\\ &\quad -\lambda\frac{p+\gamma}{p+1}\frac{t_{n}^{p+1}(s)-1}{t_{n}(s)-1} \int_{\Omega}P(x)u_{n}^{p+1}dx\Big]\frac{t_{n}(s)-1}{s}\\ &\quad+ \frac{1+\gamma}{2(1-\gamma)}\frac{\|u_{n}+s\varphi\|^{2}-\|u_{n}\|^{2}}{s}\\ &\quad -\lambda\frac{p+\gamma}{(p+1)(1-\gamma)}t_{n}^{p+1}(s)\int_{\Omega}P(x) \frac{|u_{n}+s\varphi|^{p+1}-|u_{n}|^{p+1}}{s}dx. \end{aligned} \end{equation} Let $$ K_{3,n}(s)=\frac{1+\gamma}{2}\|u_{n}+s\varphi\|^{2} -\lambda\frac{p+\gamma}{p+1}\frac{t_{n}^{p+1}(s)-1}{t_{n}(s)-1} \int_{\Omega}P(x)u_{n}^{p+1}dx, $$ and \begin{align*} K_{4,n}(s) &= \frac{1+\gamma}{2(1-\gamma)}\frac{\|u_{n}+s\varphi\|^{2}-\|u_{n}\|^{2}}{s}\\ &\quad -\lambda\frac{p+\gamma}{(p+1)(1-\gamma)}t_{n}^{p+1}(s) \int_{\Omega}P(x)\frac{|u_{n}+s\varphi|^{p+1}-|u_{n}|^{p+1}}{s}dx. \end{align*} Then from \eqref{e3.000} and \eqref{e3.3}, one has $$ \lim_{s\to 0^{+}}K_{3,n}(s)=(1+\gamma)\|u_{n}\|^{2} -\lambda(p+\gamma)\int_{\Omega}P(x)u_{n}^{p+1}dx =K_{1,n}\geq C_{1}>0,$$ and $$ \lim_{s\to 0^{+}}K_{4,n}(s)=\frac{1+\gamma}{1-\gamma}\int_{\Omega}((\nabla u_{n},\nabla \varphi)+u_{n}\varphi)dx-\lambda\frac{p+\gamma}{1-\gamma} \int_{\Omega}P(x)u_{n}^{p}\varphi dx=: K_{4,n}. $$ From \eqref{e3.04} we have $$ |A_{n}(s)|\frac{\|u_{n}\|}{n}+t_{n}(s)\frac{\|\varphi\|}{n} \geq K_{3,n}(s)A_{n}(s)+K_{4,n}(s). $$ If $A_{n}(s)\geq0$, then $$ A_{n}(s)\leq\frac{t_{n}(s)\frac{\|\varphi\|}{n}-K_{4,n}(s)}{K_{3,n}(s) -\frac{\|u_{n}\|}{n}} \leq\frac{t_{n}(s)\frac{\|\varphi\|}{n}+|K_{4,n}(s)|}{K_{3,n}(s) -\frac{\|u_{n}\|}{n}}. $$ If $A_{n}(s)<0$, then $$ A_{n}(s)\leq\frac{t_{n}(s)\frac{\|\varphi\|}{n}-K_{4,n}(s)}{K_{3,n}(s) +\frac{\|u_{n}\|}{n}} \leq\frac{t_{n}(s)\frac{\|\varphi\|}{n}+|K_{4,n}(s)|}{K_{3,n}(s) +\frac{\|u_{n}\|}{n}}. $$ Hence $$ A_{n}(s)\leq\frac{t_{n}(s)\frac{\|\varphi\|}{n}+|K_{4,n}(s)|}{K_{3,n}(s) -\frac{\|u_{n}\|}{n}}, $$ and consequently, for $n$ large enough we have \begin{equation}\label{e3.06} \limsup_{s\to 0^{+}}A_{n}(s)\leq\frac{\frac{\|\varphi\|}{n}+|K_{4,n}|}{K_{1,n} -\frac{\|u_{n}\|}{n}} \leq2\frac{1+|K_{4,n}|}{K_{1,n}}\leq2\frac{1+C_{3}}{C_{1}}, \end{equation} where $C_{3}>0$ is a constant such that $|K_{4,n}|0$, we have \begin{equation}\label{e3.9} \begin{aligned} &\frac{1}{n}(|A_{n}(s)|\cdot\|u_{n}\|+\|\varphi\|)\\ &\geq -\Big[\frac{t_{n}(s)+1}{2}\|u_{n}\|^{2} -\lambda\frac{t_{n}^{p+1}(s)-1}{(p+1)(t_{n}(s)-1)}\int_{\Omega}P(x)(u_{n}+s\varphi)^{p+1}dx\\ &\quad -\frac{t_{n}^{1-\gamma}(s)-1}{(1-\gamma)(t_{n}(s)-1)}\int_{\Omega}Q(x)(u_{n}+s\varphi)^{1-\gamma}dx\Big]A_{n}(s)\\ &\quad +\frac{t_{n}^{2}(s)}{2}\frac{\|u_{n}\|^{2}-\|u_{n}+s\varphi\|^{2}}{s}\\ &\quad +\frac{\lambda}{p+1}\int_{\Omega}P(x)\frac{(u_{n}+s\varphi)^{p+1}-u_{n}^{p+1}}{s}dx\\ &\quad +\frac{1}{1-\gamma}\int_{\Omega}Q(x)\frac{(u_{n}+s\varphi)^{1-\gamma}-u_{n}^{1-\gamma}}{s}dx. \end{aligned} \end{equation} Let \begin{align*} K_{5,n}(s)&=\frac{t_{n}(s)+1}{2}\|u_{n}\|^{2} -\lambda\frac{t_{n}^{p+1}(s)-1}{(p+1)(t_{n}(s)-1)} \int_{\Omega}P(x)(u_{n}+s\varphi)^{p+1}dx\\ &\quad -\frac{t_{n}^{1-\gamma}(s)-1}{(1-\gamma)(t_{n}(s)-1)} \int_{\Omega}Q(x)(u_{n}+s\varphi)^{1-\gamma}dx, \end{align*} and \begin{equation*} K_{6,n}(s)=\frac{t_{n}^{2}(s)}{2}\frac{\|u_{n}\|^{2}-\|u_{n}+s\varphi\|^{2}}{s} +\frac{\lambda}{p+1}\int_{\Omega}P(x)\frac{(u_{n}+s\varphi)^{p+1}-u_{n}^{p+1}}{s}dx. \end{equation*} Then from \eqref{e3.000}, we have \begin{equation*} \lim_{s\to 0^{+}}K_{5,n}(s)=\|u_{n}\|^{2}-\lambda\int_{\Omega}P(x)u_{n}^{p+1}dx -\int_{\Omega}Q(x)u_{n}^{1-\gamma}dx=0. \end{equation*} and \begin{equation*} \lim_{s\to 0^{+}}K_{6,n}(s)=-\int_{\Omega}((\nabla u_{n},\nabla \varphi)+u_{n}\varphi)dx+ \lambda\int_{\Omega}P(x)u_{n}^{p}\varphi dx. \end{equation*} Thus from \eqref{e3.9} we deduce \begin{equation}\label{e3.08} \begin{aligned} &\frac{1}{1-\gamma}\int_{\Omega}Q(x)\frac{(u_{n}+s\varphi)^{1-\gamma} -u_{n}^{1-\gamma}}{s}dx\\ &\leq|K_{5,n}(s)|\cdot|A_{n}(s)|-K_{6,n}(s)+\frac{|A_{n}(s)|\cdot\|u_{n}\| +\|\varphi\|}{n}. \end{aligned} \end{equation} Since $$ Q(x)[(u_{n}+s\varphi)^{1-\gamma}-u_{n}^{1-\gamma}]\geq0,\quad \forall x\in\Omega,\; \forall s>0, $$ then by Fatou's Lemma we have $$\int_{\Omega}Q(x)u_{n}^{-\gamma}\varphi dx \leq \liminf_{s\to 0^{+}}\frac{1}{1-\gamma} \int_{\Omega}Q(x)\frac{(u_{n}+s\varphi)^{1-\gamma}-u_{n}^{1-\gamma}}{s}dx. $$ Consequently, combining with \eqref{e3.08} and \eqref{e3.07}, it follows that \begin{align*} \int_{\Omega}Q(x)u_{n}^{-\gamma}\varphi dx &\leq\int_{\Omega}((\nabla u_{n},\nabla \varphi)+u_{n}\varphi)dx- \lambda\int_{\Omega}P(x)u_{n}^{p}\varphi dx\\ &\quad +\frac{C_{4}\|u_{n}\|+\|\varphi\|}{n} \end{align*} for $n$ large enough which implies that $$ \liminf_{n\to \infty}\int_{\Omega}Q(x)u_{n}^{-\gamma}\varphi dx\leq \int_{\Omega}((\nabla u_{*},\nabla \varphi)+u_{*}\varphi)dx -\lambda\int_{\Omega}P(x)u_{*}^{p}\varphi dx. $$ Then applying Fatou's Lemma again, one obtains $$ \int_{\Omega}Q(x)u_{*}^{-\gamma}\varphi dx\leq \int_{\Omega}((\nabla u_{*},\nabla \varphi)+u_{*}\varphi)dx-\lambda\int_{\Omega}P(x)u_{*}^{p}\varphi dx; $$ that is, \begin{equation}\label{e3.10} \int_{\Omega}((\nabla u_{*},\nabla \varphi)+u_{*}\varphi -\lambda P(x)u_{*}^{p}\varphi-Q(x)u_{*}^{-\gamma}\varphi)dx\geq0, \end{equation} for all $\varphi\in H^{1}(\Omega)$, $\varphi\geq0$. This means $u_{*}$ satisfies in the weak sense that $$ -\Delta u_{*}+u_{*}\geq0, \forall x\in\Omega. $$ Since $u_{*}\geq0$ and $u_{*}\not\equiv0$ in $\Omega$, by the strong maximum principle we have \begin{equation}\label{e3.11} u_{*}(x)>0,\quad \text{a.e. } x\in\Omega. \end{equation} Thirdly, we prove that $u_{*}\in\Lambda^{+}$. On one hand, from \eqref{e3.11}, choosing $\varphi=u_{*}$ in \eqref{e3.10}, one has $$ \|u_{*}\|^{2}\geq\lambda\int_{\Omega}P(x)u_{*}^{p+1}dx +\int_{\Omega}Q(x)u_{*}^{1-\gamma}dx. $$ On the other hand, it follows from \eqref{e3.0} that $$ \|u_{*}\|^{2}\leq\lambda\int_{\Omega}P(x)u_{*}^{p+1}dx +\int_{\Omega}Q(x)u_{*}^{1-\gamma}dx. $$ Thus \begin{equation}\label{e3.12} \|u_{*}\|^{2}=\lambda\int_{\Omega}P(x)u_{*}^{p+1}dx +\int_{\Omega}Q(x)u_{*}^{1-\gamma}dx, \end{equation} and this implies $u_{*}\in \Lambda$. Moreover from \eqref{e3.000}, one gets $$ \lim_{n\to \infty}\|u_{n}\|=\lambda\int_{\Omega}P(x)u_{*}^{p+1}dx +\int_{\Omega}Q(x)u_{*}^{1-\gamma}dx. $$ Hence according to \eqref{e3.12}, we have $u_n\to u_*$ in $H^{1}(\Omega)$ as $n\to \infty$. In particular, combining \eqref{e3.12} with \eqref{e3.00}, we obtain $$ (1+\gamma)\|u_*\|^{2}-\lambda(p+\gamma)\int_{\Omega}P(x)|u_*|^{p+1}dx>0, $$ and therefore $u_{*}\in\Lambda^{+}$. Finally, we prove that $u_*$ is a solution of problem \eqref{e1.1}; that is, $u_*$ satisfies \eqref{e1.10}. In fact, we only need prove that \eqref{e3.10} is true for all $\varphi\in H^{1}(\Omega)$. Our proof is inspired by \cite{SWL01}. For the convenience of the reader, we sketch the main steps here. Suppose $\phi\in H^{1}(\Omega)$ and $t>0$. We define $\Psi\in H^{1}(\Omega)$ by $$ \Psi\equiv(u_{*}+t\phi)^{+} $$ where $(u_{*}+t\phi)^{+}=\max \{u_{*}+t\phi,0\}$. Obviously, $\Psi\geq0$, so we can replace $\varphi$ with $\Psi$ in \eqref{e3.10}. Combining with \eqref{e3.12} we deduce that \begin{align*} 0&\leq \int_{\Omega}\big((\nabla u_{*},\nabla \Psi)+u_{*}\Psi-\lambda P(x)u_{*}^{p}\Psi-Q(x)u_{*}^{-\gamma}\Psi \big)dx \\ &=\int_{\{x\mid u_{*}+t\phi\geq0\}}\Big[(\nabla u_{*},\nabla (u_{*}+t\phi)) +u_{*}(u_{*}+t\phi)-\lambda P(x)u_{*}^{p}(u_{*}+t\phi)\Big]dx\\ &\quad -\int_{\{x\mid u_{*}+t\phi\geq0\}}Q(x)u_{*}^{-\gamma}(u_{*}+t\phi)dx\\ &=\Big(\|u_{*}\|^{2}-\lambda P(x)u_{*}^{p+1}-\int_\Omega Q(x)|u_{*}|^{1-\gamma}dx\Big)\\ &\quad + t\int_{\Omega}\big((\nabla u_{*},\nabla \phi)+u_{*}\phi-\lambda P(x)u_{*}^{p}\phi-Q(x)u_{*}^{-\gamma}\phi\big)dx\\ &\quad -\int_{\{x\mid u_{*}+t\phi<0\}}\big[(\nabla u_{*},\nabla (u_{*}+t\phi)) -\lambda P(x)u_{*}^{p}(u_{*}+t\phi)\big]dx\\ &\quad +\int_{\{x\mid u_{*}+t\phi<0\}}Q(x)u_{*}^{-\gamma}(u_{*}+t\phi)dx\\ &= t\int_{\Omega}\big((\nabla u_{*},\nabla \phi)+u_{*}\phi-\lambda P(x)u_{*}^{p}\phi-Q(x)u_{*}^{-\gamma}\phi\big)dx\\ &\quad -\int_{\{x\mid u_{*}+t\phi<0\}}\big[(\nabla u_{*},\nabla (u_{*}+t\phi)) -\lambda P(x)u_{*}^{p}(u_{*}+t\phi)\big]dx\\ &\quad +\int_{\{x\mid u_{*}+t\phi<0\}}Q(x)u_{*}^{-\gamma}(u_{*}+t\phi)dx\\ &\leq t\int_{\Omega}\big((\nabla u_{*},\nabla \phi)+u_{*}\phi-\lambda P(x)u_{*}^{p}\phi-Q(x)u_{*}^{-\gamma}\phi\big)dx\\ &\quad - t\int_{\{x\mid u_{*}+t\phi<0\}}(\nabla u_{*},\nabla \phi)dx.\\ \end{align*} Since the measure of the domain of integration $\{x: u_{*}+t\phi<0\}$ tends to zero as $t\to 0^{+}$, it follows that $\int_{\{x\mid u_{*}+t\phi<0\}}(\nabla u_{*},\nabla \phi) dx\to 0$ as $t\to 0^{+}$. Dividing by $t$ and letting $t\to 0^{+}$, we deduce that $$ \int_{\Omega}\big((\nabla u_{*},\nabla \phi) +u_{*}\phi-\lambda P(x)u_{*}^{p}\phi-u_{*}^{-\gamma}\phi\big)dx\geq0. $$ We note that $\phi\in H^{1}(\Omega)$ is arbitrary, which implies that $u_{*}$ is a positive solution of problem \eqref{e1.1}. \noindent\textbf{Step 2.} We prove that there exists a positive solution of problem \eqref{e1.1} in $\Lambda^{-}$. Similarly to Step 1, applying Ekeland's variational principle to the minimization problem $m^{-}=\inf_{u\in \Lambda^{-}}I_{\lambda}(u)$, there exists a sequence $\{w_{n}\}\subset \Lambda^{-}$ with the following properties: \begin{itemize} \item[(i)] $I_{\lambda}(w_{n})0$ a.e. in $\Omega$. Similarly to the arguments in Step 1, we claim that \begin{equation}\label{e3.13} (1+\gamma)\|w_{n}\|^{2}-\lambda(p+\gamma)\int_{\Omega}P(x)|w_{n}|^{p+1}dx \leq -C_{5}, n=1,2,\cdots, \end{equation} where $C_5>0$ is a constant. Since $w_{n}\in \Lambda$, thus \eqref{e3.13} is to \begin{equation}\label{e3.14} (1+\gamma)\int_\Omega Q(x)|w_{n}|^{1-\gamma}dx-\lambda(p-1) \int_{\Omega}P(x)|w_n|^{p+1}dx\leq -C_5. \end{equation} From $w_{n}\in \Lambda^{-}$, we have $$ (1+\gamma)\int_\Omega Q(x)|w_{n}|^{1-\gamma}dx -\lambda(p-1)\int_{\Omega}P(x)|w_n|^{p+1}dx<0, $$ and combining with \eqref{e3.1} and \eqref{e3.2}, it follows that \begin{align*} &\lim_{n\to \infty}\Big[(1+\gamma)\int_\Omega Q(x)|w_{n}|^{1-\gamma}dx -\lambda(p-1)\int_{\Omega}P(x)|w_n|^{p+1}dx\Big]\\ &=(1+\gamma)\int_\Omega Q(x)|u_{**}|^{1-\gamma}dx -\lambda(p-1)\int_{\Omega}P(x)|u_{**}|^{p+1}dx\leq0. \end{align*} Thus we only need prove that $$ (1+\gamma)\int_\Omega Q(x)|u_{**}|^{1-\gamma}dx -\lambda(p-1)\int_{\Omega}P(x)|u_{**}|^{p+1}dx<0. $$ By repeating the proof of \eqref{e3.00} in Step 1. From Lemma \ref{lem2.2}, choosing $u=w_{n}$, and $\varphi\in H^{1}(\Omega),\ \varphi\geq0$, $ t>0$ small enough, we find a sequence of continuous functions $t_{n}=t_{n}(s)$ such that $t_{n}(0)=1$ and $t_{n}(s)(w_{n}+s\varphi)\in\Lambda^{-}$. Similarly to the arguments in Step 1, we also obtain that there exists a constant $C_{6}>0$, such that \begin{equation}\label{e3.15} \limsup_{s\to 0^{+}}|A_{n}(s)|\leq C_{6} \end{equation} for $n$ large enough. Here $A_{n}(s)$ is also defined by \eqref{e3.5}. In the same manner in Step 1, applying (ii) and \eqref{e3.15}, we have \begin{equation}\label{e3.16} \int_{\Omega}(\nabla u_{**}\nabla \varphi+u_{**}\varphi -\lambda P(x)u_{**}^{p}\varphi-Q(x)u_{**}^{-\gamma}\varphi)dx\geq0, \end{equation} for all $\varphi\in H^{1}(\Omega),\varphi\geq0$, which means $u_{**}$ satisfies in the weak sense that $$ -\Delta u_{**}+u_{**}\geq0, \quad \forall x\in\Omega. $$ Since $u_{**}\geq0$ and $u_{**}\not\equiv0$ in $\Omega$, by the strong maximum principle, one has \begin{equation}\label{e3.17} u_{**}(x)>0,\quad \text{a.e.} x\in\Omega. \end{equation} Finally, according to \eqref{e3.16} and \eqref{e3.17}, we can repeat the arguments of Step 1, and obtain that $u_{**}\in\Lambda^{-}$ is a positive solution of problem \eqref{e1.1}. This complete the proof of Theorem \ref{thm1.1}. \end{proof} \subsection*{Acknowledgments} This research was supported by the National Natural Science Foundation of China (No. 11071198), the Natural Science Foundation of Education of Guizhou Province (No. 2010086), the Science and Technology Foundation of Guizhou Province (No. LKZS[2011]2117, No. LKZS[2012]11, No. LKZS[2012]12), the Fundamental Research Funds for the Central Universities (No. XDJK2014D043). The authors would like to thank the anonymous referees for their valuable suggestions. \begin{thebibliography}{99} \bibitem{JC} J. Chabrowski; \emph{On the Neumann problem with singular and superlinear nonlinearities}. Commun. Appl. Anal. 13 (2009) 327--339. \bibitem{MMC} M. M. Coclite; \emph{On a singular nonlinear Dirichlet problem II}, Boll. Unione Mat. Ital. Sez. B (7) 5 (1991) 955--975. \bibitem{CP} M. M. Coclite, G. Palmieri; \emph{On a singular nonlinear Dirichlet problem}, Comm. Partial Differential Equations 14 (1989) 1315--1327. \bibitem{MAP} M. A. del Pino; \emph{A global estimate for the gradient in a singular elliptic boundary value problem}, Proc. Roy. Soc. Edinburgh Sect. A 122 (1992) 341--352. \bibitem{LM} A. C. Lazer, P. J. Mckenna; \emph{On a singular nonlinear elliptic boundary value problem}, Proc. Amer. Math. Soc. 111 (1991) 721--730. \bibitem{AA} A. V. Lair, A. W. Shaker; \emph{Classical and weak solutions of a singular semilinear elliptic problem}, J. Math. Anal. Appl. 211 (1997) 371--385. \bibitem{LZ} J. Liao, P. Zhang; \emph{Existence and nonexistence of solutions for some singular semilinear elliptic problem}. J. Math. (Wuhan) 31 (2011) 777--784. \bibitem{NSS} H. Norimichi, S. Claudio, S. Naoki; \emph{Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities}, Adv. Differential Equations 9 (2004) 197--220. \bibitem{RW} W. Rudin; \emph{Real and complex analysis}, McGraw-Hill, New York, London etc. 1966. \bibitem{SY} J. Shi, M. Yao; \emph{On a singular nonlinear semilinear elliptic problem}, Proc. Roy. Soc. Edinburgh Sect. 128 (1998) 1389--1401. \bibitem{SL} Y. Sun, S. Li; \emph{Structure of ground state solutions of singular semilinear elliptic equations}, Nonlinear Anal. 55 (2003) 399--417. \bibitem{SL08} Y. Sun; S. Li; \emph{Some remarks on a superlinear-singular problem: estimates of $\lambda^{*}$}, Nonlinear Anal. 69 (2008) 2636--2650. \bibitem{SW} Y. Sun, S. Wu; \emph{An exact estimate result for a class of singular equations with critical exponents}, J. Funct. Anal. 260 (2011) 1257--1284. \bibitem{SWL01} Y. Sun, S. Wu, Y. M. Long; \emph{Combined effects of singular and superlinear nonlinearities in some singular boundary value problems}, J. Differential Equations 176 (2001) 511--531. \bibitem{WZZ} X. Wang, L. Zhao, P. Zhao; \emph{Combined effects of singular and critical nonlinearities in elliptic problems}, Nonlinear Anal. 87 (2013) 1--10. \bibitem{MW} M. Willem; \emph{Minimax Theorems}, Birkhauser, Boston, 1996. \bibitem{HY} H. Yang; \emph{Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem}, J. Differential Equations 189 (2003) 487--512. \bibitem{Z} Z. Zhang; \emph{On a Dirichlet problem with a singular nonlinearity}, J. Math. Anal. Appl. 194 (1995) 103--113. \bibitem{ZL} P. Zhang, J. Liao; \emph{Existence and nonexistence results for classes of singular elliptic problem}, Abstr. Appl. Anal. (2010) Art. ID 435083, 10 pp. \bibitem{ZY} Z. Zhang, J. Yu; \emph{On a singular nonlinear Dirichlet problem with a convection term}, SIAM J. Math. Anal. 32 (2000) 916--927. \end{thebibliography} \end{document}