\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 04, pp. 1--15.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/04\hfil Anisotropic Cahn-Hilliard and Allen-Cahn systems] {Well-posedness for one-dimensional anisotropic Cahn-Hilliard and Allen-Cahn systems} \author[A. Makki, A. Miranville \hfil EJDE-2015/04\hfilneg] {Ahmad Makki, Alain Miranville} % in alphabetical order \address{Ahmad Makki \newline Universit\'e de Poitiers, Laboratoire de Math\'ematiques et Applications, UMR CNRS 7348 - SP2MI, Boulevard Marie et Pierre Curie - T\'el\'eport 2, F-86962 Chasseneuil Futuroscope Cedex, France} \email{ahmad.makki@math.univ-poitiers.fr} \address{Alain Miranville \newline Universit\'e de Poitiers, Laboratoire de Math\'ematiques et Applications, UMR CNRS 7348 - SP2MI, Boulevard Marie et Pierre Curie - T\'el\'eport 2, F-86962 Chasseneuil Futuroscope Cedex, France} \email{alain.miranville@math.univ-poitiers.fr} \thanks{Submitted December 20, 2014. Published January 5, 2015.} \subjclass[2000]{35B45, 35K55} \keywords{Cahn-Hilliard equation; Allen-Cahn equation; well-posedness; \hfill\break\indent Willmore regularization} \begin{abstract} Our aim is to prove the existence and uniqueness of solutions for one-dimensional Cahn-Hilliard and Allen-Cahn type equations based on a modification of the Ginzburg-Landau free energy proposed in \cite{k1}. In particular, the free energy contains an additional term called Willmore regularization and takes into account strong anisotropy effects. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} The original Ginzburg-Landau free energy \begin{equation}\label{e1} \Psi_{GL}=\int_{\Omega} \big(\frac12 |\nabla u|^2+F(u)\big)\,dx \end{equation} plays a fundamental role in phase separation and transition, see, \cite{c2,g1}. Here, $u$ is the order parameter, $\Omega$ is the domain occupied by the material (we assume that it is a bounded and regular domain of $\mathbb{R}^N$), \begin{gather}\label{e2} F(s)=\frac14 (s^2-1)^2, \\ \label{e3} f(s)=s^3-s. \end{gather} In \cite{c5} (also in \cite{t2}), the authors proposed the following modification of the Ginzburg-Landau free energy which takes into account strong anisotropy effects arising during the growth and coarsening of thin films, namely, \begin{equation}\label{e4} \Psi_{MGL}=\int_{\Omega} \Big(\gamma(n)(\frac12 |\nabla u|^2+F(u)) +\frac{\beta}{2} \omega^2\Big) \,dx, \end{equation} where \begin{equation}\label{e5} n=\frac{\nabla u}{|\nabla u|},\quad \omega=f(u)-\Delta u,\quad F'=f. \end{equation} Here, $\gamma(n)$ accounts for anisotropy effects (we also refer the reader to, e.g., \cite{c4} for a different approach to account for anisotropy effects in phase-field models) and $G(u)=\omega^2$ is called nonlinear Willmore regularization. Such a regularization is relevant, e.g., in determining the equilibrium shape of a crystal in its own liquid matrix, when anisotropy effects are strong. Indeed, in that case, the equilibrium interface may not be a smooth curve, but may present facets and corners with slopes of discontinuities (see, e.g., \cite{t1}). In particular, the corresponding Cahn-Hilliard equation $$ \frac{\partial u}{\partial t}=\Delta \frac{D \Psi_{MGL}}{D u} $$ (where $\frac{D}{D u}$ denotes a variational derivative) is an ill-posed problem and requires regularization. The author in \cite{m1} proved the well-posedness for a one-dimensional Allen-Cahn system based on \eqref{e4}. In \cite{k1}, the author introduced another modification of the Ginzburg-Landau free energy, namely, \begin{equation}\label{e6} \Psi_{AMGL}=\int_{\Omega}\big[\frac{1}{2}|\gamma(n)\nabla u|^2+F(u) +\frac{1}{2}\omega^2\big]\,dx. \end{equation} This model describes dendritic pattern formations and plays an important role in crystal growth. To the best of our knowledge, there is no mathematical result concerning the Cahn-Hilliard (resp. Allen-Cahn) model associated with the free energy \eqref{e6}. In this article, we consider the one dimensional case, i.e., taking $\Omega=(-L,L)$, \eqref{e6} reads \begin{equation}\label{a1} \Psi=\int_{\Omega}\big[\frac{1}{2}|\gamma(n)u_x|^2+F(u)+\frac{1}{2}\omega^2\big]\,dx, \end{equation} where \begin{equation}\label{a2} n=\frac{u_x}{|u_x|},\quad \omega=f(u)-u_{xx}, \quad F'=f. \end{equation} In \cite{c5,w1}, the authors proposed efficient energy stable schemes for the Cahn-Hilliard equation based on \eqref{e4} and \eqref{e6}; actually, in \cite{c5}, the authors considered a slightly different problem and also considered a second regularization, based on the bi-Laplacian, and, in that case, studied the isotropic case $\gamma(n)=1$ as well. We also mention that, in \cite{m2} (resp. \cite{m3}), the Cahn-Hilliard (resp. Allen-Cahn) equation based on the Willmore regularization is studied in the isotropic case. There, well-posedness results are obtained. Our aim in this article is to prove the existence and uniqueness of solutions for the Cahn-Hilliard and Allen-Cahn systems associated with the Ginzburg-Landau free energy \eqref{a1}. \subsection*{Assumptions and notation} As far as the nonlinear term $f$ is concerned, we assume more generally that $f$ is of class $C^4$ and that \begin{gather}\label{a3} f(0)=0,\quad f'(s)\geq -c_0,\quad c_0\geq 0,\quad s\in \mathbb{R}, \\ \label{a4} f(s)s\geq c_1 F(s)-c_2\geq -c'_2,\quad c_1>0,\quad c_2, c'_2\geq 0,\quad s\in \mathbb{R}, \end{gather} where $ F(s)=\int_0^s f(\tau)\,d\tau$, \begin{gather}\label{a5} sf(s)f'(s)-f(s)^2\geq c_3 f(s)^2-c_4,\quad c_3>0,\quad c_4\geq 0,\quad s\in \mathbb{R}, \\ \label{a6} |f'(s)|\leq \epsilon|f(s)|+c_5,\quad \forall \epsilon >0,\; c_5\geq 0,\; s \in \mathbb{R}, \\ \label{a7} sf''(s)\geq 0,\quad s \in \mathbb{R}. \end{gather} Note that these assumptions are satisfied by the cubic nonlinear term \eqref{e3}. As far as the bounded function $\gamma$ is concerned, we introduce the following functions: \begin{equation}\label{a8} g(s)=\begin{cases} \gamma^2(-1)s^2 & s<0,\\ 0 &s=0,\\ \gamma^2(1)s^2 &s>0, \end{cases} \end{equation} $g$ being a $C^1$-function, with $g'(0)=0$, and \begin{equation}\label{a9} h(s)=\begin{cases} \gamma^2(-1)s &s<0,\\ 0 &s=0,\\ \gamma^2(1)s &s>0. \end{cases} \end{equation} Thus, $h$ is a $C^0$-function, with $h'\in L^{\infty}(\mathbb{R})$. \begin{lemma} \label{lem1} The function $h$ is Lipschitz continuous on $(-L,L)$. \end{lemma} \begin{proof} Let $s_1$ and $s_2$ belong to $\mathbb{R}$. We have two cases, depending on the sign of $s_1$ and $s_2$: \begin{itemize} \item If $s_1$ and $s_2$ have the same sign (or vanish), then it is clear that $$ |h(s_1)-h(s_2)|\leq \max \{\gamma^2(1),\gamma^2(-1)\}|s_1-s_2|. $$ \item If $s_1$ and $s_2$ have opposite signs, then, assuming that $s_1>0$ and $s_2<0$ (the case $s_1<0$ and $s_2>0$ is similar), \begin{align*} |h(s_1)-h(s_2)| &=\gamma^2(1)s_1-\gamma^2(-1)s_2\\ &\leq \max \{\gamma^2(1),\gamma^2(-1)\}(s_1-s_2)\\ &=\max \{\gamma^2(1),\gamma^2(-1)\}|s_1-s_2|. \end{align*} \end{itemize} The result follows. \end{proof} We denote by $((\cdot,\cdot))$ the usual $L^2$-scalar product, with associated norm $\|\cdot\|$, and we set $\| \cdot \|_{-1}=\|(-\Delta)^{-1/2} \cdot\|$, where $(-\Delta)^{-1}$ is the inverse minus Laplace operator associated with Neumann boundary conditions and acting on functions with null average. We set, whenever it makes sense, $\langle \cdot \rangle=\frac{1}{\operatorname{Vol}(\Omega)}\int_{\Omega} \cdot \,dx$, being understood that, for $\varphi \in H^{-1}(\Omega), \langle\varphi\rangle =\frac{1}{\operatorname{Vol}(\Omega)}\langle\varphi,1\rangle_{H^{-1}(\Omega), H^1(\Omega)}$, and we note that $$ \varphi \mapsto \left(\|\varphi-\langle\varphi\rangle^2\|^2_{-1} +\langle\varphi\rangle^2\right)^{1/2} $$ is a norm on $H^{-1}(\Omega)$ which is equivalent to the usual one. Throughout this article, the same letter $c$ (and sometimes $c'$) denotes constants which may vary from line to line. Similarly, the same letter $Q$ denotes monotone increasing (with respect to each argument) functions which may vary from line to line. \begin{remark} \label{rmk1} We can write, formally, for a small variation, \begin{align*} D \Psi &= \int_{-L}^L \big[ \left(\gamma(n) u_{x}\right)D(\gamma(n) u_x) +F'(u)D u +\omega D \omega \big]\,dx\\ &= \int_{-L}^L \big[ \gamma(n) u_x D(\gamma(n) u_x)+f(u) D u+\omega f'(u)D u -\omega_{xx} D u \big]\,dx. \end{align*} We then note that $$ \Big(\gamma\big(\frac{s}{|s|}\big)s\Big)' =\gamma\big(\frac{s}{|s|}\big)\quad \text{in } \mathcal{D}'. $$ Indeed, we have $$ \Big(\gamma\big(\frac{s}{|s|}\big)s\Big)' =s \gamma'\big(\frac{s}{|s|}\big) \big(\frac{s}{|s|}\big)' +\gamma\big(\frac{s}{|s|}\big) \quad \text{in } \mathcal{D}'. $$ Now, it is sufficient to prove that $$ s \gamma'\big(\frac{s}{|s|}\big) \big(\frac{s}{|s|}\big)'=0 \quad\text{in } \mathcal{D}'. $$ To do so, we let $\varphi \in \mathcal{D}(-L,L)$ and have \begin{align*} \langle \big(\frac{s}{|s|}\big)',\varphi\rangle_{\mathcal{D}',\mathcal{D}} &=-\langle \frac{s}{|s|} , \varphi'\rangle_{\mathcal{D}',\mathcal{D}} =-\int_{-L}^L \frac{s}{|s|} \varphi'(s) \,ds\\ &=-\int_0^L \varphi'(s) \,ds+\int_{-L}^0 \varphi'(s) \,ds\\ &=[\varphi(s)]_{-L}^0+[-\varphi(s)]_0^L\\ &=2\varphi(0)=2\langle \delta_0,\varphi\rangle_{\mathcal{D}',\mathcal{D}}, \end{align*} so that $$ s \gamma'\big(\frac{s}{|s|}\big) \big(\frac{s}{|s|}\big)' =2s \delta_0 \gamma'\big(\frac{s}{|s|}\big) \text{\ in } \mathcal{D}'. $$ Since $s \delta_0=0$ in $\mathcal{D}'$, we obtain \begin{equation}\label{a10} \Big(\gamma\big(\frac{s}{|s|}\big)s\Big)'=\gamma\big(\frac{s}{|s|}\big)\quad\text{in } \mathcal{D}'. \end{equation} Thus, owing to \eqref{a10}, we obtain, formally, \begin{align*} D \Psi&=\int_{-L}^L \big[\gamma^2(n) u_x D (u_x)+f(u) D u +\omega f'(u)D u-\omega_{xx} D u \big]\,dx\\ &=\int_{-L}^L \big[-(\gamma^2(n) u_x)_x+f(u)+\omega f'(u)-\omega_{xx} \big]D u \,dx \end{align*} and the variational derivative of $\Psi$ with respect to $u$ reads $$ \frac{D \Psi}{D u}=-\left(h(u_x)\right)_x+f(u)+\omega f'(u)-\omega_{xx}. $$ \end{remark} \section{Cahn-Hilliard system} The Cahn-Hilliard equation is an equation of mathematical physics which describes the evolution of different material phases via an order parameter (or multiple order parameters). The equation was initially derived as a model for spinodal decomposition in solid materials \cite{c1,c3} and has since been extended to many other physical systems. \subsection*{Setting of the problem} Writing mass conservation, i.e., $\frac{\partial u}{\partial t}=-h_x$, where $h$ is the mass flux which is related to the chemical potential $\mu$ by the constitutive relation $h=-\mu_x$, and that the chemical potential is the variational derivative of $\Psi$ with respect to $u$, we end up with the following sixth-order Cahn-Hilliard system \begin{gather}\label{b1} \frac{\partial u}{\partial t}=\mu_{xx}, \\ \label{b2} \mu=-(h(u_x))_x+f(u)+\omega f'(u)-\omega_{xx},\\ \label{b3} \omega=f(u)-u_{xx}, \end{gather} together with the Neumann boundary conditions \begin{equation}\label{b4} u_x\big|_{\pm L}=\mu_x\big|_{\pm L}=\omega_x\big|_{\pm L}=0 \end{equation} and the initial condition \begin{equation}\label{b5} u\big|_{t=0}=u_0. \end{equation} \subsection{A priori estimates} We first note that, integrating (formally) \eqref{b1} over $\Omega$, we obtain the conservation of mass, namely, \begin{equation}\label{b6} \langle u(t)\rangle=\langle u_0\rangle,\quad t\geq 0. \end{equation} Multiplying \eqref{b1} by $(-\Delta)^{-1}\frac{\partial u}{\partial t}$, we have, integrating over $\Omega$ and by parts, \begin{equation}\label{b7} \|\frac{\partial u}{\partial t}\|_{-1}^2 =-((\mu, \frac{\partial u}{\partial t})). \end{equation} We then multiply \eqref{b2} by $\frac{\partial u}{\partial t}$ and integrate over $\Omega$ to obtain \begin{equation}\label{b8} \begin{aligned} &((\mu,\frac{\partial u}{\partial t}))\\ &=\int_{\Omega} h(u_x) \frac{\partial u_x}{\partial t}\,dx +\frac{d}{dt}\int_{\Omega} F(u)\,dx +((\omega f'(u),\frac{\partial u}{\partial t})) -((\omega_{xx},\frac{\partial u}{\partial t} )). \end{aligned} \end{equation} Noting that from \eqref{b3} it follows that \begin{equation}\label{b9} ((\omega f'(u),\frac{\partial u}{\partial t}))-((\omega_{xx}, \frac{\partial u}{\partial t}))=\frac{1}{2}\frac{d}{dt}\|\omega\|^2, \end{equation} we have, owing to \eqref{a8}, \begin{equation}\label{b10} \int_{\Omega} h(u_x) \frac{\partial u_x}{\partial t} \,dx =\frac12 \frac{d}{dt} \int_{\Omega} g(u_x) \,dx. \end{equation} We finally deduce from \eqref{b7}-\eqref{b10} that \begin{equation}\label{b11} \frac{d}{dt}\Big[\int_{\Omega} g(u_x) \,dx +2\int_{\Omega} F(u) \,dx+\|\omega\|^2\Big] +2\|\frac{\partial u}{\partial t}\|_{-1}^2=0. \end{equation} In particular, \eqref{b11} yields that the free energy decreases along the trajectories, as expected. We now multiply \eqref{b1} by $(-\Delta)^{-1}\bar{u}$, where $\bar{u}=u-\langle u\rangle$, and integrate over $\Omega$. We obtain, owing to \eqref{b6}, \begin{equation}\label{b12} \frac{1}{2}\frac{d}{dt}\|\bar{u}\|_{-1}^2 =-((\mu,u))+\operatorname{Vol}(\Omega)\langle\mu\rangle\langle u_0\rangle, \end{equation} where, owing to \eqref{b2}, \begin{equation}\label{b13} \langle\mu\rangle = \langle f(u)\rangle+\langle f'(u)\rangle. \end{equation} Multiplying then $\eqref{b2}$ by $u$ and integrating over $\Omega$, we have, owing to \eqref{b3}, \begin{equation}\label{b14} \begin{aligned} ((\mu,u))&=\int_{\Omega} g(u_x) \,dx +((f(u), u))+((f(u) f'(u), u))\\ &\quad -((f'(u) u_{xx}, u))-((f(u)_{xx}, u))+\|u_{xx}\|^2. \end{aligned} \end{equation} Noting that \begin{gather*} ((f'(u)u_{xx}, u))=-((f'(u) u_x, u_x))-((uf''(u)u_x, u_x)),\\ ((f(u)_{xx}, u))=-((f'(u)u_x, u_x)), \end{gather*} we obtain \begin{align*} ((\mu, u))&=\int_{\Omega} g(u_x) \,dx+((f(u), u))+\|\omega\|^2+((uf''(u)u_x, u_x))\\ &\quad +\int_{\Omega}\left(f(u)f'(u)u-f^2(u)\right)\,dx \end{align*} and finally, owing to \eqref{a4}, \eqref{a5}, \eqref{a7} and \eqref{b12}, we obtain \begin{equation}\label{b15} \begin{aligned} &\frac{d}{dt}\|\bar{u}\|_{-1}^2+c\Big[\int_{\Omega} g(u_x)\,dx +2\int_{\Omega} F(u) \,dx+\|\omega\|^2+\|f(u)\|^2\Big]\\ &\leq 2 \operatorname{Vol}(\Omega) \langle\mu\rangle\langle u_0\rangle+c',\quad c>0. \end{aligned} \end{equation} We now assume that \begin{equation}\label{b16} |\langle u_0\rangle|\leq M\quad \text{(hence, $|\langle u(t)\rangle|\leq M$, $t\geq 0$)},\quad M\geq 0. \end{equation} Therefore, owing to $\eqref{a6}$ and $\eqref{b13}$, \begin{equation}\label{b17} \begin{aligned} |2 \operatorname{Vol}(\Omega)\langle u_0\rangle\langle\mu\rangle| &\leq c_M\left(|\langle f(u)\rangle |+|\langle\omega f'(u)\rangle|\right)\\ &\leq \frac{c}{2}\Big(\int_{\Omega}f(u)^2\,dx+\int_{\Omega} \omega^2 \,dx \Big) +c_M', \end{aligned} \end{equation} where $c$ is the constant appearing in \eqref{b15}, and we deduce from \eqref{b15} and \eqref{b17} that \begin{equation}\label{b18} \frac{d}{dt}\|\bar{u}\|_{-1}^2 +c\Big[\int_{\Omega} g(u_x) \,dx+2\int_{\Omega} F(u)\,dx +\|\omega\|^2\Big]\leq c_M'. \end{equation} Combining \eqref{b11} and \eqref{b18}, we have an inequality of the form \begin{equation}\label{b19} \frac{dE}{dt}+c(E+\|\frac{\partial u}{\partial t}\|_{-1}^2)\leq c'_M, \end{equation} where \begin{equation}\label{b20} E=\| \bar{u} \|_{-1}^2+ \langle u\rangle ^2+\int_{\Omega}g(u_x) \,dx +2\int_{\Omega} F(u) \,dx+\|\omega\|^2. \end{equation} In particular, we deduce from \eqref{b19} and Gronwall's Lemma that \begin{equation}\label{b21} E(t)\leq E(0) e^{-ct}+c_M',\quad c>0,\; t\geq 0. \end{equation} Noting that, owing to $\eqref{a3}$, \begin{equation}\label{b22} \|\omega\|^2\geq \|f(u)\|^2+\|u_{xx}\|^2-2c_0\|u_x\|^2, \end{equation} we finally deduce from \eqref{b20}-\eqref{b22} and the boundedness of $\gamma(n)$ that \begin{equation}\label{b23} \|u\|_{H^2(\Omega)}^2+\|f(u)\|^2 \leq Q(\|u_0\|_{H^2(\Omega)})e^{-ct}+c_{M}'. \end{equation} Rewriting \eqref{b1} in the equivalent form \begin{equation}\label{b24} \mu=\langle\mu\rangle-\left(-\Delta\right)^{-1}\frac{\partial u}{\partial t}, \end{equation} we obtain \begin{equation}\label{b25} \|\mu_x\|\leq c\|\frac{\partial u}{\partial t}\|_{-1}. \end{equation} Noting that, proceeding as in \eqref{b17}, \[ |\langle\mu\rangle|\leq c\left(\|u\|_{H^2(\Omega)}^2+\|f(u)\|^2+1\right), \] we finally find \begin{equation}\label{b26} \|\mu\|_{H^1(\Omega)}\leq c\big(\|\frac{\partial u}{\partial t}\|_{-1} +\|u\|_{H^2(\Omega)}^2+\|f(u)\|^2+1\big). \end{equation} Now, owing to $\eqref{b2}$, we have $$ \omega_{xx}=-(h(u_x))_x-\mu+f(u)+\omega f'(u) $$ and, owing to $\eqref{a6}$, there holds \begin{equation}\label{b27} \begin{aligned} \|\omega_{xx}\| &\leq c\left(\|(h(u_x))_x\|+\|f(u)\|^2+\|\omega\|^2+\|\mu\|\right) \\ &\leq c\left(\|h(u_x)\|_{H^1(\Omega)}+\|f(u)\|^2+\|\omega\|^2+\|\mu\|\right), \end{aligned} \end{equation} where we have used the fact that $$ \left\{ \begin{array}{c} h(u_x)=\gamma^2(n)u_x\in L^2(\Omega)\\ (h(u_x))'=h'(u_x) u_{xx} \in L^2(\Omega) \end{array} \right\}\Rightarrow h(u_x) \in H^1(\Omega). $$ Recall that $h$ is Lipschitz continuous, with $h(0)=0$, and note that $$ \|h(u_x)\|_{H^1(\Omega)}\leq c\|u\|_{H^2(\Omega)}. $$ We then have, owing to \eqref{a8} and \eqref{b26}-\eqref{b27}, \begin{equation}\label{b28} \|\omega\|_{H^2(\Omega)} \leq c\Big(\|\frac{\partial u}{\partial t}\|_{-1}+\|u\|_{H^2(\Omega)}^2 +\|f(u)\|^2+1\Big). \end{equation} We now multiply \eqref{b1} by $u$ and integrate over $\Omega$ to get \begin{equation}\label{b29} \frac{1}{2} \frac{d}{dt} \|u\|^2 = -((\mu_{x},u_x)). \end{equation} Multiplying then \eqref{b2} by $-u_{xx}$ and integrating over $\Omega$, we obtain, in view of \eqref{b3}, \begin{equation}\label{b30} \begin{aligned} ((\mu_x, u_x)) &= \int_{\Omega} h(u_x) u_{xxx}\,dx+((f'(u)u_x, u_x))-((\omega f'(u), u_{xx}))\\ &\quad -((f(u)_{xx}, u_{xx}))+\|u_{xxx}\|^2. \end{aligned} \end{equation} We note that \begin{equation} \label{b31} \begin{aligned} |((\omega f'(u),u_{xx}))| &\leq \|f'(u)\|_{L^{\infty}(\Omega)}\|\omega\|\|u_{xx}\|\\ &\leq \frac{1}{2}\|u_{xx}\|^2 +Q\left(\|u\|_{H^2(\Omega)}\right)\|\omega\|^2, \end{aligned} \end{equation} where $Q$ is continuous (here, we have used the fact that $H^2(\Omega)$ is continuously embedded into $C(\bar{\Omega})$), and, proceeding similarly, \begin{equation} \label{b32} \begin{aligned} \big\vert((f(u)_{xx}, u_{xx}))\big\vert &= \big\vert((f'(u)u_x,u_{xxx}))\big\vert \\ &\leq \frac{1}{2}\|u_{xxx}\|^2+Q\left(\|u\|_{H^2(\Omega)}\right) \|u_x\|^2. \end{aligned} \end{equation} Finally, \begin{equation}\label{b33} \big\vert\int_{\Omega} h(u_x) u_{xxx}\,dx\big\vert \leq c[\|u_x\|^2+\|u_{xxx}\|^2]. \end{equation} It thus follows from \eqref{a3} and \eqref{b29}-\eqref{b33} that \begin{equation}\label{b34} \frac{d}{dt}\|u\|^2+\|u\|_{H^3(\Omega)}^2 \leq Q(\|u\|_{H^2(\Omega)})\big(\|u\|_{H^1(\Omega)}^2+\|\omega\|^2\big), \end{equation} where $Q$ is continuous. \subsection{Existence and uniqueness of solutions} \begin{theorem} \label{thm2.1} Assume that \eqref{b16} holds and that $u_0\in H^2(\Omega)$, with $\frac{\partial u_0}{\partial x}\big|_{\pm L}=0$. Then \eqref{b1}-\eqref{b5} admits a unique (variational) solution such that \begin{gather*} u\in L^{\infty}(\mathbb{R}^{+};H^2(\Omega))\cap L^2(0,T;H^3(\Omega)), \quad \frac{\partial u}{\partial t}\in L^2(0,T;H^{-1}(\Omega)), \\ \mu \in L^2(0,T;H^1(\Omega)), \quad \omega \in L^{\infty}(\mathbb{R}^+;L^2(\Omega))\cap L^2(0,T;H^2(\Omega)) \end{gather*} for all $T>0$. \end{theorem} \begin{proof} (a) Existence: The proof of existence is based on a classical Galerkin scheme and on the \textit{a priori} estimates derived in the previous section. We can note that a weak (variational) formulation of \eqref{b1}-\eqref{b5} reads \begin{gather}\label{b35} ((\frac{\partial u}{\partial t}, v))=((\mu_{xx}, v)),\quad \forall v\in H^1(\Omega), \\ \begin{gathered} ((\mu, v))=((h(u_x), v_x))+((\omega f'(u), v)) +((f(u), v))-((\omega_{xx}, v)), \\ \forall v\in H^1(\Omega), \end{gathered} \label{b36} \\ \label{b37} ((\omega, v))=((f(u), v))-((u_{xx}, v)),\quad \forall v\in H^1(\Omega), \\ \label{b38} u\big|_{t=0}=u_0. \end{gather} Let $v_0, v_1,\dots$ be an orthonormal (in $L^2(\Omega)$) and orthogonal (in $H^1(\Omega)$) family associated with the eigenvalues $0=\lambda_0< \lambda_1 \leq\cdot \cdot \cdot$ of the operator $-\Delta$ associated with Neumann boundary conditions (note that $v_0$ is a constant). We set $$ V_m=\operatorname{Span} \{v_0,v_1,\dots,v_m\} $$ and consider the approximate problem: Find $(u_m,\mu_m,\omega_m): [0,T]\to V_m \times V_m \times V_m$ such that \begin{gather} \label{b39} ((\frac{\partial u_m}{\partial t}, v))=-(({\mu_m}_{x}, v)),\quad \forall v\in V_m,\\ \begin{aligned} ((\mu_m, v))&=((h({u_m}_x), v_x))+((\omega f'(u_m), v))\\ &\quad +((f(u_m), v))-(({\omega_m}_{xx}, v)), \quad \forall v\in V_m, \end{aligned}\label{b40} \\ \label{b41} ((\omega_m, v))=((f(u_m), v))-(({u_m}_{xx}, v)),\quad \forall v \in V_m, \\ \label{b42} u_m\big|_{t=0}=u_{0,m}, \end{gather} where $u_{0,m}=P_m u_0$, $P_m$ being the orthogonal projector from $L^2(\Omega)$ onto $V_m$. The existence of a local (in time) solution to \eqref{b39}-\eqref{b42} is standard. Indeed, we have to solve a Lipschitz continuous finite-dimensional system of ODE's to find $u_m$, which yields $\omega_m$ and then $\mu_m$. The \textit{a priori} estimates derived in the previous section, which are now justified within the Galerkin approximation, yield that the solution is global and that, up to a subsequence which we do not relabel and owing to classical Aubin-Lions compacteness results, \begin{gather*} u_m \to u \quad\text{weak star in $L^{\infty}(0,T;H^2(\Omega))$, strongly in $ C([0,T];H^{2-\varepsilon}(\Omega))$, and a.e.}, \\ \frac{\partial u_m}{\partial t}\to \frac{\partial u}{\partial t} \quad \text{weakly in } L^2(0,T;H^{-1}(\Omega)), \\ \mu_m \to \mu \quad \text{weakly in } L^2(0,T;H^{1}(\Omega)), \\ \omega_m \to \omega \quad \text{weak star in } L^{\infty}(0,T; L^2(\Omega)) \text{ and weakly in } L^2(0,T;H^2(\Omega)), \end{gather*} as $m \to + \infty, \forall T>0$. Note that, owing to \eqref{b19}, \eqref{b21} and \eqref{b23}, we have $u\in L^{\infty}(\mathbb{R}^+;H^2(\Omega))$ and, consequently, $\omega \in L^{\infty}(\mathbb{R}^+;L^2(\Omega))$. As far as the passage to the limit is concerned, the most delicate part is to prove that \begin{gather*} \int_0^T \int_{\Omega} (\omega_m f'(u_m)-\omega f'(u)) \varphi \,dx \,dt\to 0\quad \text{as } m \to +\infty, \\ \int_0^T \int_{\Omega} (h({u_m}_x)-h({u}_x)) \varphi_x \,dx \,dt \to 0\quad \text{as } m \to +\infty, \end{gather*} for $\varphi$ regular enough. We have, say, for $\varphi \in C^2([0,T] \times \bar{\Omega})$ such that $\varphi(T)=\varphi(0)=0$, \begin{equation}\label{b43} \begin{aligned} &\int_0^T \int_{\Omega} \left(\omega_m f'(u_m)-\omega f'(u)\right)\varphi \,dx\,dt\\ &=\int_0^T \int_{\Omega}(\omega_m-\omega)f'(u)\varphi \,dx \,dt +\int_0^T \int_{\Omega}\omega_m \left(f'(u_m)-f'(u)\right)\varphi \,dx \,dt. \end{aligned} \end{equation} The passage to the limit in the first integral in the right-hand side of \eqref{b43} is straightforward, while the passage to the limit in the second one follows from the above convergences which yield, in particular, the inequality \[ \big\vert \int_0^T \int_{\Omega} \omega_m \left(f'(u_m)-f'(u)\right)\varphi \,dx \,dt\big\vert \leq c\|u_m-u\|_{L^2((0,T)\times \Omega)}. \] Finally, recalling that $h$ is Lipschitz continuous, we have \[ \big\vert \int_0^T \int_{\Omega}\big(h({u_m}_{x})-h(u_x)\big)\varphi_x \,dx \,dt \big\vert \leq c\|{u_m}_x-u_x\|_{L^2((0,T)\times \Omega)}. \] \smallskip \noindent(b) Uniqueness: Let $(u_1,\mu_1,\omega_1)$ and $(u_2,\mu_2,\omega_2)$ be two solutions to \eqref{b1}-\eqref{b4} with initial data $u_{1,0}$ and $u_{2,0}$, respectively, such that \begin{equation}\label{b44} |\langle u_{i,0} \rangle|\leq M,\quad i=1,2. \end{equation} We set $(u,\mu,\omega)=(u_1,\mu_1,\omega_1)-(u_2,\mu_2,\omega_2)$ and $u_0=u_{1,0}-u_{2,0}$ and have \begin{gather}\label{b45} \frac{\partial u}{\partial t}=\mu_{xx} , \\ \begin{aligned} \mu &=-\big(h({u_1}_x)\big)_x+\big(h( {u_2}_x)\big)_x+f(u_1)-f(u_2)\\ &\quad +\omega_1 f'(u_1)-\omega_2 f'(u_2)-\omega_{xx}, \end{aligned} \label{b46}\\ \label{b47} \omega= f(u_1)-f(u_2)-u_{xx}, \\ \label{b48} u_x\big|_{\pm L}= \mu_x \big|_{\pm L}= \omega_x \big|_{\pm L}=0, \\ \label{b49} u\big|_{t=0}=u_0. \end{gather} We multiply \eqref{b45} by $(-\Delta)^{-1}\bar{u}$ and obtain, integrating over $\Omega$ and by parts, \begin{equation}\label{b50} \frac12 \frac{d}{dt}\|\bar{u}\|_{-1}^2=-((\mu, u)) +\operatorname{Vol}(\Omega) \langle\mu\rangle \langle u\rangle , \end{equation} where, owing to \eqref{b46}, \begin{equation}\label{b51} \langle\mu\rangle=\langle f(u_1)-f(u_2)\rangle +\langle\omega_1 f'(u_1)-\omega_2 f'(u_2)\rangle. \end{equation} We then multiply \eqref{b46} by $u$ and find, in view of \eqref{b47}, \begin{equation} \label{b52} \begin{aligned} ((\mu, u)) &=\int_{\Omega} h({u_1}_x )u_x \,dx-\int_{\Omega} h({u_2}_x) u_x \,dx\\ &\quad +((f(u_1)-f(u_2), u))+((\omega_1 f'(u_1)-\omega_2 f'(u_2), u)) \\ &\quad -((f(u_1)-f(u_2), u_{xx}))+\|u_{xx}\|^2. \end{aligned} \end{equation} We have, owing to \eqref{a3}, \begin{equation}\label{b53} ((f(u_1)-f(u_2), u))=((f'(u)u, u))\geq -c_0 \|u\|^2. \end{equation} Furthermore, \begin{equation}\label{b54} |((f(u_1)-f(u_2),u_{xx}))| \leq \frac{1}{8}\|u_{xx}\|^2+Q(\|u_{1,0}\|_{H^2(\Omega)}, \|u_{2,0}\|_{H^2(\Omega)})\|u\|^2 \end{equation} and \begin{equation}\label{b55} \begin{aligned} &\big\vert((\omega_1 f'(u_1)-\omega_2 f'(u_2), u))\big\vert\\ &\leq |((\omega_1(f'(u_1)-f'(u_2)), u))|+|((\omega f'(u_2), u))|\\ &\leq Q(\|u_{1,0}\|_{H^2(\Omega)},\|u_{2,0}\|_{H^2(\Omega)}) \|\omega_1\|_{H^2(\Omega)} \|u\|^2 \\ &\quad +|((f'(u_2) u_{xx}, u))| +|((f'(u_2)(f(u_1)-f(u_2)), u))| \\ &\leq \frac{1}{8}\|u_{xx}\|^2+Q(\|u_{1,0}\|_{H^2(\Omega)}, \|u_{2,0}\|_{H^2(\Omega)})(\|\omega_1\|_{H^2(\Omega)}+1)\|u\|^2. \end{aligned} \end{equation} Similarly, \begin{equation}\label{b56} \begin{aligned} &|\operatorname{Vol}(\Omega)\langle u\rangle \langle\mu\rangle | \\ & \leq c (\int_{\Omega}|f(u_1)-f(u_2)|\,dx +\int_{\Omega}|\omega_1 f'(u_1) -\omega_2 f'(u_2)|\,dx)|\langle u\rangle | \\ &\leq \Big(\int_{\Omega}|f(u_1)-f(u_2)||f'(u_2)|\,dx\Big)|\langle u\rangle | \\ &\quad +(\int_{\Omega} |\omega_1||f'(u_1)-f'(u_2)|\,dx +\int_{\Omega} |u_{xx}| |f'(u_2)|\,dx)|\langle u\rangle | \\ &\quad +Q(\|u_{1,0}\|_{H^2(\Omega)},\|u_{2,0}\|_{H^2(\Omega)})\|u\| |\langle u\rangle | \\ &\leq \frac{1}{8}\|u_{xx}\|^2+Q(\|u_{1,0}\|_{H^2(\Omega)}, \|u_{2,0}\|_{H^2(\Omega)})(\|\omega_1\|+1)(\|u\|^2+|\langle u\rangle |^2). \end{aligned} \end{equation} Recalling that $h$ is Lipschitz continuous, we have \begin{equation} \label{b57} |((h({u_1}_x)-h({u_2}_x), u_x))| \leq \int_{\Omega} |h({u_1}_x)-h({u_2}_x)||u_x|\,dx \leq c \|u_x\|^2. \end{equation} We finally deduce from \eqref{b50}, \eqref{b52}-\eqref{b57} and the interpolation inequality \begin{equation}\label{b58} \| \bar{u}\|\leq c \|\bar{u}\|^{1/2}_{-1}\| \nabla \bar{u}\|^{1/2} \leq c' \|\bar{u}\|^{1/2}_{-1}\|\Delta \bar{u}\|^{1/2} \end{equation} that \begin{equation}\label{b59} \begin{aligned} &\frac{d}{dt}(\|\bar{u}\|_{-1}^2+\langle u\rangle ^2)+\|u_{xx}\|^2\\ &\leq Q(\|u_{1,0}\|_{H^2(\Omega)},\|u_{2,0}\|_{H^2(\Omega)}) (1+\|\omega_1\|+\|\omega_1\|_{H^2(\Omega)}) (\|\bar{u}\|^2_{-1}+|\langle u\rangle |^2). \end{aligned} \end{equation} Gronwall's Lemma then yields, owing to \eqref{b19}, \eqref{b23} and \eqref{b28} (written for $(u_1,\mu_1,\omega_1)$), \begin{equation}\label{b60} \|u(t)\|_{H^{-1}(\Omega)}\leq c e^{Q(\|u_{1,0}\|_{H^2(\Omega)}, \|u_{2,0}\|_{H^2(\Omega)})t}\|u_0\|_{H^{-1}(\Omega)}, \end{equation} hence the uniqueness, as well as the continuous dependence with respect to the initial data in the $H^{-1}$-norm. It follows from Theorem \ref{thm2.1} that we can define the continuous (for the $H^{-1}$-norm) semigroup $$ S(t): \Phi_M \to \Phi_M,\quad u_0 \to u(t),\quad t\geq 0 $$ (i.e., $S(0)=Id$ and $S(t+s)=S(t) \circ S(s),\ t,s\geq 0$), where $$ \Phi_M=\big\{v\in H^2(\Omega), \frac{\partial v}{\partial x}\big|_{\pm L}=0, |\langle v\rangle |\leq M\big\},\quad M\geq 0. $$ We then deduce from \eqref{b23} that $S(t)$ is dissipative, i.e., it possesses a bounded absorbing set $\mathcal{B}_0\subset \Phi_M$ (in the sense that, for all $B \subset \Phi_{M}$ bounded, there exists $t_0=t_0(B)$ such that $t\geq t_0\Rightarrow S(t)B \subset \mathcal{B}_0$). \end{proof} \section{Allen-Cahn system} The Allen-Cahn equation describes important processes related with phase separation in binary alloys, namely, the ordering of atoms in a lattice (see \cite{a1}). Assuming the relaxation dynamics $\frac{\partial u}{\partial t}=-\frac{D \psi}{D u}$, we obtain the Allen-Cahn system \begin{gather}\label{c1} \frac{\partial u}{\partial t}-(h(u_x))_x+f(u)+\omega f'(u)-\omega_{xx}=0,\\ \label{c2} \omega=f(u)-u_{xx}, \end{gather} together with the Neumann boundary conditions \begin{equation}\label{c3} u_x\big|_{\pm L}=\omega_x\big|_{\pm L}=0 \end{equation} and the initial condition \begin{equation}\label{c4} u\big|_{t=0}=u_0. \end{equation} \subsection{A priori estimates} We Multiply $\eqref{c1}$ by $\frac{\partial u}{\partial t}$ and have, integrating over $\Omega$ and by parts, \[ \|\frac{\partial u}{\partial t}\|^2+\int_{\Omega} h(u_x) \frac{\partial u_x}{\partial t} \,dx+\frac{d}{dt} \int_{\Omega} F(u) \,dx+((\omega f'(u)-\omega_{xx}, \frac{\partial u}{\partial t}))=0, \] which yields, noting that it follows from \eqref{c2} that \[ ((\omega f'(u), \frac{\partial u}{\partial t})) -((\omega_{xx}, \frac{\partial u}{\partial t})) =\frac{1}{2}\frac{d}{dt}\|\omega\|^2 \] and from \eqref{a8} that \[ \int_{\Omega} h(u_x) \frac{\partial u_x}{\partial t}\,dx =\frac12 \frac{d}{dt}\int_{\Omega} g(u_x)\,dx, \] the differential equality \begin{equation}\label{c5} \frac{d}{dt}\Big[\int_{\Omega} g(u_x)\,dx+2\int_{\Omega} F(u) \,dx +\|\omega\|^2\Big]+2\|\frac{\partial u}{\partial t}\|^2=0. \end{equation} In particular, it follows from \eqref{c5} that the energy decreases along the trajectories, as expected. We then multiply \eqref{c1} by $u$ and obtain, owing to \eqref{c2}, \begin{align*} &\frac{1}{2}\frac{d}{dt}\|u\|^2+\int_{\Omega} g(u_x)\,dx+((f(u), u)) +\int_{\Omega} uf(u) f'(u) \,dx \\ &\quad +2((f'(u) u_x, u_x))+((uf''(u) u_x, u_x))+\|u_{xx}\|^2=0, \end{align*} which yields, owing to \eqref{c2}, \begin{align*} &\frac{1}{2}\frac{d}{dt}\|u\|^2+\int_{\Omega} g(u_x)\,dx+((f(u), u))+\|w\|^2\\ &+\int_{\Omega} (u f(u) f'(u)-f^2(u))\,dx+((u f''(u) u_x, u_x))=0, \end{align*} hence, in view of \eqref{a4}, \eqref{a5} and \eqref{a7}, \begin{equation}\label{c6} \frac{d}{dt} \|u\|^2+c\Big[\int_{\Omega} g(u_x)\,dx +2\int_{\Omega}F(u)\,dx+\|\omega\|^2\Big]\leq c',\quad c>0. \end{equation} Summing \eqref{c5} and \eqref{c6}, we find an inequality of the form \begin{equation}\label{c7} \frac{d E_1}{dt}+c\Big(E_1+\|\frac{\partial u}{\partial t}\|^2\Big) \leq c',\quad c>0, \end{equation} where \begin{equation}\label{c8} E_1=\|u\|^2+\int_{\Omega} g(u_x)\,dx+2\int_{\Omega}F(u)\,dx+\|\omega\|^2. \end{equation} In particular, it follows from \eqref{c7} and Gronwall's Lemma that \begin{equation}\label{c9} E_1(t)\leq E_1(0)e^{-ct}+c',\quad c>0, \end{equation} hence, in view of \eqref{a3} (which yields that $\|\omega\|^2 \geq \|u_{xx}\|^2+\|f(u)\|^2-2c_0 \|u_x\|^2$), \eqref{c8} and classical elliptic regularity results, \begin{equation}\label{c10} \|u(t)\|_{H^2(\Omega)}\leq Q(\|u_0\|_{H^2(\Omega)})e^{-ct}+c',\quad c>0,\; t\geq 0. \end{equation} Next, we multiply \eqref{c1} by $-u_{xx}$ to have \begin{equation}\label{c11} \begin{aligned} &-\int_{\Omega} \frac{\partial u}{\partial t} u_{xx} \,dx -\int_{\Omega} h(u_x) u_{xxx}\,dx-\int_{\Omega} f(u) u_{xx}\,dx \\ &-\int_{\Omega} \omega f'(u) u_{xx}\,dx+\int_{\Omega}\omega_{xx} u_{xx}\,dx=0. \end{aligned} \end{equation} It follows from \eqref{c2} that \begin{equation}\label{c12} \begin{aligned} &\frac{1}{2}\frac{d}{dt}\|u_x\|^2-\int_{\Omega} h(u_x) u_{xxx}\,dx +((f'(u) u_x, u_x)) \\ &-((\omega f'(u), u_{xx}))+(((f(u))_{xx}, u_{xx}))+\|u_{xxx}\|^2=0. \end{aligned} \end{equation} Now, owing to the continuous embedding $H^2(\Omega) \subset \mathcal{C}(\bar{\Omega})$ and $\eqref{c2}$, there holds \[ \big\vert((f'(u) u_x, u_x))\big\vert +\big\vert((\omega f'(u), u_{xx}))\big\vert +\big\vert(((f(u))_{xx}, u_{xx}))\big\vert\leq Q(\|u\|_{H^2(\Omega)}) \] (indeed, it follows from $\eqref{c2}$ that $\|\omega\|\leq Q(\|u\|_{H^2(\Omega)})$) and $$ \big|\int_{\Omega} h(u_x) u_{xxx}\,dx\big| \leq c[\|u_x\|^2+\|u_{xxx}\|^2], $$ hence \begin{equation}\label{c13} \frac{d}{dt}\|u_x\|^2+\|u\|^2_{H^3(\Omega)}\leq Q(\|u\|_{H^2(\Omega)}). \end{equation} \subsection{Existence and uniqueness of solutions} \begin{theorem} \label{thm3.1} Let $u_0 \in H^2(\Omega)\cap H_0^1(\Omega)$. Then, \eqref{c1}-\eqref{c4} admits a unique (variational) solution such that $u \in L^{\infty}(\mathbb{R}^+;H^2(\Omega)\cap H^1_0(\Omega))$ and $\frac{\partial u}{\partial t} \in L^2(0,T;L^2(\Omega))$. Furthermore, $\omega \in L^{\infty}(\mathbb{R}^+;L^2(\Omega)) \cap L^2(0,T; H^2(\Omega)\cap H_0^1(\Omega))$ for all $T>0$. Finally, the associated semigroup is dissipative in $H^2(\Omega)\cap H^1_0(\Omega)$. \end{theorem} \begin{proof} (a) Uniqueness: Let $u_1$ and $u_2$ be two solutions to \eqref{c1}-\eqref{c3} with initial data $u_{1,0}$ and $u_{2,0}$ respectively, where $\omega_1$ and $\omega_2$ are defined from \eqref{c2}. We set $u=u_1-u_2$, $\omega=\omega_1-\omega_2$, $u_0=u_{1,0}-u_{2,0}$ and have \begin{gather} \label{c14} \begin{aligned} &\frac{\partial u}{\partial t}-(h({u_1}_x))_x+(h({u_2}_x))_x+f(u_1)-f(u_2)\\ &+\omega_1f'(u_1)-\omega_2f'(u_2)-\omega_{xx}=0, \end{aligned} \\ \label{c15} \omega=f(u_1)-f(u_2)-u_{xx}, \\ \label{c16} u_x\big|_{\pm L}=\omega_x\big|_{\pm L}=0, \\ \label{c17} u\big|_{t=0}=u_0. \end{gather} We multiply \eqref{c14} by $u$ and integrating over $\Omega$, we obtain \begin{equation}\label{c18} \begin{aligned} &\frac12 \frac{d}{dt}\|u\|^2+((h({u_1}_x)-h({u_2}_x),u_x))+((f(u_1)-f(u_2),u))\\ &+((\omega_1f'(u_1)-\omega_2 f'(u_2), u))-((f(u_1)-f(u_2),u_{xx}))+\|u_{xx}\|^2=0. \end{aligned} \end{equation} We note that, by \eqref{a3}, \[ ((f(u_1)-f(u_2),u))\geq c_0 \|u\|^2 \] and that, owing to \eqref{c15}, \begin{equation}\label{c19} \begin{aligned} & |((\omega_1f'(u_1)-\omega_2 f'(u_2), u))|\\ &\leq |((\omega f'(u_1),u))|+|((\omega_2 (f'(u_1)-f'(u_2)),u))|\\ &\leq Q(\|u_{1,0}\|_{H^2(\Omega)},\|u_{2,0}\|_{H^2(\Omega)}) (\|\omega\|\|u\|+\|\omega_2\|\|u\|^2_{L^4(\Omega)}) \\ &\leq Q(\|u_{1,0}\|_{H^2(\Omega)},\|u_{2,0}\|_{H^2(\Omega)}) (\|u_{xx}\|^2\|u\|+\|u_x\|^2) \\ &\leq \frac14 \|u_{xx}\|^2+Q(\|u_{1,0}\|_{H^2(\Omega)}, \|u_{2,0}\|_{H^2(\Omega)})\|u_x\|^2 \end{aligned} \end{equation} and \begin{equation}\label{c20} |((f(u_1)-f(u_2),u_{xx}))|\leq \frac18 \|u_{xx}\|^2 +Q(\|u_{1,0}\|_{H^2(\Omega)},\|u_{2,0}\|_{H^2(\Omega)})\|u\|^2. \end{equation} Recalling that $h$ is Lipschitz continuous, we have \begin{equation} \label{c21} |((h({u_1}_x)-h({u_2}_x), u_x))| \leq \int_{\Omega} |h({u_1}_x)-h({u_2}_x)||u_x|\,dx \\ \leq c \|u_x\|^2. \end{equation} We finally deduce from \eqref{c18}-\eqref{c21} and the interpolation inequality $$ \|u_x\|\leq c\|u\|^{1/2}\|u_{xx}\|^{1/2} $$ that \begin{equation}\label{c22} \frac{d}{dt}\|u\|^2+\|u_{xx}\|^2 \leq Q(\|u_{1,0}\|_{H^2(\Omega)},\|u_{2,0}\|_{H^2(\Omega)})\|u\|^2. \end{equation} Then Gronwall's Lemma yields \begin{equation}\label{c23} \|u_1(t)-u_2(t)\|\leq c e^{Q(\|u_{1,0}\|_{H^2(\Omega)}, \|u_{2,0}\|_{H^2(\Omega)})t}\|u_0\|, \end{equation} hence the uniqueness, as well as the continuous dependence with respect to the initial data in the $L^2$-norm. \smallskip \noindent (b) Existence: The proof of existence of solutions is based on the \textit{a priori} estimates derived in the previous section and, e.g., a standard Galerkin scheme. In particular, it follows from \eqref{c7}-\eqref{c8} and \eqref{c10} that we can construct a sequence of solutions $u_m$ to a proper approximated problem such that \begin{gather*} u_m \to u \quad \text{weak star in $L^{\infty}(0,T;H^2(\Omega))$, \ strongly in $C([0,T];H^{2-\varepsilon}(\Omega))$ and a.e.,}\\ \frac{\partial u_m}{\partial t}\to \frac{\partial u}{\partial t} \quad \text{weakly in } L^2(0,T;L^2(\Omega)),\\ \omega_m \to \omega \quad \text{weak star in $L^{\infty}(0,T; L^2(\Omega))$ and weakly in $L^2(0,T; H^2(\Omega))$}, \end{gather*} as $m \to +\infty$ for all $T>0$. The passage to the limit is then standard and can be done as in the previous section. Furthermore, it follows from \eqref{c7}-\eqref{c8} and \eqref{c10} that $$ u \in L^{\infty}(\mathbb{R}^{+}; H^2(\Omega)),\quad \frac{\partial u}{\partial t}\in L^2(0,T;L^2(\Omega)),\ \forall T>0, $$ and, consequently, $\omega \in L^{\infty}(\mathbb{R}^+;L^2(\Omega))$. It follows from Theorem \ref{thm3.1} that we can define the continuous (for the $L^2$-norm) semigroup $$ S(t): \Phi \to \Phi,\quad u_0 \to u(t)$$ where $\Phi=H^2(\Omega)\cap H^1_0(\Omega)$. Finally, the dissipativity of $S(t)$ follows from \eqref{c10}. \end{proof} \begin{thebibliography}{00} \bibitem{a1} S. M. Allen, J. W. Cahn; \emph{A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening}, Acta Metall. 27 (1979), 1085-1095. \bibitem{g1} G. Caginalp; \emph{An analysis of a phase field model of a free boundary,} Arch. Ration. Mech. Anal. 92 (1986), 205-245. \bibitem{c1} J. W. Cahn; \emph{On spinodal decomposition,} Acta Metall. 9 (1961), 795-801. \bibitem{c2} J. W. Cahn, J.E. Hilliard; \emph{Free energy of a nonuniform system I. Interfacial free energy,} J. Chem. Phys. 28 (1958), 258-267. \bibitem{c3} J. W. Cahn, J. E. Hilliard; \emph{Free energy of a non-uniform system. I. Interfacial free energy,} J. Chem. Phys. 28 (1958), 258-267. \bibitem{c4} X. Chen, G. Caginalp, E. Esenturk; \emph{Interface conditions for a phase field model with anisotropic and non-local interactions,} Arch. Ration. Mech. Anal. 202 (2011), 349-372. \bibitem{c5} F. Chen, J. Shen; \emph{Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn-Hilliard systems,} Commun. Comput. Phys. 13 (2013), 1189-1208. \bibitem{k1} R. Kobayashi; \emph{Modeling and numerical simulations of dendritic crystal growth,} Phys. D 63 (1993), 410-423. \bibitem{m1} A. Miranville; \emph{Existence of solutions for a one-dimensional Allen-Cahn equation,} J. Appl. Anal. Comput. 3 (2013), 265-277. \bibitem{m2} A. Miranville; \emph{Asymptotic behavior of a sixth-order Cahn-Hilliard system,} Central Europ. J. Math. 12 (2014), 141-154. \bibitem{m3} A. Miranville, R. Quintanilla; \emph{A generalization of the Allen-Cahn equation,} IMA J. Appl. Math., to appear. \bibitem{t1} J. E. Taylor, J. W. Cahn; \emph{Diffuse interfaces with sharp corners and facets: phase-field models with strongly anisotropic surfaces,} Phys. D 112 (1998), 381-411. \bibitem{t2} S. Torabi, J. Lowengrub, A. Voigt, S. Wise; \emph{A new phase-field model for strongly anisotropic systems,} Proc. R. Soc. A 465 (2009), 1337-1359. \bibitem{w1} S. M. Wise, C. Wang, J. S. Lowengrub; \emph{Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptative nonlinear multigrid method,} J. Comput. Phys. 226 (2007), 414-446. \end{thebibliography} \end{document}