\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 09, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/09\hfil Generalized Euler-Poisson-Darboux equation] {Particular solutions of generalized Euler-Poisson-Darboux equation} \author[R. B. Seilkhanova, A. H. Hasanov \hfil EJDE-2015/09\hfilneg] {Rakhila B. Seilkhanova, Anvar H. Hasanov} % in alphabetical order \address{Rakhila B. Seilkhanova \newline S. Baishev University Aktobe, Department for Information Systems and Applied Mathematics, 030000 Aktobe, Zhubanov str. 302, Kazakhstan} \email{srahila@inbox.ru} \address{Anvar H. Hasanov \newline S. Baishev University Aktobe, Department for Information Systems and Applied Mathematics, 030000 Aktobe, Zhubanov str. 302, Kazakhstan} \email{anvarhasanov@yahoo.com} \thanks{Submitted October 21, 2014. Published January 5, 2015.} \subjclass[2000]{35Q05, 35L80, 35C65} \keywords{Generalized Euler-Poisson-Darboux equation; hyperbolic equation; \hfill\break\indent Lauricelli hypergeometric functions} \begin{abstract} In this article we consider the generalized Euler-Poisson-Darboux equation $$ {u}_{tt}+\frac{2\gamma }{t}{{u}_{t}}={u}_{xx}+{u}_{yy} +\frac{2\alpha }{x}{{u}_{x}}+\frac{2\beta }{y}{{u}_y},\quad x>0,\;y>0,\;t>0. $$ We construct particular solutions in an explicit form expressed by the Lauricella hypergeometric function of three variables. Properties of each constructed solutions have been investigated in sections of surfaces of the characteristic cone. Precisely, we prove that found solutions have singularity $1/r$ at $r\to 0$, where ${{r}^2}={{( x-{{x}_0})}^2}+{{( y-{{y}_0})}^2}-{{( t-{{t}_0})}^2}$. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \allowdisplaybreaks \section{Introduction}\label{intr} Many problems of modern mathematics and theoretical physics lead to the investigation of hypergeometric functions of many variables. In particular, problems of superstring theory \cite{can-os-gr-pa}, analytical continuations of Mellin-Barnes integrals \cite{pas-ts-ch} and algebraic geometry \cite{hor-de}. Systems of hypergeometric type differential equations have numerous applications as nontrivial model examples in realization of algorithms for symbolic calculations, which are used in modern systems of computer algebra \cite{saito-st-tak}. Hypergeometric functions of many variables appear in quantum field theory as solutions of Knizhnik-Zamolodchikov equation \cite{var-de}. These equations can be considered as generalized hypergeometric type equations and their solutions have integral representations, which generalize classic Euler integrals for hypergeometric functions of one variable. This approach allows us to link the special functions of hypergeometric type and challenges the theory of representations of Lie algebras and quantum groups \cite{var-de}. Initially hypergeometric functions introduced by many authors with different methods, which are not related with each other. Their occurrence is determined, as a rule, by the need to solve problems, that led to a differential equation (or system of equations), insoluble in the class of elementary functions. Thus arose Bessel functions, Hermite functions, Gauss hypergeometric function. Hypergeometric functions occupy an important place among the special functions of mathematical physics. Many problems of gas dynamics are reduced to boundary value problems for degenerate equations of mixed type. It is known that the degenerate equation of mixed type in the hyperbolic part of the domain is reduced to the generalized equation of Euler-Poisson-Darboux \begin{equation}\label{e1.1} {u}_{tt}+\frac{2\gamma }{t}{{u}_{t}}={u}_{xx}+{u}_{yy} +\frac{2\alpha }{x}{{u}_{x}}+\frac{2\beta }{y}{{u}_y},\quad x>0,\; y>0,\; t>0, \end{equation} where $\alpha >0$, $\beta >0$ and $\gamma >0$ are constants. We note that Euler-Poisson-Darboux equation \begin{equation}\label{e1.2} {{u}_{\xi \eta }}-\frac{\beta }{\xi -\eta }{{u}_{\xi }} +\frac{\alpha }{\xi -\eta }{{u}_{\eta }}=0,\quad \alpha >0,\;\beta >0,\; \alpha +\beta <1, \end{equation} was considered in \cite{smirnov-de}, where the Cauchy problem for \eqref{e1.2} was solved. In \cite{sai-1, sai-2, sai-3}, non-local boundary problems for \eqref{e1.2} were investigated in characteristic triangles. In \cite{has-1}, two confluent hypergeometric functions of three variables were introduced. Further, for introduced hypergeometric functions authors prove formulas of analytical continuation. Using the introduced confluent hypergeometric functions, they constructed the Riemann function for the generalized Euler -Poisson-Darboux equation \begin{equation}\label{e1.3} {{u}_{\xi \eta }}+[ \frac{\alpha }{\eta +\xi } +\frac{\beta }{\eta -\xi }]{{u}_{\xi }} +[ \frac{\alpha }{\eta +\xi }-\frac{\beta }{\eta -\xi }]{{u}_{\eta }}+\gamma u=0. \end{equation} Further, by the Riemann-function method the Cauchy problem for \eqref{e1.3} was solved in characteristic triangle. Solution is written in an explicit form. Note that Euler -Poisson-Darboux equations \eqref{e1.2} and \eqref{e1.3} are written in characteristic coordinates. In \cite{seil}, the unique solvability of the Darboux problem with deviation for the Euler -Poisson-Darboux equation was proved outside of characteristic cone. Other type of the Euler -Poisson-Darboux equations were investigated in works \cite{bentrad, bres, bers, yag, fran, rassias, barros-1, barros-2, barros-3}. \section{Reduction of the Euler-Poisson-Darboux equation to a system of Lauricella hypergeometric functions}\label{FP} Solution of the Euler-Poisson-Darboux equation \eqref{e1.1} is searched in the form \begin{equation}\label{e2.1} u=P\omega ( \xi ,\eta ,\zeta), \end{equation} where $\omega ( \xi ,\eta ,\zeta)$ is unknown function and \begin{gather}\label{e2.2} P={{( {{r}^2})}^{-\alpha -\beta -\gamma -\frac{1}{2}}} ,\\ \xi =\frac{{{r}^2}-r_1^2}{{{r}^2}},\quad \eta =\frac{{{r}^2}-r_2^2}{{{r}^2}},\quad \zeta =\frac{{{r}^2}-r_3^2}{{{r}^2}}, \nonumber \\ {{r}^2}={{( x-{{x}_0})}^2}+{{( y-{{y}_0})}^2}-{{( t-{{t}_0})}^2},\quad r_1^2={{( x+{{x}_0})}^2}+{{( y-{{y}_0})}^2}-{{( t-{{t}_0})}^2}, \nonumber \\ r_2^2={{( x-{{x}_0})}^2}+{{( y+{{y}_0})}^2}-{{( t-{{t}_0})}^2},\quad r_3^2={{( x-{{x}_0})}^2}+{{( y-{{y}_0})}^2}-{{( t+{{t}_0})}^2}. \nonumber \end{gather} Calculating necessary derivatives from \eqref{e2.1} and substituting them into \eqref{e1.1}, we obtain \begin{equation}\label{e2.3} \begin{aligned} &{{A}_1}{{\omega }_{\xi \xi }}+{{A}_2}{{\omega }_{\eta \eta }} +{{A}_3}{{\omega }_{\zeta \zeta }}+{{B}_1}{{\omega }_{\xi \eta }} +{{B}_2}{{\omega }_{\xi \zeta }}+{{B}_3}{{\omega }_{\eta \zeta }}\\ &+{{C}_1}{{\omega }_{\xi }}+{{C}_2}{{\omega }_{\eta }} +{{C}_3}{{\omega }_{\zeta }}+D\omega =0, \end{aligned} \end{equation} where \begin{gather*} {{A}_1}=P\xi _{x}^2+P\xi _y^2-P\xi _{t}^2,\quad {{A}_2}=P\eta _{x}^2+P\eta _y^2-P\eta _{t}^2,\quad {{A}_3}=P\zeta _{x}^2+P\zeta _y^2-P\zeta _{t}^2, \\ {{B}_1}=2P{{\xi }_{x}}{{\eta }_{x}}+2P{{\xi }_y}{{\eta }_y} -2P{{\xi }_{t}}{{\eta }_{t}},\quad {{B}_2}=2P{{\xi }_{x}}{{\zeta }_{x}}+2P{{\xi }_y}{{\zeta }_y} -2P{{\xi }_{t}}{{\zeta }_{t}}, \\ {{B}_3}=2P{{\eta }_{x}}{{\zeta }_{x}}+2P{{\eta }_y}{{\zeta }_y} -2P{{\eta }_{t}}{{\zeta }_{t}}, \\ {{C}_1}=P( {{\xi }_{xx}}+{{\xi }_{yy}}-{{\xi }_{tt}}) +2( {{P}_{x}}{{\xi }_{x}}+{{P}_y}{{\xi }_y}-{{P}_{t}}{{\xi }_{t}}) +P\Big( \frac{2\alpha }{x}{{\xi }_{x}}+\frac{2\beta }{y}{{\xi }_y} -\frac{2\gamma }{t}{{\xi }_{t}}\Big), \\ {{C}_2}=P( {{\eta }_{xx}}+{{\eta }_{yy}}-{{\eta }_{tt}}) +2( {{P}_{x}}{{\eta }_{x}}+{{P}_y}{{\eta }_y}-{{P}_{t}}{{\eta }_{t}}) +P\Big( \frac{2\alpha }{x}{{\eta }_{x}}+\frac{2\beta }{y}{{\eta }_y} -\frac{2\gamma }{t}{{\eta }_{t}}\Big), \\ {{C}_3}=P( {{\zeta }_{xx}}+{{\zeta }_{yy}}-{{\zeta }_{tt}}) +2( {{P}_{x}}{{\zeta }_{x}}+{{P}_y}{{\zeta }_y} -{{P}_{t}}{{\zeta }_{t}}) +P\Big(\frac{2\alpha }{x}{{\zeta }_{x}}+\frac{2\beta }{y}{{\zeta }_y} -\frac{2\gamma }{t}{{\zeta }_{t}}\Big), \\ D={{P}_{xx}}+{{P}_{yy}}-{{P}_{tt}}+{{P}_{x}}\frac{2\alpha }{x} +{{P}_y}\frac{2\beta }{y}-\frac{2\gamma }{t}{{P}_{t}.} \end{gather*} Now we consider ${{A}_1}$. Since \begin{gather*} \xi _{x}^2=\frac{4{{( x+{{x}_0})}^2}{{( {{r}^2})}^2}-8( x+{{x}_0}) ( x-{{x}_0}){{r}^2}r_1^2+4{{( x-{{x}_0})}^2}{{( r_1^2)}^2}}{{{( {{r}^2})}^{4}}}, \\ \xi _y^2=\frac{4{{( y-{{y}_0})}^2}{{( {{r}^2})}^2}-8{{( y-{{y}_0})}^2}{{r}^2}r_1^2 +4{{( y-{{y}_0})}^2}{{( r_1^2)}^2}}{{{( {{r}^2})}^{4}}}, \\ \xi _{t}^2=\frac{4{{( t-{{t}_0})}^2}{{( {{r}^2})}^2}-8{{( t-{{t}_0})}^2}{{r}^2}r_1^2 +4{{( t-{{t}_0})}^2}{{( r_1^2)}^2}}{{{( {{r}^2})}^{4}}}, \end{gather*} we obtain \[ {{A}_1}=4Pr_1^2{{( {{r}^2})}^{-3}}[ ( {{r}^2}) +( r_1^2)-2( x+{{x}_0})( x-{{x}_0})-2{{( y-{{y}_0})}^2}+2{{( t-{{t}_0})}^2}], \] or ${{A}_1}=4Pr_1^2{{( {{r}^2})}^{-3}}4x_0^2$. By the equality $4{{x}_0}=-{{x}^{-1}}{{r}^2}\xi $, we obtain \begin{equation}\label{e2.4} {{A}_1}=-4P{{x}^{-1}}{{x}_0}{{( {{r}^2})}^{-1}}\xi ( 1-\xi). \end{equation} Similarly we have \begin{gather}\label{e2.5} {{A}_2}=-4P{{y}^{-1}}{{y}_0}{{( {{r}^2})}^{-1}}\eta ( 1-\eta), \\ \label{e2.6} {{A}_3}=-4P{{t}^{-1}}{{t}_0}{{( {{r}^2})}^{-1}}\zeta ( 1-\zeta). \end{gather} Further, we calculate representation of ${{B}_1}$. Finding necessary derivatives from the arguments and substituting them we obtain \begin{align*} {{B}_1}&=2P\Big\{ \frac{2( x+{{x}_0}){{r}^2} -2( x-{{x}_0})r_1^2}{{{( {{r}^2})}^2}}\frac{2( x-{{x}_0}){{r}^2} -2( x-{{x}_0})r_2^2}{{{( {{r}^2})}^2}}\\ &\quad +\frac{2( y-{{y}_0}){{r}^2}-2( y-{{y}_0})r_1^2}{{{( {{r}^2})}^2}} \frac{2( y+{{y}_0}){{r}^2}-2( y-{{y}_0})r_2^2}{{{( {{r}^2})}^2}} \\ &\quad -\frac{2( t-{{t}_0}){{r}^2}-2( t-{{t}_0})r_1^2}{{{( {{r}^2})}^2}} \frac{2( t-{{t}_0}){{r}^2}-2( t-{{t}_0})r_2^2}{{{( {{r}^2})}^2}} \Big\}, \end{align*} or \begin{align*} {{B}_1}&=8P{{( {{r}^2})}^{-4}}\Big\{ [ ( x+{{x}_0}){{r}^2}-( x-{{x}_0})r_1^2] [ ( x-{{x}_0}){{r}^2}-( x-{{x}_0})r_2^2] \\ &\quad +[ ( y-{{y}_0}){{r}^2}-( y-{{y}_0})r_1^2] [ ( y+{{y}_0}){{r}^2}-( y-{{y}_0})r_2^2] \\ &\quad - [ ( t-{{t}_0}){{r}^2}-( t-{{t}_0})r_1^2] [ ( t-{{t}_0}){{r}^2}-( t-{{t}_0})r_2^2] \Big\}. \end{align*} After some evaluations, we deduce \begin{equation}\label{e2.7} {{B}_1}=4P{{y}^{-1}}{{y}_0}{{( {{r}^2})}^{-1}}\xi \eta +4P{{x}^{-1}}{{x}_0}{{( {{r}^2})}^{-1}}\xi \eta. \end{equation} Similarly one obtains \begin{gather}\label{e2.8} {{B}_2}=4P{{t}^{-1}}{{t}_0}{{( {{r}^2})}^{-1}}\xi \zeta +4P{{x}^{-1}}{{x}_0}{{( {{r}^2})}^{-1}}\xi \zeta, \\ \label{e2.9} {{B}_3}=4P{{t}^{-1}}{{t}_0}{{( {{r}^2})}^{-1}}\eta \zeta +4P{{y}^{-1}}{{y}_0}{{( {{r}^2})}^{-1}}\eta \zeta. \end{gather} Further, considering the following expressions \begin{gather*} {{\xi }_{xx}}+{{\xi }_{yy}}-{{\xi }_{tt}}=2{{( {{r}^2})}^{-1}} ( 2{{x}^{-1}}{{x}_0}\xi -\xi), \\ {{P}_{x}}{{\xi }_{x}}+{{P}_y}{{\xi }_y}-{{P}_{t}}{{\xi }_{t}} =2P{{( {{r}^2})}^{-1}}\big(\alpha +\beta +\gamma +\frac{1}{2}\big) ( {{x}^{-1}}{{x}_0}\xi +\xi), \\ \begin{aligned} \frac{2\alpha }{x}{{\xi }_{x}}+\frac{2\beta }{y}{{\xi }_y} -\frac{2\gamma }{t}{{\xi }_{t}} &=-4{{( {{r}^2})}^{-1}}\big[ \alpha {{x}^{-1}}{{x}_0}+\alpha \xi +\alpha {{x}^{-1}}{{x}_0}( 1-\xi)-\beta {{y}^{-1}}{{y}_0} \\ &\quad +\beta \xi +\beta {{y}^{-1}}{{y}_0}( 1-\xi) -\gamma {{t}^{-1}}{{t}_0}+\gamma \xi +\gamma {{t}^{-1}}{{t}_0}( 1-\xi)\big], \end{aligned} \end{gather*} we define \begin{equation}\label{e2.10} \begin{aligned} {{C}_1}&=-4P{{( {{r}^2})}^{-1}}{{x}^{-1}}{{x}_0} [ 2\alpha -( 2\alpha +\beta +\gamma +\frac{1}{2}+1)\xi] \\ &\quad +4P{{( {{r}^2})}^{-1}}{{y}^{-1}}{{y}_0}\beta \xi +4P{{( {{r}^2})}^{-1}}{{t}^{-1}}{{t}_0}\gamma \xi . \end{aligned} \end{equation} Similarly, we define \begin{gather}\label{e2.11} \begin{aligned} {{C}_2}&=-4P{{( {{r}^2})}^{-1}}{{y}^{-1}}{{y}_0}[ 2\beta -( \alpha +2\beta +\gamma +\frac{1}{2}+1)\eta] \\ &\quad +4P{{( {{r}^2})}^{-1}}{{x}^{-1}}{{x}_0}\alpha \eta +4P{{( {{r}^2})}^{-1}}{{t}^{-1}}{{t}_0}\gamma \eta , \end{aligned} \\ \label{e2.12} \begin{aligned} {{C}_3}&=-4P{{( {{r}^2})}^{-1}}{{t}^{-1}}{{t}_0} [ 2\gamma -( \alpha +\beta +2\gamma +\frac{1}{2}+1)\zeta] \\ &\quad +4P{{( {{r}^2})}^{-1}}{{x}^{-1}}{{x}_0}\gamma \zeta +4P{{( {{r}^2})}^{-1}}{{y}^{-1}}{{y}_0}\beta \zeta . \end{aligned} \end{gather} After simple calculations we obtain \begin{equation}\label{e2.13} \begin{aligned} D&=4( \alpha +\beta +\gamma +\frac{1}{2})P{{( {{r}^2})}^{-1}} \alpha {{x}^{-1}}{{x}_0} +4( \alpha +\beta +\gamma +\frac{1}{2})P{{( {{r}^2})}^{-1}}\beta {{y}^{-1}}{{y}_0}\\ &\quad +4( \alpha +\beta +\gamma +\frac{1}{2}) P{{( {{r}^2})}^{-1}}\gamma {{t}^{-1}}{{t}_0}. \end{aligned} \end{equation} Substituting \eqref{e2.4}-\eqref{e2.13} in \eqref{e2.3}, we obtain \begin{equation}\label{e2.14} \begin{aligned} & -\frac{4P{{x}_0}}{x{{r}^2}}\Big\{ \xi ( 1-\xi){{\omega }_{\xi \xi }} -\xi \eta {{\omega }_{\xi \eta }}-\xi \zeta {{\omega }_{\xi \zeta }} -\alpha \eta {{\omega }_{\eta }}-\gamma \zeta {{\omega }_{\zeta }} \\ & +[ 2\alpha -( \alpha +\beta +\gamma +\frac{1}{2}+\alpha +1)\xi]{{\omega }_{\xi }} -( \alpha +\beta +\gamma +\frac{1}{2})\alpha \omega \Big\} \\ & -\frac{4P{{y}_0}}{y{{r}^2}}\Big\{ \eta ( 1-\eta){{\omega }_{\eta \eta }} -\xi \eta {{\omega }_{\xi \eta }}-\eta \zeta {{\omega }_{\eta \zeta }} -\beta \xi {{\omega }_{\xi }}-\beta \zeta {{\omega }_{\zeta }} \\ & \quad +[ 2\beta -( \alpha +\beta +\gamma +\frac{1}{2}+\beta +1)\eta]{{\omega }_{\eta }} -( \alpha +\beta +\gamma +\frac{1}{2})\beta \omega \Big\} \\ & -\frac{4P{{t}_0}}{t{{r}^2}}\Big\{ \zeta ( 1-\zeta){{\omega }_{\zeta \zeta }} -\xi \zeta {{\omega }_{\xi \zeta }}-\eta \zeta {{\omega }_{\eta \zeta }} -\gamma \xi {{\omega }_{\xi }}-\gamma \eta {{\omega }_{\eta }} \\ & +[ 2\gamma -( \alpha +\beta +\gamma +\frac{1}{2}+\gamma +1) \zeta]{{\omega }_{\zeta }}-( \alpha +\beta +\gamma +\frac{1}{2})\gamma \omega \Big\}=0. \end{aligned} \end{equation} Hence, the following equality is valid \begin{equation}\label{e2.15} \begin{aligned} & \xi ( 1-\xi){{\omega }_{\xi \xi }}-\xi \eta {{\omega }_{\xi \eta }} -\xi \zeta {{\omega }_{\xi \zeta }} +[ 2\alpha -( \alpha +\beta +\gamma +\frac{1}{2}+\alpha +1)\xi]{{\omega }_{\xi }} \\ & -\alpha \eta {{\omega }_{\eta }}-\gamma \zeta {{\omega }_{\zeta }} -( \alpha +\beta +\gamma +\frac{1}{2})\alpha \omega =0, \\ & \eta ( 1-\eta){{\omega }_{\eta \eta }}-\xi \eta {{\omega }_{\xi \eta }} -\eta \zeta {{\omega }_{\eta \zeta }}+[ 2\beta -( \alpha +\beta +\gamma +\frac{1}{2}+\beta +1)\eta]{{\omega }_{\eta }} \\ & -\beta \xi {{\omega }_{\xi }}-\beta \zeta {{\omega }_{\zeta }} -( \alpha +\beta +\gamma +\frac{1}{2})\beta \omega =0, \\ & \zeta ( 1-\zeta){{\omega }_{\zeta \zeta }}-\xi \zeta {{\omega }_{\xi \zeta }} -\eta \zeta {{\omega }_{\eta \zeta }}+[ 2\gamma -( \alpha +\beta +\gamma +\frac{1}{2}+\gamma +1)\zeta]{{\omega }_{\zeta }} \\ & -\gamma \xi {{\omega }_{\xi }}-\gamma \eta {{\omega }_{\eta }} -( \alpha +\beta +\gamma +\frac{1}{2})\gamma \omega =0. \end{aligned} \end{equation} Thus, the Euler-Poisson-Darboux equation \eqref{e1.1} equivalently reduced to the system \eqref{e2.15}. \section{Particular solutions of the Euler-Poisson-Darboux equation}\label{AP} In \cite{Appell}, system \eqref{e2.15} was considered for the $n$-dimensional case \begin{align*} & {{x}_{j}}( 1-{{x}_{j}})\frac{{{\partial }^2}F_{A}^{( n)}}{\partial x_{j}^2} -{{x}_{j}}\sum_{ k=1,\, k\ne j} ^{n} {{x}_{k}}\frac{{{\partial }^2}F_{A}^{( n)}}{\partial {{x}_{k}}\partial {{x}_{j}}} +[ {{c}_{j}}-( a+{{b}_{j}}+1){{x}_{j}}] \frac{\partial F_{A}^{( n)}}{\partial {{x}_{j}}} \\ & -{{b}_{j}}\sum_{ k=1, \, k\ne j}^{n} {{x}_{k}} \frac{\partial F_{A}^{( n)}}{\partial {{x}_{k}}} -a{{b}_{j}}F_{A}^{( n)}=0,\quad j=1,2,\dots,n. \end{align*} There were found $2^n$ particular solutions of this system. All of them are expressed by Lauricella hypergeometric functions $ F_{A}^{( n)} $. In particular case, system of hypergeometric functions \eqref{e2.15} has the following solutions \cite{Appell} \begin{gather}\label{e3.1} {{\omega }_1}=F_{A}^{( 3)}\Big( \alpha +\beta +\gamma +\frac{1}{2};\alpha ,\beta , \gamma ;2\alpha ,2\beta ,2\gamma ;\xi ,\eta ,\zeta\Big), \\ \label{e3.2} {{\omega }_2}={{\xi }^{1-2\alpha }}F_{A}^{( 3)}\Big( -\alpha +\beta +\gamma +\frac{3}{2}; 1-\alpha ,\beta ,\gamma ;2-2\alpha ,2\beta ,2\gamma ;\xi ,\eta ,\zeta\Big), \\ \label{e3.3} {{\omega }_3}={{\eta }^{1-2\beta }}F_{A}^{( 3)}\Big( \alpha -\beta +\gamma +\frac{3}{2};\alpha ,1-\beta ,\gamma ;2\alpha ,2-2\beta ,2\gamma ;\xi ,\eta , \zeta\Big), \\ \label{e3.4} \begin{aligned} {{\omega }_4}={{\zeta }^{1-2\gamma }}F_{A}^{( 3)}\Big( \alpha +\beta -\gamma +\frac{3}{2};\alpha ,\beta ,1-\gamma ;2\alpha ,2\beta ,2-2\gamma ; \xi ,\eta ,\zeta\Big), \end{aligned} \\ \label{e3.5} \begin{aligned} {{\omega }_5}&={{\xi }^{1-2\alpha }}{{\eta }^{1-2\beta }}F_{A}^{( 3)} \Big( -\alpha -\beta +\gamma +\frac{5}{2};1-\alpha ,1-\beta ,\gamma ;\\ &\quad 2-2\alpha ,2-2\beta ,2\gamma ;\xi ,\eta ,\zeta\Big), \end{aligned} \\ \label{e3.6} \begin{aligned} {{\omega }_6}&={{\xi }^{1-2\alpha }}{{\zeta }^{1-2\gamma }}F_{A}^{( 3)} \Big( -\alpha +\beta -\gamma +\frac{5}{2};1-\alpha ,\beta ,1-\gamma ;2-2\alpha , 2\beta , \\ &\quad 2-2\gamma ;\xi ,\eta ,\zeta\Big), \end{aligned} \\ \label{e3.7} \begin{aligned} {{\omega }_7} &={{\eta }^{1-2\beta }}{{\zeta }^{1-2\gamma }}F_{A}^{( 3)} \Big( \alpha -\beta -\gamma +\frac{5}{2};\alpha ,1-\beta ,1-\gamma ;2\alpha , 2-2\beta ,\\ &\quad 2-2\gamma ;\xi ,\eta ,\zeta\Big), \end{aligned} \\ \label{e3.8} \begin{aligned} {{\omega }_8}&={{\xi }^{1-2\alpha }}{{\eta }^{1-2\beta }}{{\zeta }^{1-2\gamma }} F_{A}^{( 3)}\Big( -\alpha -\beta -\gamma +\frac{7}{2};1-\alpha ,1-\beta ,1-\gamma ;\\ &\quad 2-2\alpha ,2-2\beta ,2-2\gamma ;\xi ,\eta ,\zeta\Big), \end{aligned} \end{gather} where the Lauricella hypergeometric function is defined as $$ F_{A}^{( 3)}( a;{{b}_1},{{b}_2},{{b}_3};{{c}_1},{{c}_2},{{c}_3};x,y,z) =\sum_{m,n,p=0}^{\infty } \frac{{{( a)}_{m+n+p}} {{( {{b}_1})}_{m}}{{( {{b}_2})}_{n}}{{( {{b}_3})}_{p}}} {{{( {{c}_1})}_{m}}{{( {{c}_2})}_{n}}{{( {{c}_3})}_{p}}m!n!p!} {{x}^{m}}{{y}^{n}}{{z}^{p}}. $$ Further, substituting \eqref{e3.1} - \eqref{e3.8} in \eqref{e2.1}, we obtain \begin{gather}\label{e3.9} \begin{aligned} & {{q}_1}( x,y,t;{{x}_0},{{y}_0},{{t}_0})\\ &={{k}_1}{{( {{r}^2})}^{-\alpha -\beta -\gamma -\frac{1}{2}}} {{F}_{A}}\Big( \alpha +\beta +\gamma +\frac{1}{2};\alpha ,\beta ,\gamma ; 2\alpha ,2\beta ,2\gamma ;\xi ,\eta ,\zeta\Big), \end{aligned} \\ \label{e3.10} \begin{aligned} &{{q}_2}( x,y,t;{{x}_0},{{y}_0},{{t}_0})\\ &={{k}_2}{{( {{r}^2})}^{\alpha -\beta -\gamma -\frac{3}{2}}} {{( x{{x}_0})}^{1-2\alpha }}F_{A}^{( 3)}\Big( -\alpha +\beta +\gamma +\frac{3}{2};1-\alpha ,\beta ,\gamma ;\\ &\quad 2-2\alpha ,2\beta ,2\gamma ;\xi ,\eta ,\zeta\Big), \end{aligned}\\ \label{e3.11} \begin{aligned} & {{q}_3}( x,y,t;{{x}_0},{{y}_0},{{t}_0})\\ &={{k}_3}{{( {{r}^2})}^{-\alpha +\beta -\gamma -\frac{3}{2}}} {{( y{{y}_0})}^{1-2\beta }}F_{A}^{( 3)}\Big( \alpha -\beta +\gamma +\frac{3}{2};\alpha ,1-\beta ,\gamma ;2\alpha , \\ &\quad 2-2\beta , 2\gamma ;\xi ,\eta ,\zeta\Big), \end{aligned}\\ \label{e3.12} \begin{aligned} & {{q}_4}( x,y,t;{{x}_0},{{y}_0},{{t}_0})\\ &={{k}_4}{{( {{r}^2})}^{-\alpha -\beta +\gamma -\frac{3}{2}}} {{( t{{t}_0})}^{1-2\gamma }}F_{A}^{( 3)}\Big( \alpha +\beta -\gamma +\frac{3}{2};\alpha ,\beta ,1-\gamma ;2\alpha ,2\beta ,\\ &\quad 2-2\gamma ;\xi ,\eta ,\zeta\Big), \end{aligned} \\ \label{e3.13} \begin{aligned} & {{q}_5}( x,y,t;{{x}_0},{{y}_0},{{t}_0})\\ &={{k}_5}{{( {{r}^2})}^{\alpha +\beta -\gamma -\frac{5}{2}}}{{( x{{x}_0})}^{1-2\alpha }}{{( y{{y}_0})}^{1-2\beta }} F_{A}^{( 3)}\Big( -\alpha -\beta +\gamma +\frac{5}{2}; 1-\alpha , \\ &\quad 1-\beta ,\gamma ;2-2\alpha ,2-2\beta ,2\gamma ;\xi ,\eta ,\zeta\Big), \end{aligned} \\ \label{e3.14} \begin{aligned} & {{q}_6}( x,y,t;{{x}_0},{{y}_0},{{t}_0})\\ &={{k}_6}{{( {{r}^2})}^{\alpha -\beta +\gamma -\frac{5}{2}}}{{( x{{x}_0})}^{1-2\alpha }}{{( t{{t}_0})}^{1-2\gamma }} F_{A}^{( 3)}\Big( -\alpha +\beta -\gamma +\frac{5}{2};1-\alpha , \beta ,\\ &\quad 1-\gamma ; 2-2\alpha ,2\beta ,2-2\gamma ;\xi ,\eta ,\zeta\Big), \end{aligned} \\ \label{e3.15} \begin{aligned} & {{q}_7}( x,y,t;{{x}_0},{{y}_0},{{t}_0})\\ &={{k}_7}{{( {{r}^2})}^{-\alpha +\beta +\gamma -\frac{5}{2}}}{{( y{{y}_0})}^{1-2\beta }}{{( t{{t}_0})}^{1-2\gamma }} F_{A}^{( 3)}\Big( \alpha -\beta -\gamma +\frac{5}{2};\alpha ,1-\beta ,\\ &\quad 1-\gamma ;2\alpha ,2-2\beta ,2-2\gamma ;\xi ,\eta ,\zeta\Big), \end{aligned} \\ \label{e3.16} \begin{aligned} & {{q}_8}( x,y,t;{{x}_0},{{y}_0},{{t}_0})\\ &={{k}_8}{{( x{{x}_0})}^{1-2\alpha }}{{( y{{y}_0})}^{1-2\beta }} {{( t{{t}_0})}^{1-2\gamma }}{{( {{r}^2})}^{\alpha +\beta +\gamma -\frac{7}{2}}} F_{A}^{( 3)}\Big( -\alpha -\beta -\gamma +\frac{7}{2};\\ &\quad 1-\alpha , 1-\beta ,1-\gamma ;2-2\alpha ,2-2\beta ,2-2\gamma ;\xi ,\eta ,\zeta\Big) \\ \end{aligned} \end{gather} where $k_i$, $i=\overline{1,\,8}$ are constants. \section{Some properties of particular solutions}\label{PP} \begin{theorem}\label{thm1} If $\alpha ,\beta ,\gamma >0$, then particular solutions \eqref{e3.9}--\eqref{e3.16} tends to infinity of the order $1/r$ at $r\to 0$. \end{theorem} \begin{proof} By the expansion for the Lauricella hypergeometric function \cite{has-sri} \begin{equation}\label{e4.1} \begin{aligned} & F_{A}^{( 3)}( a;{{b}_1},{{b}_2},{{b}_3};{{c}_1},{{c}_2},{{c}_3};x,y,z) \\ & =\sum_{i,j,k=0}^{\infty } \frac{{{( a)}_{i+j+k}}{{( {{b}_1})}_{i+j}}{{( {{b}_2})}_{i+k}}{{( {{b}_3})}_{j+k}}}{{{( {{c}_1})}_{i+j}}{{( {{c}_2})}_{i+k}}{{( {{c}_3})}_{j+k}}i!j!k!}{{x}^{i+j}}{{y}^{i+k}}{{z}^{j+k}} \\ & \times F( a+i+j,{{b}_1}+i+j;{{c}_1}+i+j;x)F( a+i+j+k,{{b}_2}+i+k;{{c}_2}+i+k;y) \\ & \times F( a+i+j+k,{{b}_3}+j+k;{{c}_3}+j+k;z), \end{aligned} \end{equation} the particular solution \eqref{e3.9} is rewritten as follows \begin{equation}\label{e4.2} \begin{aligned} & {{q}_1}( x,y,t;{{x}_0},{{y}_0},{{t}_0})={{k}_1}{{( {{r}^2})}^{-\alpha -\beta -\gamma -\frac{1}{2}}} \\ & \times \sum_{i,j,k=0}^{\infty } \frac{{{( \alpha +\beta +\gamma +\frac{1}{2})}_{i+j+k}}{{( \alpha)}_{i+j}}{{( \beta)}_{i+k}}{{( \gamma)}_{j+k}}}{{{( 2\alpha)}_{i+j}}{{( 2\beta)}_{i+k}}{{( 2\gamma)}_{j+k}}i!j!k!} \\ & \times {{\big( \frac{{{r}^2}-r_1^2}{{{r}^2}}\big)}^{i+j}} {{\big( \frac{{{r}^2}-r_2^2}{{{r}^2}}\big)}^{i+k}} {{\big( \frac{{{r}^2}-r_3^2}{{{r}^2}}\big)}^{j+k}} \\ & \times F\Big( \alpha +\beta +\gamma +\frac{1}{2}+i+j,\alpha +i+j;2\alpha +i+j; \frac{{{r}^2}-r_1^2}{{{r}^2}}\Big) \\ & \times F\Big( \alpha +\beta +\gamma +\frac{1}{2}+i+j+k,\beta +i+k;2\beta +i+k; \frac{{{r}^2}-r_2^2}{{{r}^2}}\Big) \\ & \times F\Big( \alpha +\beta +\gamma +\frac{1}{2}+i+j+k,\gamma +j+k;2\gamma +j+k; \frac{{{r}^2}-r_3^2}{{{r}^2}}\Big). \\ \end{aligned} \end{equation} Using the formula $ F( a,b;c;x)={{( 1-x)}^{-b}}F( c-a,b;c;x/( x-1)) $ \cite{erdel}, from \eqref{e4.2} we obtain \begin{equation}\label{e4.3} \begin{aligned} {{q}_1}( x,y,t;{{x}_0},{{y}_0},{{t}_0})={{k}_1}{{( {{r}^2})}^{-\frac{1}{2}}}{{( r_1^2)}^{-\alpha }}{{( r_2^2)}^{-\beta }}{{( r_3^2)}^{-\gamma }}q_1^{*}( x,y,t;{{x}_0},{{y}_0},{{t}_0}), \end{aligned} \end{equation} where \begin{equation}\label{e4.4} \begin{aligned} q_1^{*}( x,y,t;{{x}_0},{{y}_0},{{t}_0}) & =\sum_{i,j,k=0}^{\infty } \frac{{{( \alpha +\beta +\gamma +\frac{1}{2})}_{i+j+k}}{{( \alpha)}_{i+j}}{{( \beta)}_{i+k}}{{( \gamma)}_{j+k}}}{{{( 2\alpha)}_{i+j}}{{( 2\beta)}_{i+k}}{{( 2\gamma)}_{j+k}}i!j!k!} \\ & \times {{\big( \frac{r_1^2-{{r}^2}}{r_1^2}\big)}^{i+j}} {{\big( \frac{r_2^2-{{r}^2}}{r_2^2}\big)}^{i+k}} {{\big( \frac{r_3^2-{{r}^2}}{r_3^2}\big)}^{j+k}} \\ & \times F\Big( \alpha -\beta -\gamma -\frac{1}{2},\alpha +i+j; 2\alpha +i+j;\frac{r_1^2-{{r}^2}}{r_1^2}\Big) \\ & \times F\Big( \beta -\alpha -\gamma -\frac{1}{2}-j,\beta +i+k;2\beta +i+k; \frac{r_2^2-{{r}^2}}{r_2^2}\Big) \\ & \times F\Big( \gamma -\alpha -\beta -\frac{1}{2}-i,\gamma +j+k;2\gamma +j+k; \frac{r_3^2-{{r}^2}}{r_3^2}\Big). \end{aligned} \end{equation} Now we show that $ q_1^{*}( x,y,t;{{x}_0},{{y}_0},{{t}_0}) $ is bounded aa $ r\to 0 $. Since $$ \lim_{r\to 0} \frac{r_1^2-{{r}^2}}{r_1^2} =\lim_{r\to 0} \frac{r_2^2-{{r}^2}}{r_2^2} =\lim_{r\to 0} \frac{r_3^2-{{r}^2}}{r_3^2}=1, $$ hence, one can find \begin{gather}\label{e4.5} \begin{aligned} & F\Big( \alpha -\beta -\gamma -\frac{1}{2},\alpha +i+j;2\alpha +i+j;1\Big) \\ & =\frac{\Gamma ( 2\alpha)\Gamma ( \beta +\gamma +\frac{1}{2}) {{( 2\alpha)}_{i+j}}}{\Gamma ( \alpha)\Gamma ( \alpha +\beta +\gamma +\frac{1}{2}){{( \alpha +\beta +\gamma +\frac{1}{2})}_{i+j}}}, \end{aligned} \\ \label{e4.6} \begin{aligned} & F\Big( \beta -\alpha -\gamma -\frac{1}{2}-j,\beta +i+k;2\beta +i+k;1\Big) \\ & =\frac{\Gamma ( 2\beta)\Gamma ( \alpha +\gamma +\frac{1}{2}){{( 2\beta)}_{i+k}}{{( \alpha +\gamma +\frac{1}{2})}2_{j}}}{\Gamma ( \beta)\Gamma ( \alpha +\beta +\gamma +\frac{1}{2}){{( \alpha +\beta +\gamma +\frac{1}{2})}_{i+j+k}}}, \end{aligned} \\ \label{e4.7} \begin{aligned} & F\Big( \gamma -\alpha -\beta -\frac{1}{2}-i,\gamma +j+k;2\gamma +j+k;1\Big) \\ & =\frac{\Gamma ( 2\gamma){{( 2\gamma)}_{j+k}}\Gamma ( \alpha +\beta +\frac{1}{2}){{( \alpha +\beta +\frac{1}{2})}_i}}{\Gamma ( \gamma)\Gamma ( \alpha +\beta +\gamma +\frac{1}{2}){{( \alpha +\beta +\gamma +\frac{1}{2})}_{i+j+k}}}. \end{aligned} \end{gather} Due to \eqref{e4.5}--\eqref{e4.7} at $ r\to 0 $ from \eqref{e4.4} we obtain \begin{equation}\label{e4.8} \begin{aligned} &\lim_{r\to 0} q_1^{*}( x,y,t;{{x}_0},{{y}_0},{{t}_0}) \\ & =\frac{\Gamma ( 2\alpha)\Gamma ( 2\beta)\Gamma ( 2\gamma)\Gamma ( \alpha +\beta +\frac{1}{2})\Gamma ( \alpha +\gamma +\frac{1}{2})\Gamma ( \beta +\gamma +\frac{1}{2})}{\Gamma ( \alpha)\Gamma ( \beta)\Gamma ( \gamma){{\Gamma }^{3}}( \alpha +\beta +\gamma +\frac{1}{2})} \\ & \quad\times \sum_{i,j,k=0}^{\infty } \frac{{{( \alpha +\beta +\frac{1}{2})}_i}{{( \alpha +\gamma +\frac{1}{2})}_{j}}{{( \alpha)}_{i+j}}{{( \beta)}_{i+k}}{{( \gamma)}_{j+k}}}{{{( \alpha +\beta +\gamma +\frac{1}{2})}_{i+j}}{{( \alpha +\beta +\gamma +\frac{1}{2})}_{i+j+k}}i!j!k!}. \\ \end{aligned} \end{equation} It is easy to show that \begin{equation}\label{e4.9} \begin{aligned} & \sum_{i,j,k=0}^{\infty } \frac{{{( \alpha +\beta +\frac{1}{2})}_i}{{( \alpha +\gamma +\frac{1}{2})}_{j}}{{( \alpha)}_{i+j}} {{( \beta)}_{i+k}}{{( \gamma)}_{j+k}}}{{{( \alpha +\beta +\gamma +\frac{1}{2})}_{i+j}}{{( \alpha +\beta +\gamma +\frac{1}{2})}_{i+j+k}}i!j!k!} \\ & =\frac{\Gamma ( \frac{1}{2}){{\Gamma }^2}( \alpha +\beta +\gamma +\frac{1}{2})}{\Gamma ( \alpha +\beta +\frac{1}{2})\Gamma ( \alpha +\gamma +\frac{1}{2})\Gamma ( \beta +\gamma +\frac{1}{2})}. \end{aligned} \end{equation} Thus, from \eqref{e4.4} we deduce \begin{equation}\label{e4.10} \begin{aligned} \lim_{r\to 0} q_1^{*}( x,y,t;{{x}_0},{{y}_0},{{t}_0}) =\frac{\sqrt{\pi }\Gamma ( 2\alpha)\Gamma ( 2\beta)\Gamma ( 2\gamma)} {\Gamma ( \alpha)\Gamma ( \beta)\Gamma ( \gamma)\Gamma ( \alpha +\beta +\gamma +\frac{1}{2})}. \end{aligned} \end{equation} From here considering \eqref{e4.10}, from \eqref{e4.3} at $ r\to 0 $ we have the estimate \begin{equation}\label{e4.11} | {{q}_1}( x,y,t;{{x}_0},{{y}_0},{{t}_0}) |\le \frac{{{c}_0}}{r}, \end{equation} where $$ {{c}_0}=\frac{{{k}_1}{{2}^{2\alpha +2\beta +2\gamma -1}} \Gamma ( \alpha +\beta +\gamma)\Gamma ( 2\alpha)\Gamma ( 2\beta)\Gamma ( 2\gamma)}{\Gamma ( \alpha)\Gamma ( \beta)\Gamma ( \gamma)\Gamma ( 2\alpha +2\beta +2\gamma){{( r_1^2)}^{\alpha }}{{( r_2^2)}^{\beta }}{{( r_3^2)}^{\gamma }}}. $$ Estimate \eqref{e4.11} states that function $ {{q}_1}( x,y,t;{{x}_0},{{y}_0},{{t}_0}) $ at $ r\to 0 $ tends to infinity of the order $ 1/r$. Similarly one can prove that every function $ {{q}_i}( x,y,t;{{x}_0},{{y}_0},{{t}_0})$, $i=2,3,\dots,8 $ has singularity $ 1/r $ as $ r\to 0$. \end{proof} \begin{theorem}\label{thm2} If $\alpha ,\beta ,\gamma >0$, then the found particular solutions have the following properties \begin{gather*} {{{x}^{2\alpha }}\frac{\partial }{\partial x}{{q}_1} \big|}_{x=0}=0,\quad {{{y}^{2\beta }}\frac{\partial }{\partial y}{{q}_1} \big|}_{y=0}=0,\quad {{{t}^{2\gamma }}\frac{\partial }{\partial t}{{q}_1}\big|}_{t=0}=0, \\ {{{{q}_2} \big|}_{x=0}}=0,\quad {{{{y}^{2\beta }}\frac{\partial }{\partial y}{{q}_2} \big|}_{y=0}}=0,\quad {{{{t}^{2\gamma }}\frac{\partial }{\partial t}{{q}_2} \big|}_{t=0}}=0, \\ {{{{x}^{2\alpha }}\frac{\partial }{\partial x}{{q}_3} \big|}_{x=0}}=0,\quad {{{{q}_3} \big|}_{y=0}}=0,\quad {{{{t}^{2\gamma }}\frac{\partial }{\partial t}{{q}_3} \big|}_{t=0}}=0, \\ {{{{x}^{2\alpha }}\frac{\partial }{\partial x}{{q}_4} \big|}_{x=0}}=0,\quad {{{{y}^{2\beta }}\frac{\partial }{\partial y}{{q}_4} \big|}_{y=0}}=0,\quad {{{{q}_4} \big|}_{t=0}}=0, \\ {{{{q}_5} \big|}_{x=0}}=0,\quad {{{{q}_5} \big|}_{y=0}}=0,\quad {{{{t}^{2\gamma }}\frac{\partial }{\partial t}{{q}_5} \big|}_{t=0}}=0, \\ {{{{q}_6} \big|}_{x=0}}=0,\quad {{{{y}^{2\beta }}\frac{\partial }{\partial y}{{q}_6} \big|}_{y=0}}=0,\quad {{{{q}_6} \big|}_{t=0}}=0, \\ {{{{x}^{2\alpha }}\frac{\partial }{\partial x}{{q}_7} \big|}_{x=0}}=0,\quad {{{{q}_7} \big|}_{y=0}}=0,\quad {{{{q}_7} \big|}_{t=0}}=0, \\ {{{{q}_8} \big|}_{x=0}}=0,\quad {{{{q}_8} \big|}_{y=0}}=0,\quad {{{{q}_8} \big|}_{t=0}}=0. \end{gather*} \end{theorem} Proofs of the above equalities are based on elementary calculations. These properties could be used in studying various boundary problems for the equation \eqref{e1.1}. \subsection*{Acknowledgements} We are grateful to the Professor H. M. Srivastava for his suggestion to consider this problem. \begin{thebibliography}{00} \bibitem{Appell} P. Appell, Kampe de Feriet J; \emph{Fonctions Hypergeometriques et Hyperspheriques; Polynomes d'Hermite}, Gauthier - Villars. Paris, 1926, p. 440. \bibitem{barros-1} J. Barros-Neto, I. M. Gelfand; \emph{Fundamental solutions for the Tricomi operator}, Duke Math. J. 98 (3), 1999, pp. 465--483. \bibitem{barros-2} J. Barros-Neto, I. M. Gelfand; \emph{Fundamental solutions for the Tricomi operator II}, Duke Math. J. 111 (3), 2002, pp. 561--584. \bibitem{barros-3} J. Barros-Neto, I. M. Gelfand; \emph{Fundamental solutions for the Tricomi operator III}, Duke Math. J. 128 (1), 2005, pp. 119--140. \bibitem{bentrad} A. Bentrad; \emph{Exact solutions for a different version of the nonhomogeneous E-P-D equation}, Complex variables and elliptic equations,vol.51.No.3 March 2006, pp. 243--253. \bibitem{bers} L. Bers; \emph{Mathematical aspects of subsonic and transonic gas dynamics}, New York, London, 1958. \bibitem{bres} D. W. Bresters; \emph{On the equation of Euler-Poisson-Darboux}, Siam J.Math.Anal.1973 no.1, pp. 31--41. \bibitem{can-os-gr-pa} P. Candelas, X. Ossa, P. Greene, L. Parkes; \emph{A pair of Calabi- Yau manifolds as an exactly soluble superconformal theory}, Nucl. Phys. 1991. V. B539. 21--74. \bibitem{erdel} A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi; \emph{Higher Transcendental Functions}, vol. I, McGraw-Hill, New York, Toronto and London, 1953. \bibitem{fran} F. I. Frankl; \emph{Selected Works in Gas Dynamics}, Nauka, Moscow, 1973. \bibitem{has-1} A. Hasanov; \emph{The solution of the Cauchy problem for generalized Euler-Poisson-Darboux equation}, International Journal of Applied Mathematics and Statistics. vol. 8, M07, 2007, pp. 30--44. \bibitem{has-sri} A. Hasanov, H. M. Srivastava; \emph{Some decomposition formulas associated with the Lauricella function $F_{A}^{( r)}$ and other multiple hypergeometric functions}, Appl. Math. Lett. 19 (2006), no. 2, pp. 113--121. \bibitem{hor-de} R. P. Horja; \emph{Hypergeometric functions and mirror symmetry in toric varieties}, Preprint. 1999. math.AG/9912109. pp. 1-103. \bibitem{pas-ts-ch} M. Passare, A. K. Tsikh, A. A. Cheshel; \emph{Multiple Mellin-Barnes integrals as periods of Calabi-Yau manifolds with several moduli}, Theoretical and Mathematical Physics, December 1996, Vol.109, Issue 3, pp. 1544-1555. \bibitem{rassias} J. M. Rassias; \emph{Lecture Notes on Mixed Type Partial Differential Equations}, World Scientific, 1990. \bibitem{saito-st-tak} M. Saito, B. Sturmfels, N. Takayama; \emph{Grobner Deformations of Hypergeometric Differential Equations}, Springer Verlag. Berlin, Heidelberg. 1999. \bibitem{sai-1} M. Saigo; \emph{A Certain boundary value problem for the Euler-Darboux equations}, Math. Japonica, 24 (1979), 377--385. \bibitem{sai-2} M. Saigo; \emph{A Certain boundary value problem for the Euler-Darboux equations II}, Math. Japonica, 25 (1980), 211--220. \bibitem{sai-3} M. Saigo; \emph{A Certain boundary value problem for the Euler-Darboux equations III}, Math. Japonica, 26 (1981), 103--119. \bibitem{seil} R. B. Seilkhanova; \emph{Criteria of the unique solvability of the Darboux problem with deviation from the characteristics for the many-dimensional Euler Poisson-Darboux equation}, Mathematical Notes of YaSU. Yakutsk, 2008. Vol.15, No.1, pp. 106--117. \bibitem{smirnov-de} M. M. Smirnov; \emph{Equations of mixed type. Translations of Mathematical Monographs, 51}, American Mathematical Society, Providence, RI, 1978, pp. 232. \bibitem{var-de} A. Varchenko; \emph{Multidimensional Hypergeometric Functions and Representation Theory of Lie Algebras and Quantum Groups}, Advanced Series in Mathematical Physics 21. World Scientific. 1995. \bibitem{yag} K. Yagdjian; \emph{A note on the fundamental solution for the Tricomi-type equation in the hyperbolic domain}, J. Differential Equations 206 (2004) pp. 227--252. \end{thebibliography} \end{document}