\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{cite} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 102, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/102\hfil Existence and multiplicity of solutions] {Existence and multiplicity of solutions for nonhomogeneous Klein-Gordon-Maxwell equations} \author[L. Xu, H. Chen \hfil EJDE-2015/102\hfilneg] {Liping Xu, Haibo Chen} \address{Liping Xu \newline School of Mathematics and Statistics, Central South University, Changsha 410075, China.\newline Department of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471003, China} \email{x.liping@126.com} \address{Haibo Chen (corresponding author)\newline School of Mathematics and Statistics, Central South University, Changsha 410075, China} \email{math\_chb@csu.edu.cn} \thanks{Submitted January 21, 2015. Published April 16, 2015.} \makeatletter \@namedef{subjclassname@2010}{\textup{2010} Mathematics Subject Classification} \makeatother \subjclass[2010]{35J20, 35J65, 35J60} \keywords{Nonhomogeneous Klein-Gordon-Maxwell equations; \hfill\break\indent multiple solutions; Poho\u{z}aev identity; variational method} \begin{abstract} This article concerns the nonhomogeneous Klein-Gordon-Maxwell equation \begin{gather*} -\Delta u+u-(2\omega +\phi)\phi u= |u|^{p-1}u +h(x),\quad\text{in }\mathbb{R}^3,\\ \Delta \phi=(\omega +\phi)u^2,\quad\text{in }\mathbb{R}^3, \end{gather*} where $\omega>0$ is constant, $p\in(1,5)$. Under appropriate assumptions on $h(x)$, the existence of at least two solutions is obtained by applying the Ekeland's variational principle and the Mountain Pass Theorem in critical point theory. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this article, we consider the existence of multiple solutions for the nonhomogeneous Klein-Gordon-Maxwell equation \begin{equation} \begin{gathered} -\Delta u+u-(2\omega +\phi)\phi u= |u|^{p-1}u +h(x),\quad\text{in }\mathbb{R}^3,\\ \Delta \phi=(\omega +\phi)u^2, \quad\text{in }\mathbb{R}^3, \end{gathered}\label{e1.1} \end{equation} where $\omega>0$ is constant, $10$ is the Sobolev embedding constant. \item[(H3)] $\langle\nabla h(x),x\rangle \in L^2(\mathbb{R}^3)$. \end{itemize} Such system was first introduced in \cite{b1} as a model which describes the nonlinear Klein-Gordon field interacting with the electromagnetic field in the electrostatic case. The unknowns of the system are the field $u$ associated to the particle and the electric potential $\phi$, while $\omega$ denotes the phase. The presence of the nonlinear term simulates the interaction between many particles or external nonlinear perturbations. When $h(x)=0$, the homogeneous case, a several works have been devoted to the Klein-Gordon-Maxwell: \begin{equation} \begin{gathered} -\Delta u+[m^2-(\omega+\phi)^2]u=|u|^{p-1}u ,\quad\text{in } \mathbb{R}^3,\\ \Delta \phi=( \omega+\phi)u^2,\quad\text{in }\mathbb{R}^3. \end{gathered} \label{e1.2} \end{equation} The first result is due to Benci and Fortunato. In \cite{b1}, they proved the existence of infinitely many radially symmetric solutions for \eqref{e1.2} under the assumption $3\omega>0$ and $20,\,10$ large enough (see Theorem \ref{thm5.1}). Based on this observation, by using the cut-off technique as in \cite{j1}, we finally get a positive energy solution for problem \eqref{e1.1} with $\omega>0$ small enough. Our main results read as follows. \begin{theorem} \label{thm1.1} Let $p\in (2,5)$ and {\rm (H1)--(H3)} hold. Then, for all $\omega >0$, problem \eqref{e1.1} has at least two nontrivial solutions $u_0$ and $u_1$ such that $I_\omega(u_0)<00$ small, problem \eqref{e1.1} possesses two nontrivial solutions $u_0$ and $\tilde{u_1}$ such that $I_\omega(u_0)<00$ large enough, problem \eqref{e1.1} has no solution with positive energy. \end{theorem} \begin{remark} \label{rmk1.3}\rm According to our results, for any $\omega>0$, problem \eqref{e1.1} has always a solution with negative energy. \end{remark} Throughout this article m$C$ denotes various positive constants. \section{Variational setting} In this section, we introduce some preliminary results concerning the variational structure for \eqref{e1.1}. Our working space is $E:=H^1(\mathbb{R}^3)$ equipped with the inner product and norm $$ \langle u,v\rangle :=\int_{\mathbb{R}^3}{(\nabla u\cdot \nabla v+uv)dx},\quad \| u\|:=\langle u,u\rangle^{1/2}. $$ Let $D^{1,2}(\mathbb{R}^3)$ be the completion of $C_0^\infty(\mathbb{R}^3,R)$ with respect to the norm $$ \|u\|_{D^{1,2}}=(\int_{\mathbb{R}^3}{|\nabla u|^2dx})^{\frac{1}{2}}. $$ And for any $1\leq s<\infty$, $\|u\|_{L^s}:=(\int_{\mathbb{R}^3}|u|^s dx)^{\frac{1}{s}}$ denotes the usual norm of the Lebesgue space $L^s(\mathbb{R}^3)$. Due to the variational nature of problem \eqref{e1.1}, its weak solutions $(u,\phi )\in E\times D^{1,2}(\mathbb{R}^3)$ are critical points of the functional $J:E\times D^{1,2}(\mathbb{R}^3)\to R$ defined by \begin{align*} J(u,\phi)&=\frac{1}{2}\|u\|^2-\frac{1}{2}\int_{\mathbb{R}^3}{|\nabla \phi|^2dx} -\frac{1}{2}\int_{\mathbb{R}^3}(2\omega +\phi)\phi u^2dx \\ &\quad -\frac{1}{p+1}\int_{\mathbb{R}^3}{|u|^{p+1}dx}-\int_{\mathbb{R}^3}{h(x)u\,dx}. \end{align*} Obviously, the action functional $J$ belongs to $C^1(E\times D^{1,2}(\mathbb{R}^3),R)$ and exhibits a strong indefiniteness. To avoid the indefiniteness we apply a reduction method, as has been done by the aforementioned authors. \begin{lemma}[\cite{d1,d2}] \label{lem2.1} For every $u\in E$ there exists a unique $\phi=\phi_u \in D^{1,2}(\mathbb{R}^3)$ which solves $\Delta \phi=(w+\phi)u^2$. Furthermore \begin{itemize} \item[(i)] in the set $\{x:u(x)\neq 0\}$ we have $-\omega \leq \phi_u\leq 0$ for $\omega >0$; \item[(ii)] if $u$ is radially symmetric, $\phi_u$ is radial too. \end{itemize} According to Lemma \ref{lem2.1}, we can consider the functional $I_\omega:E\to R$ defined by $I_\omega(u)=J(u,\phi_u)$. After multiplying both members of the second equation in equations \eqref{e1.1} by $\phi_u$ and integrating by parts, we obtain \begin{equation} \int_{\mathbb{R}^3}|\nabla \phi_u|^2dx =-\int_{\mathbb{R}^3}\omega\phi_uu^2dx-\int_{\mathbb{R}^3}\phi_u^2u^2dx. \label{e2.1} \end{equation} Then, the reduced functional takes the form \begin{equation} I_\omega(u)=\frac{1}{2}\int_{\mathbb{R}^3}(|\nabla u|^2+u^2-\omega\phi_uu^2)dx -\frac{1}{p+1}\int_{\mathbb{R}^3}{|u|^{p+1}dx}-\int_{\mathbb{R}^3}{h(x)u\,dx}. \label{e2.2} \end{equation} Furthermore $I$ is $C^1$ and we have for any $u,v\in E$, \begin{equation} \begin{aligned} \langle I'_\omega(u),v\rangle &=\int_{\mathbb{R}^3}(\nabla u\cdot\nabla v+uv-(2\omega+\phi_u)\phi_uuv)dx\\ &\quad -\int_{\mathbb{R}^3}{|u|^{p-1}uv dx}-\int_{\mathbb{R}^3}{h(x)v\,dx}. \end{aligned} \label{e2.3} \end{equation} \end{lemma} \begin{remark} \label{rmk2.2} \rm By \eqref{e2.1}, we can note that $$ \|\phi_u\|_{D^{1,2}(\mathbb{R}^3)}^2\leq\int_{\mathbb{R}^3}\omega|\phi_u|u^2dx \leq\omega \|\phi_u\|_{L^6}\|u\|^2_{L^{12/5}}, $$ then $$ \|\phi_u\|_{D^{1,2}(\mathbb{R}^3)}\leq C_1\omega\|u\|^2_{L^{12/5}}, \quad \int_{\mathbb{R}^3}\omega|\phi_u|u^2dx\leq\omega C_1 \|u\|^4. $$ \end{remark} Now, we can apply \cite[Lemma 2.2]{d2} to our functional $I_\omega$ and obtain the following result. \begin{lemma} \label{lem2.3} The following statements are equivalent: \begin{itemize} \item[(1)] $(u,\phi)\in E\times D^{1,2}(\mathbb{R}^3)$ is a critical point of $J$ (i.e.$(u,\phi)$ is a solution of \eqref{e1.1}. \item[(2)] $u$ is a critical point of $I_\omega$ and $\phi =\phi_u$. \end{itemize} \end{lemma} Set $$ H^1_r(\mathbb{R}^3):=\{u\in H^1(\mathbb{R}^3):u=u(r),\; r=|x|\}. $$ We shall consider the functional $I_\omega$ on $H^1_r(\mathbb{R}^3)$. Then any critical point $u\in H^1_r(\mathbb{R}^3)$ of $I_\omega|_{H^1_r(\mathbb{R}^3)}$ is also a critical point of $I_\omega$ since $H^1_r(\mathbb{R}^3)$ is a natural constraint for $I_\omega$. Thus we are reduced to look for critical points of $I_\omega|_{H^1_r(\mathbb{R}^3)}$. In the following, we still denote $I_\omega|_{H^1_r(\mathbb{R}^3)}$ by $I_\omega$. It follows from \cite{b1} that for $20$ such that $$ \|u\|_{L^s}\leq \eta_s\|u\|,\quad \forall u\in H^1_r(\mathbb{R}^3). $$ To obtain our results, the following theorem will be needed in our argument. \begin{theorem}[\cite{j2}] \label{thm2.4} $(X,\|\cdot\|)$ is a Banach space and $S\subset R_+$ an interval. Let us consider the family of $C^1$ functionals on $X$ $$ I_\lambda (u)=A(u)-\lambda B(u),\quad \lambda \in S , $$ with $B$ nonnegative and either $A(u)\to +\infty $ or $B(u)\to+\infty$ as $\|u\|\to \infty$ and such that $I_\lambda(0)=0$. Set $$ \Gamma _\lambda=\{ \gamma \in C([0,1],X):\gamma (0)=0,I_\lambda(\gamma(1))<0\}, \quad\text{for any }\lambda \in S. $$ If for every $\lambda\in S$ the set $\Gamma_\lambda $ is nonempty and $ c_\lambda=\inf_{\gamma \in \Gamma _\lambda}\max _{t\in[0,1]}I_\lambda(\gamma(t))>0$, then for almost every $\lambda\in S$, there exists a sequence $\{u_n\}\subset X$ satisfying \begin{itemize} \item[(i)] $\{u_n\}$ is bounded; \item[(ii)] $I_\lambda (u_n)\to c_\lambda$; \item[(iii)] $I'_\lambda (u_n)\to 0$ in the dual $X^{-1}$ of $X$. \end{itemize} \end{theorem} \section{A weak solution with negative energy} In this section, we prove that \eqref{e1.1} has a weak solution with negative energy for any $\omega >0$ and $p\in (1,5)$. With the aid of Ekeland's variational principle, this weak solution is obtained by seeking a local minimum of the energy functional $I_\omega$. \begin{lemma} \label{lem3.1} Suppose that $p\in(1,5)$ and {\rm (H1)--(H2)} hold. Then there exist $\rho$, $\alpha$, and $m_p$ positive such that $I_\omega(u)|_{\|u\|=\rho}\geq \alpha >0$ for all $h$ satisfying $\|h\|_{L^2}0$ and $u\in H^1(\mathbb{R}^3)$, by Lemma \ref{lem2.1}, the H\"older inequality and Sobolev's embedding theorem, we have \begin{equation} \begin{aligned} I_\omega(u) &\geq\frac{1}{2}\|u\|^2-\frac{1}{p+1}\|u\|_{L^p}^{p+1}-\|h\|_{L^2}\|u\|\\ &\geq\frac{1}{2}\|u\|^2-\frac{\eta_p^{p+1}}{p+1}\|u\|^{p+1}-\|h\|_{L^2}\|u\|\\ &=\|u\|(\frac{1}{2}\|u\|-\frac{\eta_p^{p+1}}{p+1}\|u\|^{p}-\|h\|_{L^2}). \end{aligned} \label{e3.1} \end{equation} Set \[ g(t)=\frac{1}{2}t-\frac{\eta_p^{p+1}}{p+1}t^p\quad\text{for }t\geq 0. \] By direct calculations, we see that $\max_{t\geq 0}g(t)=g(\rho)=\frac{p-1}{2p}(\frac{p+1}{2p \eta_p^{p+1}}) ^{\frac{1}{p-1}}:=m_p $, where $\rho=(\frac{p+1}{2p \eta_p^{p+1}})^{\frac{1}{p-1}}$. Then it follows from \eqref{e3.1} that, if $\|h\|_{L^2}0$ such that $I_\omega(u)|_{\|u\|=\rho}\geq \alpha >0$ for all $\omega>0$. \end{proof} \begin{lemma} \label{lem3.2} If $p\in (1,5)$ and {\rm (H1)--(H2)} hold. Then, for any $\omega>0$, there exists $u_0\in H^1_r(\mathbb{R}^3)$ such that $$ I_\omega(u_0)=\inf\{I_\omega(u):u\in H^1_r(\mathbb{R}^3)\text{ and } \|u\|\leq \rho\}<0. $$ where $\rho$ is given by Lemma \ref{lem3.1}. Moreover, $u_0$ is a solution of problem \eqref{e1.1}. \end{lemma} \begin{proof} By (H1), we can choose a function $\varphi \in H^1_r(\mathbb{R}^3)$ such that $\int_{\mathbb{R}^3}h(x)\varphi dx>0$. Hence, for $t>0$ small enough, we obtain \begin{align*} I_\omega(t\varphi) &=\frac{t^2}{2}\int_{\mathbb{R}^3}(|\nabla \varphi|^2+\varphi^2)dx -\frac{1}{2}\int_{\mathbb{R}^3}\omega\phi_{t\varphi}(t\varphi)^2dx\\ &\quad -\frac{t^{p+1}}{p+1}\int_{\mathbb{R}^3}{|\varphi|^{p+1}dx} -t\int_{\mathbb{R}^3}{h(x)\varphi dx}\\ &\leq \frac{t^2}{2}\|\varphi\|^2+\frac{t^4C_1\omega}{2}\|\varphi\|^4 -\frac{t^{p+1}}{p+1}\int_{\mathbb{R}^3}{|\varphi|^{p+1}dx} -t\int_{\mathbb{R}^3}{h(x)\varphi dx}<0, \end{align*} which shows that $c_0=\inf\{I_\omega(u):u\in \bar{B}_\rho\}<0$, where \[ \bar{B}_\rho=\{u\in H^1_r(\mathbb{R}^3)\text{ and }\|u\|\leq \rho\}. \] By the Ekeland's variational principle, there exists a sequence $\{u_n\}\subset \bar{B}_\rho$ such that $$ c_0\leq I_\omega(u_n)\leq c_0+\frac{1}{n},\quad I_\omega(\vartheta)\geq I_\omega(u_n)-\frac{1}{n}\|\vartheta-u_n\|\quad \forall \vartheta\in \bar{B}_\rho. $$ By a standard procedure, see, for example \cite{z1}, we can show that $\{u_n\}$ is bounded (PS) sequence of $I_\omega$. Then, by the compactness of the embedding $H^1_r(\mathbb{R}^3)\hookrightarrow L^s(\mathbb{R}^3)(20,~p\in (2,5)$. It is well-known that, for $p\in[3,5)$, we can directly prove the boundedness of $\{u_n\}$ of the functional $I_\omega$. But for $p\in(1,3)$, it is not easy to do this. Particularly, $p\in(1,2)$ is the hardest case. To show the boundedness of a (PS) sequence of $I_\omega$ when $p\in(2,5)$ is also nontrivial. Here we have to use Theorem \ref{thm2.4}. Consider the approximation problem \begin{equation} \begin{gathered} -\Delta u+u-(2\omega +\phi)\phi u= \lambda|u|^{p-1}u +h(x),\quad\text{in } \mathbb{R}^3,\\ \Delta \phi=(\omega +\phi)u^2,\quad\text{in }\mathbb{R}^3, \end{gathered} \label{e*} \end{equation} where $p\in(2,5)$ and $\lambda\in[1/2,1]$. Set $X=H_r^1(\mathbb{R}^3)$, \[ A(u)=\frac{1}{2}\|u\|^2-\frac{1}{2}\int_{\mathbb{R}^3}\omega\phi_uu^2dx -\int_{\mathbb{R}^3}h(x)u\,dx \] and $ B(u)=\frac{1}{p+1}\int_{\mathbb{R}^3}{|u|^{p+1}dx}$. Thus we study the perturbed functional $$ I_{\omega,\lambda}(u)=\frac{1}{2}\int_{\mathbb{R}^3}(|\nabla u|^2 +u^2-\omega\phi_{u}u^2)dx-\int_{\mathbb{R}^3}h(x)u\,dx -\frac{\lambda}{p+1}\int_{\mathbb{R}^3}|u|^{p+1}dx. $$ Then, $I_{\omega,\lambda}$ is a family of $C^1$-functionals on $X$, $B(u)\geq 0$ and $A(u)\geq \frac{1}{2}\|u\|^2 -\|h\|_{L^2}\|u\|\to+\infty$ as $\|u\|\to \infty$. \begin{lemma} \label{lem4.1} Assume $p\in (1,5)$ and {\rm (H1)--(H2)} satisfy. Then, the following hold. \begin{itemize} \item[(i)] $\Gamma _\lambda \neq \emptyset$, for any $\lambda \in [1/2,1]$; \item[(ii)] There exists a constant $\tilde{c}$ such that $c_\lambda \geq \tilde{c}>0$ for all $\lambda \in [1/2,1]$. \end{itemize} \end{lemma} \begin{proof} (i) For any $\lambda\in[1/2,1]$, we choose a function $\psi\in X\geq (\not\equiv0)$. Then, by Lemma \ref{lem2.1}, we obtain $$ I_{\omega,\lambda}(t\psi)\leq \frac{t^2}{2}\|\psi\|^2 +\frac{t^2}{2}\omega ^2\int_{\mathbb{R}^3}\psi^2dx -\frac{t^{p+1}}{p+1}\int_{\mathbb{R}^3}{|\psi|^{p+1}dx}. $$ Since $p\in (1,5)$, there exists $t_0$ large enough such that $I_{\omega,\lambda}(t_0\psi)<0$. Hence $(i)$ holds. (ii) By Lemma \ref{lem2.1}, for any $u\in X$ and $\lambda \in [1/2,1]$, we have $$ I_{\omega,\lambda}(u) \geq \frac{1}{2}\|u\|^2 -\frac{1}{p+1}\int_{\mathbb{R}^3}{|u|^{p+1}dx} $$ Since $p>1$, we conclude that there exists $\rho >0$ such that $I_{\omega,\lambda} (u)>0$ for any $u\in X$ and $\lambda \in [1/2,1]$ with $\|u\|\leq \rho$. In particular, for any $\|u\|=\rho$, we have $I_{_\omega,\lambda} (u)>\tilde{c}>0$. Now fix $\lambda \in [1/2,1]$ and $\gamma \in \Gamma _\lambda$, by the definition of $ \Gamma _\lambda$, certainly $\|\gamma (1)\|>\rho$. By continuity, we deduce that there exists $t_\gamma \in (0,1)$ such that $\|\gamma (t_\gamma)\|=\rho$. Therefore, for any $\lambda \in [1/2,1]$, we have $$ c_\lambda \geq \inf_{\gamma\in \Gamma_\lambda}I_{\omega,\lambda} (\gamma (t_\gamma))\geq \tilde{c}>0. $$ Thus, (ii) holds. \end{proof} Since $I_{\omega,\lambda}(0)=0$, then by Lemma \ref{lem4.1} and Theorem \ref{thm2.4}, there exist (i) $\{\lambda_j\}\subset [1/2,1]$ such that $\lambda_j\to 1$ as $j\to \infty$ and (ii) a bounded sequence $\{v_n^{j}\}$ of the functional $I_{\omega,\lambda_j}$. By the compactness of the embedding $H^1_r(\mathbb{R}^3)\hookrightarrow L^s(\mathbb{R}^3)(20$, we show that problem \eqref{e1.1} has a solution $u_1$ satisfying $I_\omega(u_1)>0$. Combining with Lemma \ref{lem3.2}, we complete the proof. \end{proof} \section{Positive energy solution for $p\in (1,2]$} In this section, we first prove that \eqref{e1.1} with $10$ large enough. \begin{theorem} \label{thm5.1} Assume that $p\in(1,2]$ and {\rm (H1)--(H2)} hold (in fact, $h(x)$ may not be radially symmetric). Then \eqref{e1.1} has no solution with positive energy if $\omega>0$ is large enough. \end{theorem} \begin{proof} Let $u\in H^1(\mathbb{R}^3)$ be a solution of \eqref{e1.1}. Then $\langle I'_\omega(u),u\rangle=0$. By \eqref{e2.2} and \eqref{e2.3}, we have \begin{equation} \begin{aligned} I_\omega(u)&=-(\frac{1}{2}\int_{\mathbb{R}^3}|\nabla u|^2dx -\frac{3}{2}\int_{\mathbb{R}^3}\omega\phi_uu^2dx -\int_{\mathbb{R}^3}\phi_u^2u^2dx)\\ &\quad -\frac{1}{2}\int_{\mathbb{R}^3}u^2dx +\frac{p}{p+1}\int_{\mathbb{R}^3}|u|^{p+1}dx. \end{aligned} \label{e5.1} \end{equation} Similar to \cite[(20)]{r1}, we obtain \begin{equation} \sqrt{\frac{3}{4}}\int_{\mathbb{R}^3}(\omega+\phi_u)|u|^3 \leq \frac{1}{4}\int_{\mathbb{R}^3}|\nabla u|^2dx +\frac{3}{4}\int_{\mathbb{R}^3}|\nabla \phi|^2dx. \label{e5.2} \end{equation} Then, by Lemma \ref{lem2.1}, one has \begin{equation} \begin{aligned} \sqrt{3}\int_{\mathbb{R}^3}(\omega+\phi_u)|u|^3 &\leq \frac{1}{2}\int_{\mathbb{R}^3}|\nabla u|^2dx +\frac{3}{2}\int_{\mathbb{R}^3}|\nabla \phi|^2dx\\ &=\frac{1}{2}\int_{\mathbb{R}^3}|\nabla u|^2dx -\frac{3}{2}\int_{\mathbb{R}^3}\omega\phi_uu^2dx -\frac{3}{2}\int_{\mathbb{R}^3} \phi_u^2u^2dx\\ &\leq\frac{1}{2}\int_{\mathbb{R}^3}|\nabla u|^2dx -\frac{3}{2}\int_{\mathbb{R}^3}\omega\phi_uu^2dx -\int_{\mathbb{R}^3}\phi_u^2u^2dx. \end{aligned} \label{e5.3} \end{equation} For $p\in (1,2]$ and $\omega>0$ large enough such that $\omega+\phi_u>0$, it follows from \eqref{e5.1} and \eqref{e5.3} that $$ I_\omega(u)\leq-\{\sqrt{3}\int_{\mathbb{R}^3}[(\omega+\phi_u)|u|^3 +\frac{1}{2}u^2-\frac{ p}{p+1}|u|^{p+1}]dx\}<0. $$ Hence, problem \eqref{e1.1} must have no solution with positive energy if $\omega>0$ is large enough. \end{proof} Obviously, when $p\in (1,2]$, Theorem \ref{thm5.1} implies that we may find a solution with positive energy to problem \eqref{e1.1} only for $\omega>0$ small. To overcome the difficulty in finding bounded $(PS)_c(c>0)$ sequence for the associated functional $I_\omega$, following \cite{k1}, we introduce the cut-off function $\eta \in C^\infty (\mathbb{R}^+,\mathbb{R}^+)$ satisfying \begin{gather*} \eta (t)=1,\quad\text{for } t\in [0,1],\\ 0\leq \eta (t)\leq 1,\quad\text{for }t\in (1,2),\\ \eta (t)=0,\quad\text{for } t\in [2,+\infty),\\ |\eta'|_\infty \leq 2, \end{gather*} and consider the modified functional \begin{equation} \begin{aligned} I_{\omega,T}(u)&=\frac{1}{2}\int_{\mathbb{R}^3}(|\nabla u|^2+u^2)dx -\frac{\omega}{2}\int_{\mathbb{R}^3}K_T(u)\phi_uu^2dx\\ &\quad -\frac{1}{p+1}\int_{\mathbb{R}^3}{|u|^{p+1}dx}-\int_{\mathbb{R}^3}{h(x)u\,dx}. \end{aligned}\label{e5.4} \end{equation} where, for $T>0$, $K_T(u)=\eta (\frac{\|u\|^2}{T^2})$. If $h(x)=h(|x|)\in L^2(\mathbb{R}^3)$ and $p\in (1,5]$, then $I_{\omega,T}$ is a $C^1$ functional, and \begin{equation} \begin{aligned} \langle I_{\omega,T}'(u),v\rangle &=\int_{\mathbb{R}^3}(\nabla u\nabla v+uv)dx -\int_{\mathbb{R}^3}K_T(u)(2\omega+\phi_u)\phi_uuv\,dx\\ &\quad -\frac{\omega}{T^2}\eta' (\frac{\|u\|^2}{T^2})\int_{\mathbb{R}^3}\phi_uu^2dx \int_{\mathbb{R}^3}(\nabla u\nabla v+uv)dx\\ &\quad -\int_{\mathbb{R}^3}{|u|^{p-1}uv\,dx}-\int_{\mathbb{R}^3}{h(x)v\,dx}, \end{aligned}\label{e5.5} \end{equation} for every $u,v\in E$. \begin{lemma} \label{lem5.2} Assume that $p\in (1,5)$ and {\rm (H1)--(H2)}. Then the functional $I_{\omega,T}$ satisfies the following: \begin{itemize} \item[(i)] $I_{\omega,T}|_{\|u\|=\rho}>\alpha>0$ for all $\omega,T>0$. \item[(ii)] For each $T>0$, there exists a function $e_T\in H^1_r(\mathbb{R}^3)$ with $\|e_T\|> \rho$ such that $I_{\omega,T}(e_T)<0$, where $\rho,\alpha$ is given by Lemma \ref{lem3.1}. \end{itemize} \end{lemma} \begin{proof} The proof of (i) is similar to that of Lemma \ref{lem3.1}. (ii) we choose $\varphi \in E$ with $\varphi \geq 0$, $\|\varphi\|=1$. By \eqref{e5.4} and the definition of $\eta$, there exists $t_T\geq 2T>0$ large enough such that $K_T(t_T\varphi)=0$ and $I_{\omega,T}(t_T\varphi)<0$. Hence, $(ii)$ holds by taking $e_T=t_T\varphi$. Set $$ c_{\omega,T}=\inf_{\gamma\in\Gamma_{\omega,T}}\max_{t\in[0,1]} I_{\omega,T}(\gamma(t)), $$ where $\Gamma_{\omega,T}:=\{\gamma\in C([0,1],E):\gamma(0)=0,\gamma(1)=e_T\}$. Then, by Lemma \ref{lem5.2}, we have \begin{equation} c_{\omega,T}\geq \alpha>0,\quad\text{for all }\omega,\; T>0. \label{e5.6} \end{equation} Applying the Mountain Pass Theorem, there exists $\{u^n_{\omega,T}\}\in H_r^1(\mathbb{R}^3)$ (denoted by $\{u_n\}$ for simplicity) such that \begin{equation} I_{\omega,T}(u_n)\to c_{\omega,T},~(1+\|u_n\|)\|I'_{\omega,T}(u_n)\|_{H_r^{-1}}\to 0 \label{e5.7} \end{equation} as $n\to\infty$, where $H_r^{-1}$ denotes the dual space of $H_r^1(\mathbb{R}^3)$. \end{proof} \begin{lemma} \label{lem5.3} Suppose that $p\in(1,5)$ and {\rm (H1)--(H2)} hold. Let $\{u_n\}$ be given by \eqref{e5.7}. Then there exists $T_0>0$ such that $$ \lim_{n\to\infty}\sup\|u_n\|\leq \frac{T_0}{2},\quad \forall 0<\omega0$ there exists $0<\omega_T \frac{T}{2}$. So, up to a subsequence, we obtain $\|u_n\|\geq \frac{T}{2}$ for all $n\in \text N$. On the one hand, by $\eqref{e5.4}$, $\eqref{e5.5}$ and Lemma \ref{lem2.1}, we have \begin{align*} &(p+1)I_{\omega,T}(u_n)-\langle I'_{\omega,T}(u_n),u_n\rangle\\ &=\frac{p-1}{2}\|u_n\|^2 -\frac{\omega(p-3)}{2}\int_{\mathbb{R}^3} K_T(u_n)\phi_{u_n}u_n^2dx\\ &\quad +\int_{\mathbb{R}^3}K_T(u_n)\phi^2_{u_n}u_n^2dx +\frac{\omega}{T^2}\eta' (\frac{\|u_n\|^2}{T^2})\|u_n\|^2 \int_{\mathbb{R}^3}\phi_{u_n}u_n^2dx -p\int_{\mathbb{R}^3}h(x)u_ndx. \end{align*} Consequently, \begin{equation} \begin{aligned} &\frac{p-1}{2}\|u_n\|^2 -\|I'_{\omega,T}(u_n)\|\|u_n\|\\ &\leq\frac{p-1}{2}\|u_n\|^2 +\langle I'_{\omega,T}(u_n),u_n\rangle\\ &\leq(p+1)I_{\omega,T}(u_n)+\frac{\omega(p-3)}{2} \int_{\mathbb{R}^3}K_T(u_n)\phi_{u_n}u_n^2dx\\ &\quad +\int_{\mathbb{R}^3}K_T(u_n)\phi^2_{u_n}u_n^2dx -\frac{\omega}{T^2}\eta' (\frac{\|u_n\|^2}{T^2})\|u_n\|^2 \int_{\mathbb{R}^3}\phi_{u_n}u_n^2dx+p\int_{\mathbb{R}^3}h(x)u\,dx\\ &\leq (p+1)I_{\omega,T}(u_n)+\frac{\omega(p-3)}{2} \int_{\mathbb{R}^3}K_T(u_n)\phi_{u_n}u_n^2dx \\ & -\omega\int_{\mathbb{R}^3}K_T(u_n)\phi_{u_n}u_n^2dx -\frac{\omega}{T^2}\eta' (\frac{\|u_n\|^2}{T^2})\|u_n\|^2 \int_{\mathbb{R}^3}\phi_{u_n}u_n^2dx +p\int_{\mathbb{R}^3}h(x)u\,dx\\ &=(p+1)I_{\omega,T}(u_n)+\frac{\omega(5-p)}{2} \int_{\mathbb{R}^3}K_T(u_n)(-\phi_{u_n})u_n^2dx\\ &\quad +\frac{\omega}{T^2}\eta' (\frac{\|u_n\|^2}{T^2}) \|u_n\|^2\int_{\mathbb{R}^3}(-\phi_{u_n})u_n^2dx +p\int_{\mathbb{R}^3}h(x)u\,dx. \end{aligned}\label{e5.8} \end{equation} On the other hand, we claim that there exist $T_1, C, M_1>0$ such that \begin{equation} c_{\omega,T}\leq C\omega T^4+M_1,\quad\forall T\geq T_1. \label{e5.9} \end{equation} Let $\varphi$ be the function taken in the proof of (ii) of Lemma \ref{lem5.2}. By $\eqref{e5.4}$, we have \begin{equation} I_{\omega,T}(2T\varphi)\leq2T^2 -\frac{ 2^{p+1}}{p+1}T^{p+1}\|\varphi\|^{p+1}_{L^{p+1}}.\label{e5.10} \end{equation} Then there exists $T_1>0$ such that $I_{\omega,T}(2T\varphi)<0$ for all $T>T_1$. Thus \begin{equation} c_{\omega,T}\leq \max_{t\in [0,1]}I_{\omega,T}(2tT\varphi), \quad\forall T\geq T_1. \label{e5.11} \end{equation} By \eqref{e5.4} and Remark \ref{rmk2.2}, we have \begin{equation} \begin{aligned} &\max_{t\in [0,1]}I_{\omega,T}(2tT\varphi)\\ &\leq \max_{t\in [0,1]}\{2(tT)^2-\frac{ 2^{p+1}}{p+1}(tT)^{p+1} \|\varphi\|^{p+1}_{L^{p+1}}\} +\max_{t\in[0,1]}\{-\frac{\omega}{2}\int_{\mathbb{R}^3}\phi_{2tT\varphi} (2tT\varphi)^2dx\}\\ &\leq\max_{m\geq 0}\{2(m)^2-\frac{2^{p+1}}{p+1}(m)^{p+1} \|\varphi\|^{p+1}_{L^{p+1}}\}+C\omega T^4\\ &=M_1+C\omega T^4. \end{aligned}\label{e5.12} \end{equation} It follows from \eqref{e5.11} and \eqref{e5.12} that \eqref{e5.9} holds. By Remark \ref{rmk2.2}, and noting that $K_T(u_n)=0$ for $\|u_n\|^2\geq 2T^2$, we obtain \begin{gather} \int_{\mathbb{R}^3}K_T(u_n)(-\phi_{u_n})u_n^2dx\leq CT^4, \label{e5.13}\\ \eta' (\frac{\|u_n\|^2}{T^2})\frac{\|u_n\|^2}{T^2} \int_{\mathbb{R}^3}(-\phi_{u_n})u_n^2dx\leq CT^4. \label{e5.14} \end{gather} Combining \eqref{e5.7}, \eqref{e5.8}, \eqref{e5.9}, \eqref{e5.13} with \eqref{e5.14}, one has, for all $T>T_1$, \begin{equation} \frac{p-1}{2}\|u_n\|^2 \leq C_2\omega T^4 +M_2+p\int_{\mathbb{R}^3}h(x)u\,dx, \label{e5.15} \end{equation} where $C_2, M_2>0$ independent of $T$. Then, for any $\varepsilon>0$, by the inequality $\int_{\mathbb{R}^3}h(x)u_n\leq \varepsilon\|u_n\|^2+C(\varepsilon,\|h\|_{L^2})$ and \eqref{e5.15}, there exist $C,M>0$ independent of $T$ such that, for all $T>T_1$, \begin{equation} \|u_n\|^2 \leq C\omega T^4 +M. \label{e5.16} \end{equation} Since $0<\omega0$ large enough. Thus we complete the proof. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.2}] By Lemma \ref{lem5.3}, we obtain that $\{u_n\}$ is given by \eqref{e5.7} is bounded sequence of $I_\omega$ in $H^1_r(\mathbb{R}^3)$ for all $0<\omega0,\quad\text{as } n\to \infty. $$ Then, by the compactness of the embedding $H^1_r(\mathbb{R}^3)\hookrightarrow L^{s+1}(\mathbb{R}^3)(10$. Then, by Theorem \ref{thm5.1} and Lemma \ref{lem3.2}, we easily complete the proof. \end{proof} \subsection*{Acknowledgements} This research was supported by the Natural Science Foun-dation of China 11271372, by the Hunan Provincial Natural Science Foundation of China 12JJ2004, and by the Mathematics and Interdisciplinary Sciences project of CSU. The authors would like to thank the anonymous referee for his/her helpful comments and suggestions. \begin{thebibliography}{99} \bibitem{a1} Azzollini, A., Pomponio, A.; \newblock {Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations.} \newblock {Topol. Methods Nonlinear Anal., 35, 33-42 (2010)} \bibitem{b1} Benci, V., Fortunato, D.; \newblock {Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations.} \newblock {Rev. Math. Phys. 14, 409-420 (2002)} \bibitem{c1} Carri\~ao, P., Cunha, P., Miyagaki, O.; \newblock {Positive ground state solutions for the critical Klein-Gordon-Maxwell system with potentials.} \newblock {Nonlinear Analysis, 75, 4068-4078 (2012)} \bibitem{c2} Chen, S., Tang, C.; \newblock {Multiple solutions for nonhomogeneous Schr\"odinger-Maxwell and Klein-Gordon-Maxwell equations on $\mathbb{R}^3$.} \newblock {Nonlinear Differ. Equ. Appl., 17, 559-574 (2010)} \bibitem{d1} D'Aprile, T., Mugnai, D.; \newblock {Solitary waves for nonlinear Klein-Gordon-Maxwell and Schr\"odinger-Maxwell equations.} \newblock {Proc. R. Soc. Edinb. Sect. A, 134, 893-906 (2004)} \bibitem{d2} D'Aprile, T., Mugnai, D.; \newblock {Non-existence results for the coupled Klein-Gordon-Maxwell equations.} \newblock {Adv. Nonlinear Stud., 4, 307-322 (2004)} \bibitem{j1} Jeanjean, L., Le Coz, S.; \newblock {An existence and stability result for standing waves of nonlinear Schr\"odinger equations. } \newblock {Adv. Differential Equations, 11, 813-840 (2006)} \bibitem{j2} Jeanjean, L.; \newblock {Local conditions insuring bifurcation from the continuous spectrum.} \newblock {Math. Z., 232, 651-664 (1999)} \bibitem{j3} Jiang, Y., Wang, Z., Zhou, H.; \newblock {Multiple solutions for a nonhomogeneous Schr\"odinger-Maxwell system in $\mathbb{R}^3$.} \newblock {Nonlinear Analysis, 83, 50-57 (2013)} \bibitem{k1} Kikuchi, H.; \newblock {Existence and stability of standing waves for Schr\"odinger-Poisson-Slater equation,} \newblock {Adv. Nonlinear Stud., 7, 403-437 (2007)} \bibitem{r1} Ruiz, D.; \newblock {The Schr\"odinger-Poisson equation under the effect of a nonlinear local term.} \newblock {J. Funct. Anal., 237, 655-674 (2006)} \bibitem{z1} Zhu, X., Zhou, H.; \newblock {Existence of multiple positive solutions of inhomogeneous semilinear elliptic problems in unbounded domains.} \newblock {Proc. Roy. Soc. Edinburgh Sect. A, 115, 301-318 (1990)} \end{thebibliography} \end{document}