\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{cite} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 102, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/102\hfil Existence and multiplicity of solutions] {Existence and multiplicity of solutions for nonhomogeneous Klein-Gordon-Maxwell equations} \author[L. Xu, H. Chen \hfil EJDE-2015/102\hfilneg] {Liping Xu, Haibo Chen} \address{Liping Xu \newline School of Mathematics and Statistics, Central South University, Changsha 410075, China.\newline Department of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471003, China} \email{x.liping@126.com} \address{Haibo Chen (corresponding author)\newline School of Mathematics and Statistics, Central South University, Changsha 410075, China} \email{math\_chb@csu.edu.cn} \thanks{Submitted January 21, 2015. Published April 16, 2015.} \makeatletter \@namedef{subjclassname@2010}{\textup{2010} Mathematics Subject Classification} \makeatother \subjclass[2010]{35J20, 35J65, 35J60} \keywords{Nonhomogeneous Klein-Gordon-Maxwell equations; \hfill\break\indent multiple solutions; Poho\u{z}aev identity; variational method} \begin{abstract} This article concerns the nonhomogeneous Klein-Gordon-Maxwell equation \begin{gather*} -\Delta u+u-(2\omega +\phi)\phi u= |u|^{p-1}u +h(x),\quad\text{in }\mathbb{R}^3,\\ \Delta \phi=(\omega +\phi)u^2,\quad\text{in }\mathbb{R}^3, \end{gather*} where $\omega>0$ is constant, $p\in(1,5)$. Under appropriate assumptions on $h(x)$, the existence of at least two solutions is obtained by applying the Ekeland's variational principle and the Mountain Pass Theorem in critical point theory. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} In this article, we consider the existence of multiple solutions for the nonhomogeneous Klein-Gordon-Maxwell equation \begin{equation} \begin{gathered} -\Delta u+u-(2\omega +\phi)\phi u= |u|^{p-1}u +h(x),\quad\text{in }\mathbb{R}^3,\\ \Delta \phi=(\omega +\phi)u^2, \quad\text{in }\mathbb{R}^3, \end{gathered}\label{e1.1} \end{equation} where $\omega>0$ is constant, $1
0$ is the Sobolev embedding constant. \item[(H3)] $\langle\nabla h(x),x\rangle \in L^2(\mathbb{R}^3)$. \end{itemize} Such system was first introduced in \cite{b1} as a model which describes the nonlinear Klein-Gordon field interacting with the electromagnetic field in the electrostatic case. The unknowns of the system are the field $u$ associated to the particle and the electric potential $\phi$, while $\omega$ denotes the phase. The presence of the nonlinear term simulates the interaction between many particles or external nonlinear perturbations. When $h(x)=0$, the homogeneous case, a several works have been devoted to the Klein-Gordon-Maxwell: \begin{equation} \begin{gathered} -\Delta u+[m^2-(\omega+\phi)^2]u=|u|^{p-1}u ,\quad\text{in } \mathbb{R}^3,\\ \Delta \phi=( \omega+\phi)u^2,\quad\text{in }\mathbb{R}^3. \end{gathered} \label{e1.2} \end{equation} The first result is due to Benci and Fortunato. In \cite{b1}, they proved the existence of infinitely many radially symmetric solutions for \eqref{e1.2} under the assumption $3
\omega>0$ and $2
0,\,1
0$ large
enough (see Theorem \ref{thm5.1}). Based on this observation, by using the cut-off
technique as in \cite{j1}, we finally get a positive energy solution for
problem \eqref{e1.1} with $\omega>0$ small enough.
Our main results read as follows.
\begin{theorem} \label{thm1.1}
Let $p\in (2,5)$ and {\rm (H1)--(H3)} hold. Then, for all $\omega >0$,
problem \eqref{e1.1} has at least two nontrivial solutions $u_0$ and $u_1$
such that $I_\omega(u_0)<0 0$ large enough.
\begin{theorem} \label{thm5.1}
Assume that $p\in(1,2]$ and {\rm (H1)--(H2)} hold (in fact, $h(x)$
may not be radially symmetric). Then \eqref{e1.1} has no
solution with positive energy if $\omega>0$ is large enough.
\end{theorem}
\begin{proof}
Let $u\in H^1(\mathbb{R}^3)$ be a solution of \eqref{e1.1}.
Then $\langle I'_\omega(u),u\rangle=0$. By \eqref{e2.2} and \eqref{e2.3}, we have
\begin{equation}
\begin{aligned}
I_\omega(u)&=-(\frac{1}{2}\int_{\mathbb{R}^3}|\nabla u|^2dx
-\frac{3}{2}\int_{\mathbb{R}^3}\omega\phi_uu^2dx
-\int_{\mathbb{R}^3}\phi_u^2u^2dx)\\
&\quad -\frac{1}{2}\int_{\mathbb{R}^3}u^2dx
+\frac{p}{p+1}\int_{\mathbb{R}^3}|u|^{p+1}dx.
\end{aligned}
\label{e5.1}
\end{equation}
Similar to \cite[(20)]{r1}, we obtain
\begin{equation}
\sqrt{\frac{3}{4}}\int_{\mathbb{R}^3}(\omega+\phi_u)|u|^3
\leq \frac{1}{4}\int_{\mathbb{R}^3}|\nabla u|^2dx
+\frac{3}{4}\int_{\mathbb{R}^3}|\nabla \phi|^2dx.
\label{e5.2}
\end{equation}
Then, by Lemma \ref{lem2.1}, one has
\begin{equation}
\begin{aligned}
\sqrt{3}\int_{\mathbb{R}^3}(\omega+\phi_u)|u|^3
&\leq \frac{1}{2}\int_{\mathbb{R}^3}|\nabla u|^2dx
+\frac{3}{2}\int_{\mathbb{R}^3}|\nabla \phi|^2dx\\
&=\frac{1}{2}\int_{\mathbb{R}^3}|\nabla u|^2dx
-\frac{3}{2}\int_{\mathbb{R}^3}\omega\phi_uu^2dx
-\frac{3}{2}\int_{\mathbb{R}^3} \phi_u^2u^2dx\\
&\leq\frac{1}{2}\int_{\mathbb{R}^3}|\nabla u|^2dx
-\frac{3}{2}\int_{\mathbb{R}^3}\omega\phi_uu^2dx
-\int_{\mathbb{R}^3}\phi_u^2u^2dx.
\end{aligned} \label{e5.3}
\end{equation}
For $p\in (1,2]$ and $\omega>0$ large enough such that $\omega+\phi_u>0$,
it follows from \eqref{e5.1} and \eqref{e5.3} that
$$
I_\omega(u)\leq-\{\sqrt{3}\int_{\mathbb{R}^3}[(\omega+\phi_u)|u|^3
+\frac{1}{2}u^2-\frac{ p}{p+1}|u|^{p+1}]dx\}<0.
$$
Hence, problem \eqref{e1.1} must have no solution with positive energy if
$\omega>0$ is large enough.
\end{proof}
Obviously, when $p\in (1,2]$, Theorem \ref{thm5.1} implies that we may find a solution
with positive energy to problem \eqref{e1.1} only for $\omega>0$ small.
To overcome the difficulty in finding bounded $(PS)_c(c>0)$ sequence for
the associated functional $I_\omega$, following \cite{k1}, we introduce the
cut-off function
$\eta \in C^\infty (\mathbb{R}^+,\mathbb{R}^+)$ satisfying
\begin{gather*}
\eta (t)=1,\quad\text{for } t\in [0,1],\\
0\leq \eta (t)\leq 1,\quad\text{for }t\in (1,2),\\
\eta (t)=0,\quad\text{for } t\in [2,+\infty),\\
|\eta'|_\infty \leq 2,
\end{gather*}
and consider the modified functional
\begin{equation}
\begin{aligned}
I_{\omega,T}(u)&=\frac{1}{2}\int_{\mathbb{R}^3}(|\nabla u|^2+u^2)dx
-\frac{\omega}{2}\int_{\mathbb{R}^3}K_T(u)\phi_uu^2dx\\
&\quad -\frac{1}{p+1}\int_{\mathbb{R}^3}{|u|^{p+1}dx}-\int_{\mathbb{R}^3}{h(x)u\,dx}.
\end{aligned}\label{e5.4}
\end{equation}
where, for $T>0$, $K_T(u)=\eta (\frac{\|u\|^2}{T^2})$.
If $h(x)=h(|x|)\in L^2(\mathbb{R}^3)$ and $p\in (1,5]$, then
$I_{\omega,T}$ is a $C^1$ functional, and
\begin{equation}
\begin{aligned}
\langle I_{\omega,T}'(u),v\rangle
&=\int_{\mathbb{R}^3}(\nabla u\nabla v+uv)dx
-\int_{\mathbb{R}^3}K_T(u)(2\omega+\phi_u)\phi_uuv\,dx\\
&\quad -\frac{\omega}{T^2}\eta' (\frac{\|u\|^2}{T^2})\int_{\mathbb{R}^3}\phi_uu^2dx
\int_{\mathbb{R}^3}(\nabla u\nabla v+uv)dx\\
&\quad -\int_{\mathbb{R}^3}{|u|^{p-1}uv\,dx}-\int_{\mathbb{R}^3}{h(x)v\,dx},
\end{aligned}\label{e5.5}
\end{equation}
for every $u,v\in E$.
\begin{lemma} \label{lem5.2}
Assume that $p\in (1,5)$ and {\rm (H1)--(H2)}. Then the functional
$I_{\omega,T}$ satisfies the following:
\begin{itemize}
\item[(i)] $I_{\omega,T}|_{\|u\|=\rho}>\alpha>0$ for all $\omega,T>0$.
\item[(ii)] For each $T>0$, there exists a function $e_T\in H^1_r(\mathbb{R}^3)$
with
$\|e_T\|> \rho$ such that $I_{\omega,T}(e_T)<0$, where
$\rho,\alpha$ is given by Lemma \ref{lem3.1}.
\end{itemize}
\end{lemma}
\begin{proof} The proof of (i) is similar to that of Lemma \ref{lem3.1}.
(ii) we choose $\varphi \in E$ with $\varphi \geq 0$, $\|\varphi\|=1$.
By \eqref{e5.4} and the definition of $\eta$, there exists $t_T\geq 2T>0$
large enough such that $K_T(t_T\varphi)=0$ and $I_{\omega,T}(t_T\varphi)<0$.
Hence, $(ii)$ holds by taking $e_T=t_T\varphi$.
Set
$$
c_{\omega,T}=\inf_{\gamma\in\Gamma_{\omega,T}}\max_{t\in[0,1]}
I_{\omega,T}(\gamma(t)),
$$
where $\Gamma_{\omega,T}:=\{\gamma\in C([0,1],E):\gamma(0)=0,\gamma(1)=e_T\}$.
Then, by Lemma \ref{lem5.2}, we have
\begin{equation}
c_{\omega,T}\geq \alpha>0,\quad\text{for all }\omega,\; T>0.
\label{e5.6}
\end{equation}
Applying the Mountain Pass Theorem, there exists
$\{u^n_{\omega,T}\}\in H_r^1(\mathbb{R}^3)$ (denoted by $\{u_n\}$
for simplicity) such that
\begin{equation}
I_{\omega,T}(u_n)\to c_{\omega,T},~(1+\|u_n\|)\|I'_{\omega,T}(u_n)\|_{H_r^{-1}}\to 0
\label{e5.7}
\end{equation}
as $n\to\infty$, where $H_r^{-1}$ denotes the dual space of $H_r^1(\mathbb{R}^3)$.
\end{proof}
\begin{lemma} \label{lem5.3}
Suppose that $p\in(1,5)$ and {\rm (H1)--(H2)} hold. Let $\{u_n\}$ be given
by \eqref{e5.7}. Then there exists $T_0>0$ such that
$$
\lim_{n\to\infty}\sup\|u_n\|\leq \frac{T_0}{2},\quad
\forall 0<\omega0$ such that
$$
\|u\|_{L^s}\leq \eta_s\|u\|,\quad \forall u\in H^1_r(\mathbb{R}^3).
$$
To obtain our results, the following theorem will be needed in our argument.
\begin{theorem}[\cite{j2}] \label{thm2.4}
$(X,\|\cdot\|)$ is a Banach space and $S\subset R_+$ an interval.
Let us consider the family of $C^1$ functionals on $X$
$$
I_\lambda (u)=A(u)-\lambda B(u),\quad \lambda \in S ,
$$
with $B$ nonnegative and either $A(u)\to +\infty $ or $B(u)\to+\infty$
as $\|u\|\to \infty$ and such that $I_\lambda(0)=0$. Set
$$
\Gamma _\lambda=\{ \gamma \in C([0,1],X):\gamma (0)=0,I_\lambda(\gamma(1))<0\},
\quad\text{for any }\lambda \in S.
$$
If for every $\lambda\in S$ the set $\Gamma_\lambda $ is nonempty and
$ c_\lambda=\inf_{\gamma \in \Gamma _\lambda}\max _{t\in[0,1]}I_\lambda(\gamma(t))>0$,
then for almost every $\lambda\in S$, there exists a sequence
$\{u_n\}\subset X$ satisfying
\begin{itemize}
\item[(i)] $\{u_n\}$ is bounded;
\item[(ii)] $I_\lambda (u_n)\to c_\lambda$;
\item[(iii)] $I'_\lambda (u_n)\to 0$ in the dual $X^{-1}$ of $X$.
\end{itemize}
\end{theorem}
\section{A weak solution with negative energy}
In this section, we prove that \eqref{e1.1} has a weak solution with negative
energy for any $\omega >0$ and $p\in (1,5)$.
With the aid of Ekeland's variational principle, this weak solution is obtained
by seeking a local minimum of the energy functional $I_\omega$.
\begin{lemma} \label{lem3.1}
Suppose that $p\in(1,5)$ and {\rm (H1)--(H2)} hold. Then there
exist $\rho$, $\alpha$, and $m_p$ positive such that $I_\omega(u)|_{\|u\|=\rho}\geq \alpha >0$
for all $h$ satisfying $\|h\|_{L^2}0,~p\in (2,5)$. It is well-known that,
for $p\in[3,5)$, we can directly prove the boundedness of $\{u_n\}$
of the functional $I_\omega$. But for $p\in(1,3)$, it is not easy to do this.
Particularly, $p\in(1,2)$ is the hardest case. To show the boundedness of
a (PS) sequence of $I_\omega$ when $p\in(2,5)$ is also nontrivial.
Here we have to use Theorem \ref{thm2.4}. Consider the approximation problem
\begin{equation}
\begin{gathered}
-\Delta u+u-(2\omega +\phi)\phi u= \lambda|u|^{p-1}u +h(x),\quad\text{in }
\mathbb{R}^3,\\
\Delta \phi=(\omega +\phi)u^2,\quad\text{in }\mathbb{R}^3,
\end{gathered} \label{e*}
\end{equation}
where $p\in(2,5)$ and $\lambda\in[1/2,1]$. Set $X=H_r^1(\mathbb{R}^3)$,
\[
A(u)=\frac{1}{2}\|u\|^2-\frac{1}{2}\int_{\mathbb{R}^3}\omega\phi_uu^2dx
-\int_{\mathbb{R}^3}h(x)u\,dx
\]
and $ B(u)=\frac{1}{p+1}\int_{\mathbb{R}^3}{|u|^{p+1}dx}$.
Thus we study the perturbed functional
$$
I_{\omega,\lambda}(u)=\frac{1}{2}\int_{\mathbb{R}^3}(|\nabla u|^2
+u^2-\omega\phi_{u}u^2)dx-\int_{\mathbb{R}^3}h(x)u\,dx
-\frac{\lambda}{p+1}\int_{\mathbb{R}^3}|u|^{p+1}dx.
$$
Then, $I_{\omega,\lambda}$ is a family of $C^1$-functionals on $X$,
$B(u)\geq 0$ and $A(u)\geq \frac{1}{2}\|u\|^2 -\|h\|_{L^2}\|u\|\to+\infty$
as $\|u\|\to \infty$.
\begin{lemma} \label{lem4.1}
Assume $p\in (1,5)$ and {\rm (H1)--(H2)} satisfy. Then, the following hold.
\begin{itemize}
\item[(i)] $\Gamma _\lambda \neq \emptyset$, for any
$\lambda \in [1/2,1]$;
\item[(ii)]
There exists a constant $\tilde{c}$ such that $c_\lambda \geq \tilde{c}>0$
for all $\lambda \in [1/2,1]$.
\end{itemize}
\end{lemma}
\begin{proof} (i) For any $\lambda\in[1/2,1]$, we choose a function
$\psi\in X\geq (\not\equiv0)$. Then, by Lemma \ref{lem2.1}, we obtain
$$
I_{\omega,\lambda}(t\psi)\leq \frac{t^2}{2}\|\psi\|^2
+\frac{t^2}{2}\omega ^2\int_{\mathbb{R}^3}\psi^2dx
-\frac{t^{p+1}}{p+1}\int_{\mathbb{R}^3}{|\psi|^{p+1}dx}.
$$
Since $p\in (1,5)$, there exists $t_0$ large enough such that
$I_{\omega,\lambda}(t_0\psi)<0$. Hence $(i)$ holds.
(ii) By Lemma \ref{lem2.1}, for any $u\in X$ and $\lambda \in [1/2,1]$, we have
$$
I_{\omega,\lambda}(u) \geq \frac{1}{2}\|u\|^2
-\frac{1}{p+1}\int_{\mathbb{R}^3}{|u|^{p+1}dx}
$$
Since $p>1$, we conclude that there exists $\rho >0$ such that
$I_{\omega,\lambda} (u)>0$ for any $u\in X$ and
$\lambda \in [1/2,1]$ with $\|u\|\leq \rho$.
In particular, for any $\|u\|=\rho$, we have
$I_{_\omega,\lambda} (u)>\tilde{c}>0$. Now fix $\lambda \in [1/2,1]$
and $\gamma \in \Gamma _\lambda$, by the definition of $ \Gamma _\lambda$,
certainly $\|\gamma (1)\|>\rho$. By continuity, we deduce that there exists
$t_\gamma \in (0,1)$ such that $\|\gamma (t_\gamma)\|=\rho$.
Therefore, for any $\lambda \in [1/2,1]$,
we have
$$
c_\lambda \geq \inf_{\gamma\in \Gamma_\lambda}I_{\omega,\lambda}
(\gamma (t_\gamma))\geq \tilde{c}>0.
$$
Thus, (ii) holds.
\end{proof}
Since $I_{\omega,\lambda}(0)=0$, then by Lemma \ref{lem4.1} and Theorem \ref{thm2.4}, there
exist (i) $\{\lambda_j\}\subset [1/2,1]$ such that
$\lambda_j\to 1$ as $j\to \infty$ and (ii) a bounded sequence
$\{v_n^{j}\}$ of the functional $I_{\omega,\lambda_j}$.
By the compactness of the embedding
$H^1_r(\mathbb{R}^3)\hookrightarrow L^s(\mathbb{R}^3)(20$, we show that problem \eqref{e1.1} has a solution $u_1$
satisfying $I_\omega(u_1)>0$. Combining with Lemma \ref{lem3.2},
we complete the proof.
\end{proof}
\section{Positive energy solution for $p\in (1,2]$}
In this section, we first prove that \eqref{e1.1} with $10$.
Then, by Theorem \ref{thm5.1} and Lemma \ref{lem3.2}, we easily complete the proof.
\end{proof}
\subsection*{Acknowledgements}
This research was supported by
the Natural Science Foun-dation of China 11271372,
by the Hunan Provincial Natural Science Foundation of China 12JJ2004,
and by the Mathematics and Interdisciplinary Sciences project of CSU.
The authors would like to thank the anonymous referee for his/her
helpful comments and suggestions.
\begin{thebibliography}{99}
\bibitem{a1}
Azzollini, A., Pomponio, A.;
\newblock {Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations.}
\newblock {Topol. Methods Nonlinear Anal., 35, 33-42 (2010)}
\bibitem{b1}
Benci, V., Fortunato, D.;
\newblock {Solitary waves of the nonlinear Klein-Gordon equation coupled
with the Maxwell equations.}
\newblock {Rev. Math. Phys. 14, 409-420 (2002)}
\bibitem{c1}
Carri\~ao, P., Cunha, P., Miyagaki, O.;
\newblock {Positive ground state solutions for the critical Klein-Gordon-Maxwell
system with potentials.}
\newblock {Nonlinear Analysis, 75, 4068-4078 (2012)}
\bibitem{c2}
Chen, S., Tang, C.;
\newblock {Multiple solutions for nonhomogeneous Schr\"odinger-Maxwell
and Klein-Gordon-Maxwell equations on $\mathbb{R}^3$.}
\newblock {Nonlinear Differ. Equ. Appl., 17, 559-574 (2010)}
\bibitem{d1}
D'Aprile, T., Mugnai, D.;
\newblock {Solitary waves for nonlinear Klein-Gordon-Maxwell and Schr\"odinger-Maxwell equations.}
\newblock {Proc. R. Soc. Edinb. Sect. A, 134, 893-906 (2004)}
\bibitem{d2}
D'Aprile, T., Mugnai, D.;
\newblock {Non-existence results for the coupled Klein-Gordon-Maxwell equations.}
\newblock {Adv. Nonlinear Stud., 4, 307-322 (2004)}
\bibitem{j1}
Jeanjean, L., Le Coz, S.;
\newblock {An existence and stability result for standing waves of
nonlinear Schr\"odinger equations. }
\newblock {Adv. Differential Equations, 11, 813-840 (2006)}
\bibitem{j2}
Jeanjean, L.;
\newblock {Local conditions insuring bifurcation from the continuous spectrum.}
\newblock {Math. Z., 232, 651-664 (1999)}
\bibitem{j3}
Jiang, Y., Wang, Z., Zhou, H.;
\newblock {Multiple solutions for a nonhomogeneous Schr\"odinger-Maxwell system
in $\mathbb{R}^3$.}
\newblock {Nonlinear Analysis, 83, 50-57 (2013)}
\bibitem{k1}
Kikuchi, H.;
\newblock {Existence and stability of standing waves for Schr\"odinger-Poisson-Slater
equation,}
\newblock {Adv. Nonlinear Stud., 7, 403-437 (2007)}
\bibitem{r1}
Ruiz, D.;
\newblock {The Schr\"odinger-Poisson equation under the effect of a nonlinear
local term.}
\newblock {J. Funct. Anal., 237, 655-674 (2006)}
\bibitem{z1}
Zhu, X., Zhou, H.;
\newblock {Existence of multiple positive solutions of inhomogeneous
semilinear elliptic problems in unbounded domains.}
\newblock {Proc. Roy. Soc. Edinburgh Sect. A, 115, 301-318 (1990)}
\end{thebibliography}
\end{document}