\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{cite,amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 103, pp. 1--18.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/103\hfil Nonlinear periodic problems] {Positive solutions for parametric nonlinear periodic problems with competing nonlinearities} \author[S. Aizicovici, N. S. Papageorgiou, V. Staicu \hfil EJDE-2015/103\hfilneg] {Sergiu Aizicovici, Nikolaos S. Papageorgiou, Vasile Staicu} \address{Sergiu Aizicovici \newline Department of Mathematics, Ohio University, Athens, OH 45701, USA} \email{aizicovs@ohio.edu} \address{Nikolaos S. Papageorgiou \newline Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece} \email{npapg@math.ntua.gr} \address{Vasile Staicu \newline Department of Mathematics, CIDMA, University of Aveiro, Campus Universit\'ario de Santiago, 3810-193 Aveiro, Portugal} \email{vasile@ua.pt} \thanks{Submitted September 29, 2014. Published April 16, 2015.} \subjclass[2000]{34B15, 34B18, 34C25} \keywords{Nonhomogeneous differential operator; positive solution; \hfill\break\indent local minimizer; nonlinear maximum principle; mountain pass theorem; bifurcation} \begin{abstract} We consider a nonlinear periodic problem driven by a nonhomogeneous differential operator plus an indefinite potential and a reaction having the competing effects of concave and convex terms. For the superlinear (concave) term we do not employ the usual in such cases Ambrosetti-Rabinowitz condition. Using variational methods together with truncation, perturbation and comparison techniques, we prove a bifurcation-type theorem describing the set of positive solutions as the parameter varies. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction} In this article we study the nonlinear periodic problem $(P_\lambda)$, \begin{equation} \begin{gathered} -(a(| u'(t) |)u'(t)) '+\beta(t) u(t) ^{p-1} =\lambda u(t) ^{q-1}+f(t,u(t)) \quad\text{a.e. on }T:=[ 0,b] \\ u(0) =u(b) ,\quad u'(0)=u'(b) ,\quad u>0,\;10$ is a parameter, and the term $\lambda x^{q-1}$ (for $x\geq0$) is a ``concave'' (that is, $(p-1)$-sublinear) contribution to the reaction of problem \eqref{ePlambda}. The perturbation $f(t,x) $ is a Carath\'{e}odory function (i.e., for all $x\in\mathbb{R}$, $t\to f(t,x) $ is measurable and for almost all $t\in T$, $x\to f(t,x) $ is continuous), which exhibits $(p-1)$-superlinear growth near $+\infty$, but without satisfying the usual in such cases Ambrosetti-Rabinowitz condition (AR-condition for short). So, in the reaction of \eqref{ePlambda} we have the competing effects of concave and convex nonlinearities. Our aim is to describe the dependence on the parameter $\lambda>0$ of the set of positive solutions of problem \eqref{ePlambda}. We prove a bifurcation-type theorem asserting the existence of a critical parameter value $\lambda^{\ast}>0$ such that for all $\lambda\in( 0,\lambda^{\ast}) $, problem \eqref{ePlambda} admits at least two positive solutions, for $\lambda=\lambda^{\ast}$, problem \eqref{ePlambda} has at least one positive solution, and for $\lambda>\lambda^{\ast}$, there are no positive solutions for problem \eqref{ePlambda}. Recently, such a result was proved by Aizicovici-Papageorgiou-Staicu \cite{Aiz-Pa-St12} for equations driven by the scalar $p$-Laplacian (that is, $a(| x|) x=| x| ^{p-2}x$ with $10$) which is strictly $(p-1) $-sublinear near $+\infty$. So, they deal with a coercive problem with no competition of different nonlinearities in the reaction. Nonlinear, nonhomogeneous periodic problems with a positive potential function $\beta\in L^{\infty}( T) _{+}\backslash\{ 0\} $ and with competing nonlinearities in the reaction (concave-convex terms) were studied by Aizicovici-Papageorgiou-Staicu \cite{Aiz-Pa-St16}. In that paper the emphasis is on the existence of nodal (that is, sign changing) solutions. Our investigation is motivated by applications of physical interest. For instance, in the work of Br\'{e}zis-Mawhin \cite{Br-Ma} some concrete quasilinear inertia terms arise in the context of the study of the relativistic motion of particles. The corresponding differential operator is different, however it seems possible to adapt our results to the framework of \cite{Br-Ma}. Also, our problem is related to the stationary version of the parabolic equations studied by Badii-Diaz \cite{Ba-Di} in the context of some catalysis and chemical reaction models. Finally, we mention that multiplicity results for positive solutions of equations driven by the scalar $p$-Laplacian with Dirichlet and Sturm-Liouville boundary conditions, were proved by Ben Naoum-De Coster \cite{BeN-DCo}, De Coster \cite{DeC}, Manasevich-Njoku-Zanolin \cite{Ma-NJ-Za}, Njoku-Zanolin \cite{NJ-Za}. For periodic problems driven by the scalar $p$-Laplacian, we mention the works of Hu-Papageorgiou \cite{Hu-Pa7} and Wang \cite{Wan2}. Our approach is variational, based on the critical point theory, combined with suitable truncations and comparison techniques. In the next section, for easy reference, we recall the main mathematical tools that we will use in the sequel. We also introduce the hypotheses on the map $x\to a(| x|) x$ and state some useful consequences of these conditions. Our main result is stated and proved in Section 3. \section{Preliminaries} Let $(X,\|\cdot\| $ be a Banach space and $(X^{\ast},\|\cdot\| _{\ast}) $ its topological dual. By $\langle .,.\rangle $ we denote the duality brackets for the pair $(X^{\ast},X) $ and by $\overset{w}{\to}$ the weak convergence in $X$. A map $A:X\to X^{\ast}$ is said to be \textit{of type }$(S) _{+}$, if for every sequence $\{x_{n}\} _{n\geq1}\subseteq X$\ such that $x_{n}\overset{w}{\to}x$ in $X$ and \[ \limsup_{n\to\infty}\langle A(x_{n}),x_{n}-x\rangle \leq0, \] one has \[ x_{n}\to x\quad \text{in $X$ as }n\to\infty. \] Let $\varphi\in C^{1}(X) $. We say that $x^{\ast}\in X$ is a critical point of $\varphi$ if $\varphi'(x^{\ast}) =0$. If $x^{\ast}\in X$ is a critical point of $\varphi$, then $c=\varphi(x^{\ast}) $ is called a critical value of $\varphi$. The set of all critical points of $\varphi$ will be denoted by $K_{\varphi}$. Given $\varphi\in C^{1}(X) $, we say that $\varphi$ satisfies the \textit{Cerami condition} (the $C$-condition for short), if the following is true: \begin{quote} every sequence $\{ u_{n}\} _{n\geq1}\subset X$ such that $\{ \varphi(u_{n}) \} _{n\geq1}$ is bounded in $\mathbb{R}$ and \[ (1+\| u_{n}\| \varphi'(u_{n}) \to0\quad \text{in $X^{\ast}$ as }n\to\infty \] admits a strongly convergent subsequence. \end{quote} This is a compactness-type condition on the functional $\varphi$, which compensates for the fact that the ambient space $X$ needs not be locally compact (in general, $X$ is infinite dimensional). It leads to a deformation theorem from which we can derive the minimax theory for critical values of $\varphi$. Prominent in that theory, is the so-called \textit{mountain pass theorem, }due to Ambrosetti-Rabinowitz \cite{Am-Ra}. Here we state the result in a slightly more general form (see \cite{Gas-Pa2}). \begin{theorem}\label{Thm:1} If $(X,\|\cdot\| $ is a Banach space, $\varphi\in C^{1}(X) $ satisfies the $C-$condition, $u_0$, $u_1\in X$, $\| u_1-u_0\| >r>0$, \begin{gather*} \max\{ \varphi(u_0) ,\varphi(u_1) \} <\inf\{ \varphi(u) :\| u-u_0 \| =r\} =:m_{r}, \\ c:=\inf_{\gamma\in\Gamma}\max_{t\in[ 0,1] }\varphi( \gamma(t))\quad\text{with} \\ \Gamma:=\{ \gamma\in C([ 0,1] ,X) :\gamma(0) =u_0,\; \gamma(1) =u_1\} \end{gather*} then $c\geq m_{r}$ and $c$ is a critical value of $\varphi$. \end{theorem} In the study of problem \eqref{ePlambda} we will use the following spaces: \begin{gather*} W_{p}:=W_{per}^{1,p}(0,b) =\{ u\in W^{1,p}(0,b) :u(0) =u(b) \} ,\\ \widehat{C^{1}}(T) :=C^{1}(T) \cap W_{p}. \end{gather*} Recall that the Sobolev $W^{1,p}(0,b) $ is embedded continuously (in fact compactly) in $C(T) $. Hence the evaluations at $t=0$ and $t=b$ in the definition of $W_{p}$ make sense. The Banach space $\widehat{C^{1}}(T) $ is an ordered Banach space with positive cone \[ \widehat{C_{+}}=\{ u\in C^{1}(T) :u(t) \geq0\text{ for all }t\in T\} . \] This cone has nonempty interior given by \[ \operatorname{int} \widehat{C_{+}}=\{ u\in C^{1}(T) :u( t) >0\text{ for all }t\in T\} . \] Now we introduce the following hypotheses on the map $x\to a(| x|) x$: \begin{itemize} \item[(H1)] $a:(0,\infty) \to(0,\infty) $ is a $C^{1}$-function such that: \begin{itemize} \item[(i)]] $x\to a(x) x$ is strictly increasing on $(0,\infty) $, with \[ a(x) x\to0\text{ and }\frac{a'(x) x}{a(x) }\to c>-1\text{ as }x\to0^{+}; \] \item[(ii)] there exists $\widehat{c}>0$ such that \[ | a(| x|) x| \leq \widehat{c}\big(1+| x| ^{p-1}\big) \quad \text{for all }x\in\mathbb{R}; \] \item[(iii)] there exists $C_0>0$ such that $a(| x|) x^2\geq C_0|x| ^{p}$ for all $x\in\mathbb{R}$; \item[(iv)] if $G_0(t) :=\int_0^{t}a( s) sds\ $for all $t\geq0$, then there exists $\xi_0>0$ such that \[ pG_0(t) -a(| t|) t^2 \geq-\xi_0\quad \text{for all }t\geq0; \] \item[(v)] there exists $\tau\in(q,p) $ such that $t\to G(| x| ^{\frac{1}{\tau}}) $ is convex on $(0,\infty) $ and \[ \underset{t\to0^{+}}{\lim}\frac{G_0(t) }{t^{\tau}}=0. \] \end{itemize} \end{itemize} \noindent\textbf{Remarks:} From the above hypotheses, it is clear that $G_0(\cdot) $ is strictly convex and strictly increasing on $(0,\infty) $. We set $G(x) =G_0( | x|) $ for all $x\in R$. Then $G(\cdot)$ is convex, too, and for all $x\neq0$, we have \[ G'(x) =G_0'(| x|) =a(| x|) | x|\frac{x}{| x| }=a(| x|)x. \] So, $G(\cdot) $ is the primitive of the function $x\to a(| x|) x$ involved in the definition of the differential operator. The convexity of $G(\cdot) $ and $G(0) =0$ imply \begin{equation} G(x) \leq a(| x|) x^2\quad \text{for all }x\in\mathbb{R}. \label{1} \end{equation} Then, using \eqref{1} and hypotheses (H1)(ii), (H1)(iii), we have the following growth estimates for the primitive $G(\cdot)$: \begin{equation} \frac{C_0}{p}| x| ^{p}\leq G(x) \leq C_1(1+| x| ^{p}) \quad \text{for some } C_1>0,\text{ all }x\in\mathbb{R}. \label{2} \end{equation} \noindent\textbf{Examples:} The following functions satisfy hypotheses (H1): \begin{gather*} a_1(x) =| x| ^{p-2}x\quad \text{with } 10;\\ a_3(x) =(1+| x| ^2)^{\frac{p-2}{2}}x\quad \text{with }10$ such that \[ \varphi_0(u_0) \leq\varphi_0(u_0+h) \quad \text{for all }h\in\widehat{C^{1}}(T) \text{ with }\| h\| _{\widehat{C^{1}}(T) }\leq\rho_0, \] then $u_0\in\widehat{C^{1}}(T) $ and $u_0$ is also a local $W_{p}$-minimizer of $\varphi_0$; that is, there exists $\rho_1>0$ such that \[ \varphi_0(u_0) \leq\varphi_0(u_0+h) \quad \text{for all }h\in W_{p} \text{ with }\| h\| \leq\rho_1. \] \end{proposition} In the above result and in the sequel, by $\| \cdot\| $ we denote the norm of $W_{p}$ defined by \[ \| u\| =(\| u\| _{p}^{p}+\| u'\| _{p}^{p}) ^{1/p}\quad \text{for all }u\in W_{p}, \] where $\|\cdot\| _{p}$ stands for the norm in $L^{p}(T) $. Also, if $x\in\mathbb{R}$, then $x^{\pm}=\max\{ \pm x,0\} $. Then given $u\in W_{p}$, we set $u^{\pm}(.)=u(.) ^{\pm}$. We have \[ u^{+}, u^{-}\in W_{p},\quad | u| =u^{+}+u^{-},\quad u=u^{+}-u^{-}. \] Finally, for any Carath\'{e}odory function $g:T\times\mathbb{R\to R}$, we denote by $N_{g}$ the Nemytskii operator corresponding to $g$, defined by \[ N_{g}(u) (\cdot) =g(\cdot,u(\cdot) ) \quad \text{for all }u\in W_{p}. \] Note that $t\to N_{g}(u) (t) =g(t,u(t)) $ is measurable. \section{A bifurcation-type theorem} In this section, we prove a bifurcation-type theorem describing the set of positive solutions of problem \eqref{ePlambda}, as the parameter $\lambda>0$ varies. The following hypotheses will be needed: \begin{itemize} \item[(H2)] $\beta\in L^{\infty}(T)_{+}$. \item[(H3)] $f:T\times\mathbb{R}\to\mathbb{R}$ is a Carath\'{e}odory function such that $f(t,0) =0$ for a.a. $t\in T$ and \begin{itemize} \item[(i)] $| f(t,x) | \leq\alpha(t) (1+| x| ^{r-1}) $ for a.a. $t\in T$, all $x\geq0$, with $\alpha\in L^{\infty}(T)_{+}$, $p\max\{ r-p,q\} $ and $\eta_0>0$ such that \[ 0<\eta_0\leq\liminf_{x\to+\infty} \frac{f(t,x) x-pF(t,x)}{x^{\mu}} \quad \text{uniformly for a.a. }t\in T; \] \item[(iv)] $\lim_{x\to0^{+}} \frac{f(t,x) }{x^{p-1}}=0$ uniformly for a.a. $t\in T$; \item[(v)] for every $\rho>0$, there exists $\xi_{\rho}>0$ such that for a.a. $t\in T$ the function $x\to f(t,x) +\xi_{\rho}x^{p-1}$ is nondecreasing on $[ 0,\rho]$. \end{itemize} \end{itemize} \noindent\textbf{Remarks:} Since we are looking for positive solutions and all the above hypotheses concern the positive half-axis, the values of $f(t,\cdot) $ on $(-\infty,0) $ are irrelevant and so, without any loss of generality, we may assume that $f(t,x) =0$ for a.a. $t\in T$, all $x<0$. Note that hypotheses (H3) (ii), (iii) imply that \[ \lim_{x\to+\infty} \frac{f(t,x) }{x^{p-1}}=+\infty\quad \text{ uniformly for a. a. }t\in T. \] So, the perturbation $f(t,\cdot) $ is $(p-1)-$superlinear (``convex'' nonlinearity$)$. Hence in the reaction of problem \eqref{ePlambda} we have the competing effects of concave and convex terms. However, for the $(p-1) $-superlinear (convex) term, we do not assume the usual in such cases AR-condition, unilateral version. This condition says that there exist $r_0>p$ and $M>0$ such that \begin{gather} 00. \label{3b} \end{gather} Integrating \eqref{3a} and using \eqref{3b} we obtain the following weaker condition \begin{equation} C_2x^{r_0}\leq F(t,x) \quad\text{for a.a. }t\in T,\text{ all }x\geq M\text{ with }C_2>0. \label{4'} \end{equation} Evidently \eqref{4'} implies the much weaker hypothesis in (H3) (ii). Here we use this superlinearity condition together with (H3) (iii), and the two together are weaker than the AR-condition and incorporate in our framework $(p-1)$-superlinear perturbations with slower growth near $+\infty$. \noindent\textbf{Examples:} The following functions satisfy (H3) (For the sake of simplicity we drop the $t$-dependence): \begin{gather*} f_1(x) =x^{r-1}\quad \text{for all }x\geq0\text{ with }p0$ such that: \begin{itemize} \item[(i)] for $\lambda\in(0,\lambda^{\ast}) $, problem \eqref{ePlambda} admits at least two positive solutions $u_0,\widehat{u}\in \operatorname{int} \widehat{C}_{+}$ with $\widehat{u}-u_0\in\operatorname{int}\widehat{C}_{+}$; \item[(ii)] for $\lambda=\lambda^{\ast}$, problem \eqref{ePlambda} has at least one positive solution $u_{\ast}\in \operatorname{int}\widehat{C}_{+}$; \item[(iii)] for $\lambda>\lambda^{\ast}$, problem \eqref{ePlambda} has no positive solution. \end{itemize} Moreover, for every $\lambda\in(0,\lambda^{\ast}] $ problem \eqref{ePlambda} has a smallest positive solution $u_{\lambda }^{\ast}$ and the curve $\lambda\to u_{\lambda}^{\ast}$ is nondecreasing from $(0,\lambda^{\ast}] $ into $\widehat{C^{1}}(T) $. \end{theorem} The proof of Theorem \ref{Thm:14} is based on several propositions of independent interest. Let \[ \mathcal{P}=\{ \lambda>0:\text{problem \eqref{ePlambda} admits a positive solution}\} \] and for every $\lambda\in\mathcal{P}$, let $\mathcal{S}(\lambda)$ be the set of positive solutions of problem \eqref{ePlambda}. First we establish the nonemptiness of the set $\mathcal{P}$ of admissible parameters. To this end, let $\gamma>\| \beta\| _{\infty}$ (see hypothesis (H2)) and consider the following truncation-perturbation of the reaction of \eqref{ePlambda}: \begin{equation} h_{\lambda}(t,x) =\begin{cases} 0 & \text{if } x\leq0,\\ \lambda x^{q-1}+f(t,x) +\gamma x^{p-1} & \text{if } x>0. \end{cases} \label{4} \end{equation} This is a Carath\'{e}odory function. We set $H_{\lambda}(t,x) :=\int_0^xh_{\lambda}(t,s) ds$ and introduce the $C^{1}$-functional $\widehat{\varphi}_{\lambda}:W_{p}\to\mathbb{R}$ defined by \[ \widehat{\varphi}_{\lambda}(u) = \int_0^b G(u'(t)) dt+\frac{1}{p} \int_0^b(\beta(t) +\gamma) | u(t)| ^{p}dt -\int_0^bH_{\lambda}(t,u(t)) dt \] for all $u\in W_{p}$. Next we show that $\widehat{\varphi}_{\lambda}$ satisfies the $C$-condition. \begin{proposition}\label{Prop:4} If hypotheses {\rm (H1)--(H3)} hold and $\lambda>0$, then the functional $\widehat{\varphi}_{\lambda}$ satisfies the $C$-condition. \end{proposition} \begin{proof} Let $\{ u_{n}\} _{n\geq1}$ be a sequence in $W_{p}$ such that \begin{equation} | \widehat{\varphi}_{\lambda}(u_{n}) | \leq M_1\quad\text{for some $M_1>0$ and all }n\geq1, \label{5} \end{equation} and \begin{equation} (1+\| u_{n}\| \widehat{\varphi}_{\lambda }'(u_{n}) \to0 \quad\text{in }W_{p}^{\ast}\text{ as }n\to\infty. \label{6} \end{equation} From \eqref{6} we have \[ | \langle \widehat{\varphi}_{\lambda}'( u_{n}) ,v\rangle | \leq\frac{\varepsilon_{n}\| v\| }{1+\| u_{n}\| }\quad \text{for all }v\in W_{p},\text{ all }n\geq1,\text{ with }\varepsilon_{n}\to0^{+}, \] hence \begin{equation} \big| \langle A(u_{n}) ,v\rangle + \int_0^b(\beta(t) +\gamma) | u_{n}| ^{p-2}u_{n}vdt -\int_0^bh_{\lambda}(t,u_{n}) vdt\big| \leq\frac{\varepsilon _{n}\| v\| }{1+\| u_{n}\| } \label{7} \end{equation} for all $n\geq1$. In \eqref{7} we choose $v=-u_{n}^{-}\in W_{p}$. Then we have \[ \int_0^b a(| (u_{n}^{-}) '|) [ (u_{n}^{-}) '] ^2dt +\int_0^b (\beta(t) +\gamma) (u_{n}^{-}) ^{p}dt\leq\varepsilon_{n}\text{ for all }n\geq1 \] (see \eqref{4}), hence \[ C_0\| (u_{n}^{-}) '\| _{p} ^{p}+(\gamma-\| \beta\| _{\infty}) \| u_{n}^{-}\| _{p}^{p}\leq\varepsilon_{n}\quad \text{for all }n\geq1 \] (with $\gamma>\| \beta\| _{\infty}$), therefore \begin{equation} u_{n}^{-}\to0\quad \text{in }W_{p}\text{ as }n\to\infty. \label{8} \end{equation} Next, in \eqref{7} we choose $v=u_{n}^{+}\in W_{p}$. Then \begin{equation} \begin{aligned} &\int_0^b a(| (u_{n}^{+}) '|) [ (u_{n}^{+}) '] ^2dt- \int_0^b (\beta(t)) (u_{n}^{+}) ^{p}dt+\lambda\| u_{n}^{+}\| _{q}^{q}+ \int_0^b f(t,u_{n}^{+}) u_{n}^{+}dt\\ &\leq\varepsilon_{n} \quad \text{for all }n\geq1 (\text{see }\eqref{4}). \end{aligned}\label{9} \end{equation} From \eqref{5} and \eqref{8}, we have \begin{equation} \int_0^b pG((u_{n}^{+}) ') dt + \int_0^b\beta(t) (u_{n}^{+}) ^{p}dt -\frac{\lambda p} {q}\| u_{n}^{+}\| _{q}^{q} -\int_0^b pF(t,u_{n}^{+}) dt \leq M_2 \label{10} \end{equation} for some $M_2>0$, all $n\geq1$. We add \eqref{9} and \eqref{10} and obtain \begin{align*} &\int_0^b[ pG\big((u_{n}^{+}) '\big) -a( | u_{n}^{+}| ') \big((u_{n} ^{+}) '\big) ^2] dt + \int_0^b[ f(t,u_{n}^{+}) u_{n}^{+}-pF(t,u_{n}^{+}) ] dt\\ & \leq M_3+\lambda(\frac{p}{q}-1) \| u_{n} ^{+}\| _{q}^{q}\quad \text{for some }M_3>0\text{ all }n\geq1, \end{align*} hence \begin{equation} \int_0^b[ f(t,u_{n}^{+}) u_{n}^{+}-pF(t,u_{n}^{+}) ] dt\leq M_{4}+\lambda(\frac{p}{q}-1) \| u_{n}^{+}\| _{q}^{q} \label{11} \end{equation} for some $M_{4}>0$ and all $n\geq1$ (see (H1) (iv)). Hypotheses (H3) (i), (iii) imply that we can find $\eta_1\in(0,\eta_0) $ and $\alpha_1\in L^{1}(T) _{+}$ such that \begin{equation} \beta_1| x| ^{\mu}-\alpha_1(t) \leq f(t,x) x-pF(t,x) \quad \text{ for a.a. $t\in T$ and all }x\geq0. \label{12} \end{equation} Returning to \eqref{11} and using \eqref{12}, we obtain \[ \eta_1\| u_{n}^{+}\| _{\mu}^{\mu}\leq C_{4}( 1+\| u_{n}^{+}\| _{\mu}^{q}) \quad \text{for some } C_{4}>0,\text{ all }n\geq1 \] (since $q<\mu$ and $q0,\text{ all }n\geq1 \label{15} \end{equation} (see \eqref{13} and use the Sobolev embedding theorem). Hypotheses (H3) (i), (iv) imply that we can find $C_{6}=C_{6}(\lambda) >0$ such that \begin{equation} \lambda x^{q}+f(t,x) x\leq C_{6}(1+x^{r}) \quad \text{for a.a. }t\in T,\text{ all }x\geq0. \label{16} \end{equation} In \eqref{7} we choose $v=u_{n}^{+}\in W_{p}$. Then \begin{align*} & \int_0^b a(| u_{n}^{+}| ') \big(( u_{n}^{+}) '\big) ^2dt+ \int_0^b\beta(t) (u_{n}^{+}) ^{p}dt-\lambda\| u_{n}^{+}\| _{q}^{q}- \int_0^b f(t,u_{n}^{+}) u_{n}^{+}dt\\ & \leq\varepsilon_{n}\quad \text{for all }n\geq1. \end{align*} (see \eqref{4}), hence \begin{equation} C_0\| (u_{n}^{+}) '\| _{p}^{p}\leq C_{7}(1+\| u_{n}^{+}\| _{r}^{r}) \quad \text{for some }C_{7}>0, \text{ all }n\geq1 \label{17} \end{equation} (see (H1) (iii) , (H2), \eqref{16} and recall $p0,\text{ all }n\geq1\\ &\leq C_{9}(1+\| u_{n}^{+}\|^{(1-t) r}) \quad \text{for some } C_{9}>0,\text{ all }n\geq1. \end{aligned} \label{18} \end{equation} From \eqref{14} we have $\mu=tr$. Hence $(1-t)r=r-\mu0$ such that for all $\lambda\in(0,\lambda_{+}) $ we can find $\rho_{\lambda}>0$ for which we have \[ \inf\{ \widehat{\varphi}_{\lambda}(u) :\| u\| =\rho_{\lambda}\} =\widehat{m}_{\lambda}>0. \] \end{proposition} \begin{proof} Hypotheses (H3) (i), (iv) imply that given $\varepsilon>0$, there exists $C_{10}=C_{10}(\varepsilon) >0$ such that \begin{equation} \lambda x^{q-1}+f(t,x) \leq(\lambda+\varepsilon) x^{q-1}+C_{10}x^{r-1}\quad \text{for a.a. }t\in T,\text{ all }x\geq0. \label{21} \end{equation} Then, for every $u\in W_{p}$, we have \begin{equation} \begin{aligned} \widehat{\varphi}_{\lambda}(u) & =\int_0^b G(u'(t)) dt+\frac{1}{p} \int_0^b(\beta(t) +\gamma) | u(t) | ^{p}dt -\int_0^b H_{\lambda}(t,u(t)) dt\\ &\geq \frac{C_0}{p}\| u'\| _{p}^{p}+\frac{1}{p} \int_0^b (\beta(t) +\gamma) | u(t) | ^{p}dt-\frac{\lambda+\varepsilon}{q}\| u^{+}\| _{q}^{q}\\ &\quad -\frac{C_{10}}{r}\| u^{+}\| _{r}^{r} -\frac{\gamma}{p}\| u^{+}\| _{p}^{p}\quad \text{(see \eqref{2}, \eqref{4} and \eqref{21})}\\ &\geq C_{11}\| u\| ^{p}-\frac{\gamma}{p}\| u\| ^{p}-C_{12}(\frac{\lambda+\varepsilon}{q}\| u\| ^{q}+\| u\| ^{r}) \end{aligned} \label{22} \end{equation} for some $C_{11},C_{12}>0$ (recall that $\gamma>\| \beta\| _{\infty}$). Since $q0$, one can find $C_{\varepsilon}>0$ such that \[ \| u\| ^{p}\leq\frac{\varepsilon p}{\gamma q}\| u\| ^{q}+C_{\varepsilon}\| u\| ^{r}\quad \text{for all }u\in W_{p}. \] So, from \eqref{22} we have \begin{equation} \begin{aligned} \widehat{\varphi}_{\lambda}(u) &\geq C_{11}\| u\| ^{p}-C_{13}(\frac{\lambda+2\varepsilon}{q} \|u\| ^{q}+\| u\| ^{r}) \quad \text{for some } C_{13}>0\\ &=[ C_{11}-C_{13}(\frac{\lambda+2\varepsilon}{q}\| u\| ^{q-p}+\| u\| ^{r-p}) ] \|u\| ^{p}. \end{aligned} \label{23} \end{equation} Consider the function \[ \theta_{\lambda}(t) =\frac{\lambda+2\varepsilon}{q} t^{q-p}+t^{r-p}\quad \text{for all }t>0. \] Evidently, $\theta_{\lambda}\in C^{1}(0,\infty) $, and because $q0\} , \] hence $\theta_{\lambda}'(t_0) =0$; therefore \[ \frac{\lambda+2\varepsilon}{q}(p-q) t_0^{q-p-1}=(r-p) t_0^{r-p-1}. \] We obtain \[ t_0=t_0(\lambda,\varepsilon) =\big[ \frac{( \lambda+2\varepsilon) (p-q) }{q(r-p) }\big] ^{\frac{1}{r-q}}. \] Note that $\theta_{\lambda}(t_0(\lambda,\varepsilon)) \to0^{+}$ as $\lambda,\varepsilon\to 0^{+}$. Therefore, we can find $\lambda_{+}$, $\varepsilon_{+}>0$ small such that \begin{equation} \theta_{\lambda}(t_0(\lambda,\varepsilon)) <\frac{C_{11}}{C_{13}}\quad \text{for all }\lambda\in(0,\lambda_{+}) ,\; \varepsilon\in(0,\varepsilon_{+}) . \label{24} \end{equation} So, fixing $\varepsilon\in(0,\varepsilon_{+}) $, from \eqref{23} and \eqref{24} we have $\widehat{\varphi}_{\lambda}(u) \geq\widehat{m}_{\lambda}>0$ for all $u\in W_{p}$ with $\| u\| =\rho_{\lambda} =t_0(\lambda,\varepsilon)$ and all $\lambda\in(0,\lambda_{+})$. \end{proof} By adapting the proof of Proposition 6 in \cite{Aiz-Pa-St16}, we arrive at the following result, which completes the mountain pass geometry for the functional $\widehat{\varphi}_{\lambda}$. \begin{proposition}\label{Prop:6} If hypotheses {\rm (H1)--(H3)} hold, $\lambda>0$ and $u\in \operatorname{int}\widehat{C}_{+}$, then $\widehat{\varphi}_{\lambda}(tu) \to-\infty$ as $t\to+\infty$. \end{proposition} Now we establish the nonemptiness of the set $\mathcal{P}$ and also determine the nature of the solution set $\mathcal{S}(\lambda) $ when $\lambda\in\mathcal{P}$. \begin{proposition} \label{Prop:7} If hypotheses {\rm (H1)--(H3)} hold, then $\mathcal{P} \neq \varnothing$ and for all $\lambda\in\mathcal{P}$ we have $\mathcal{S} (\lambda) \subseteq \operatorname{int}\widehat{C}_{+}$. \end{proposition} \begin{proof} Propositions \ref{Prop:4}, \ref{Prop:5} and \ref{Prop:6} permit the use of Theorem \ref{Thm:1} (the mountain pass theorem) on $\widehat{\varphi} _{\lambda}$ when $\lambda\in(0,\lambda_{+}) $. So, we can find $u_{\lambda}\in W_{p}$ such that \begin{equation} u_{\lambda}\in K_{\widehat{\varphi}_{\lambda}}\text{ and } 0=\widehat{\varphi}_{\lambda}(0) <\widehat{m}_{\lambda}\leq\widehat{\varphi }_{\lambda}(u_{\lambda}) . \label{25} \end{equation} Evidently $u_{\lambda}\neq0$. Also, since $u_{\lambda}\in K_{\widehat{\varphi}_{\lambda}}$ we have $\widehat{\varphi}_{\lambda}'(u_{\lambda}) =0$, hence \begin{equation} A(u_{\lambda}) +(\beta(t) +\gamma) | u_{\lambda}| ^{p-2}u_{\lambda}=N_{h_{\lambda}}( u_{\lambda}) . \label{26} \end{equation} On \eqref{26} we act with $-u_{\lambda}^{-}\in W_{p}$. Then \[ \int_0^b a(| (u_{\lambda}^{-}) '|) ((u_{\lambda}^{-}) ') ^2dt+ \int_0^b(\beta(t) +\gamma) (u_{\lambda}^{-}) ^{p}dt=0\quad \text{(see \eqref{4})}, \] hence \[ C_0\| (u_{\lambda}^{-}) '\| _{p} ^{p}+C_{14}\| u_{\lambda}^{-}\| _{p}^{p}\leq0\quad \text{for some }C_{14}>0, \] (see (H1) (iii) and recall that $\gamma>\| \beta\| _{\infty}$), therefore $u_{\lambda}\geq0$, $u_{\lambda}\neq0$. Then, because of \eqref{4}, equation \eqref{26} becomes \[ A(u_{\lambda}) +\beta(t) | u_{\lambda }| ^{p-1}=\lambda u_{\lambda}^{q-1}+N_{f}(u_{\lambda}), \] therefore $u_{\lambda}\in\mathcal{S}(\lambda) $ and $u_{\lambda }\in\widehat{C}_{+}\backslash\{ 0\} $ (see \eqref{4}). Let $\rho=\| u_{\lambda}\| _{\infty}$ and let $\xi_{\rho}>0$ be as postulated by hypothesis (h3) (v). Then \begin{align*} & -(a(| u_{\lambda}'(t) |) u_{\lambda}'(t)) '+(\beta(t) +\xi_{\rho}) [ u_{\lambda }(t) ] ^{p-1}\\ & =\lambda[ u_{\lambda}(t) ] ^{q-1}+f( t,u_{\lambda}(t)) +\xi_{\rho}[ u_{\lambda}( t) ] ^{p-1}\geq0\quad \text{a.e. on }T, \end{align*} hence \[ -(a(| u_{\lambda}'(t) | ) u_{\lambda}'(t)) '\leq( \| \beta\| _{\infty}+\xi_{\rho}) [ u_{\lambda }(t) ] ^{p-1}\quad \text{a.e. on }T, \] and we infer that $u_{\lambda}\in \operatorname{int}\widehat{C}_{+}$ (see Pucci-Serrin \cite[pp. 111, 120]{Pu-Se}). Therefore we conclude that \[ (0,\lambda_{+}) \subseteq\mathcal{P}\text{ and }\mathcal{S} (\lambda) \subseteq \operatorname{int}\widehat{C}_{+}\text{ for all }\lambda\in\mathcal{P}. \] \end{proof} \begin{proposition}\label{Prop:8} If hypotheses {\rm (H1)--(H3)} hold and $\lambda\in\mathcal{P}$, then $(0,\lambda] \subseteq\mathcal{P}$. \end{proposition} \begin{proof} Let $\mu\in(0,\lambda) $ and let $u_{\lambda}\in\mathcal{S}(\lambda) $. We introduce the following truncation-perturbation of the reaction of \eqref{ePlambda} with $\mu$ instead of $\lambda$, $(P_\mu)$: \begin{equation} e_{\mu}(t,x) =\begin{cases} 0 & \text{if } x<0\\ \mu x^{q-1}+f(t,x) +\gamma x^{p-1} & \text{if } 0\leq x\leq u_{\lambda}(t) \\ \mu u_{\lambda}(t) ^{q-1}+f(t,u_{\lambda}(t)) +\gamma u_{\lambda}(t) ^{p-1} & \text{if } u_{\lambda}(t) \| \beta\|_{\infty}$, it is clear that $\psi_{\mu}$ is coercive. Also, it is sequentially weakly lower semicontinuous (just use the Sobolev embedding theorem and the fact that since $G(\cdot) $ is convex, the integral functional $y\to \int_0^bG(y'(t)) dt$ is sequentially weakly lower semicontinuous). So, by the Weierstrass theorem, we can find $u_{\mu}\in W_{p}$ such that \begin{equation} \psi_{\mu}(u_{\mu}) =\inf\{ \psi_{\mu}(u) :u\in W_{p}\} . \label{28} \end{equation} By hypothesis (H3) (iv) , given $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)\in(0,1)$ such that \begin{equation} F(t,x) \geq-\frac{\varepsilon}{p}x^{p}\text{ for a.a. }t\in T,\text{ all }x\in[ 0,\delta] . \label{29} \end{equation} Let $\xi\in(0,\min\{ \delta,\min_{T}u_{\lambda}\}) $ (recall that $u_{\lambda}\in \operatorname{int}\widehat{C}_{+}$). Then \begin{align*} \psi_{\mu}(\xi) & \leq\frac{\xi^{p}}{p}\| \beta\| _{\infty}b-\frac{\mu\xi^{q}}{q}b- \int_0^bF(t,\xi) dt\text{ (see }\eqref{27} \text{)}\\ & \leq\frac{\xi^{p}}{p}[ \| \beta\| _{\infty }+\varepsilon] b-\frac{\mu\xi^{q}}{q}b. \end{align*} Since $q0$ such that \begin{equation} \widetilde{\lambda}x^{q-1}+f(t,x) \geq\gamma_0x^{p-1}\quad \text{for a.a. }t\in T,\text{ all }x\geq0 \label{31} \end{equation} (recall that $q\widetilde{\lambda}$ and suppose that $\lambda\in\mathcal{P}$. Then we can find $u_{\lambda}\in\mathcal{S}( \lambda) \subseteq \operatorname{int}\widehat{C}_{+}$ (see Proposition \ref{Prop:7}). Let \[ m=\min_{T}u_{\lambda}>0. \] For $\delta>0$, let $m_{\delta}=m+\delta\in \operatorname{int}\widehat{C}_{+}$. For $\rho=\| u_{\lambda}\| _{\infty}$, let $\xi_{\rho}>0$ be as postulated by hypothesis (H3) (v). Evidently, we may assume that $\xi_{\rho}>\| \beta\|_{\infty}$. Then \begin{align*} & -(a(| m_{\delta}'|) m_{\delta}') '+(\beta(t) +\xi_{\rho}) m_{\delta}^{p-1}\\ & \leq(\gamma_0+\xi_{\rho}) m^{p-1}+\chi( \delta) \text{ with }\chi(\delta) \to0^{+}\quad \text{as }\delta\to0^{+}\\ & \leq\widetilde{\lambda}m^{q-1}+f(t,m) +\xi_{\rho}m^{p-1} +\chi(\delta) \quad \text{(see \eqref{31})} \\ & \leq\widetilde{\lambda}u_{\lambda}(t) ^{q-1}+f( t,u_{\lambda}(t)) +\xi_{\rho}u_{\lambda}( t) ^{p-1}+\chi(\delta) \quad\text{(see (H3) (v))}\\ & =\lambda u_{\lambda}(t) ^{q-1}+f(t,u_{\lambda}( t)) +\xi_{\rho}u_{\lambda}(t) ^{p-1}-( \lambda-\widetilde{\lambda}) u_{\lambda}(t) ^{q-1} +\chi(\delta) \\ & \leq\lambda u_{\lambda}(t) ^{q-1}+f(t,u_{\lambda }(t)) +\xi_{\rho}u_{\lambda}(t) ^{p-1}-(\lambda-\widetilde{\lambda}) m^{q-1}+\chi( \delta) \quad \text{(since $\lambda>\widetilde{\lambda}$)}\\ & \leq\lambda u_{\lambda}(t) ^{q-1}+f(t,u_{\lambda }(t)) +\xi_{\rho}u_{\lambda}(t) ^{p-1}\quad \text{for }\delta>0 \\ & =-(a(| u_{\lambda}'(t) |) u_{\lambda}'(t))'+(\beta(t) +\xi_{\rho}) | u_{\lambda }(t) | ^{p-1}\text{ a.e. on $T$, for $\delta>0$ small,} \end{align*} hence $m_{\delta}\leq u_{\lambda}(t)$ for all $t\in T$; therefore $m_{\delta}\leq m$ for $\delta>0$ small, which is a contradiction. So, $\lambda\notin\mathcal{P}$ and we have $\lambda^{\ast}\leq\widetilde{\lambda}<\infty$. \end{proof} From Proposition \ref{Prop:8}, we see that $(0,\lambda^{\ast}) \subseteq\mathcal{P}$. \begin{proposition} \label{Prop:10} If hypotheses {\rm (H1)--(H3)} hold and $\lambda\in(0,\lambda^{\ast})$, then problem \eqref{ePlambda} admits at least two positive solutions \[ u_0, \widehat{u}\in \operatorname{int}\widehat{C}_{+},\quad \widehat{u}-u_0\in \operatorname{int}\widehat{C}_{+}, \] and $u_0$ is a local minimizer of the functional $\widehat{\varphi}_{\lambda}$. \end{proposition} \begin{proof} Let $\theta\in(\lambda,\lambda^{\ast}) $ and let $u_{\theta} \in\mathcal{S}(\theta) \subseteq \operatorname{int}\widehat{C}_{+}$. As in the proof of Proposition \ref{Prop:8}, we truncate the reaction of problem \eqref{ePlambda} at $u_{\theta}(t) $ and use the direct method to obtain \[ u_0\in[ 0,u_{\theta}] \cap\mathcal{S}(\lambda) . \] For $\delta>0$, let $u_0^{\delta}=u_0+\delta\in \operatorname{int}\widehat{C}_{+}$. Let $\rho=\| u_{\theta}\| _{\infty}$ and let $\xi_{\rho}>0$ be as postulated by hypothesis (H3) (v). We can always assume that $\xi_{\rho}>\| \beta\| _{\infty}$. We have \begin{align*} & -(a(| (u_0^{\delta}) ^{\prime }|) (u_0^{\delta}) ') '+(\beta(t) +\xi_{\rho}) ( u_0^{\delta}) ^{p-1}\\ & \leq-(a(| u_0'|) u_0') '+(\beta(t) +\xi_{\rho }) u_0^{p-1}+\chi(\delta) \quad \text{with }\chi( \delta) \to0^{+}\text{ as }\delta\to0^{+}\\ & =\lambda u_0^{q-1}+f(t,u_0) +\xi_{\rho}u_0{}^{p-1} +\chi(\delta) \text{ (since $u_0\in\mathcal{S}(\lambda)$)}\\ & =\theta u_0^{q-1}+f(t,u_0) +\xi_{\rho}u_0{} ^{p-1}-(\theta-\lambda) u_0^{q-1}+\chi(\delta) \\ & \leq\theta u_{\theta}^{q-1}+f(t,u_{\theta}) +\xi_{\rho }u_{\theta}{}^{p-1}-(\theta-\lambda) m_0^{q-1}+\chi( \delta) \\ & \quad\text{(recall that }u_0\leq u_{\theta},u_0\in \operatorname{int}\widehat{C}_{+}\text{ see (H3) (v)})\\ & \leq\theta u_{\theta}^{q-1}+f(t,u_{\theta}) +\xi_{\rho }u_{\theta}^{p-1}\text{ for $\delta>0$ small}\\ & =-(a(| u_{\theta}'(t)|) u_{\theta}'(t)) '+(\beta(t) +\xi_{\rho}) u_{\theta}(t) ^{p-1}\text{ a.e. on }T. \end{align*} Then $u_0^{\delta}\leq u_{\theta}$ for $\delta>0$ small, hence $u_{\theta}-u_0\in \operatorname{int}\widehat{C}_{+}$. So, we have that \begin{equation} u_0\in \operatorname{int}{}_{\widehat{C^{1}}(T) }[ 0,u_{\theta}] .\label{32} \end{equation} Let $\psi_{\lambda}$ be the $C^{1}$-functional corresponding to the truncation-perturbation of the reaction of \eqref{ePlambda} at $u_{\theta}(t) $ (see the proof of Proposition \ref{Prop:8} and in particular \eqref{27} with $\mu$ replaced by $\lambda$ and $\lambda$ replaced by $\theta)$. We know that $u_0$ is a minimizer of $\psi_{\lambda}$ and \begin{equation} \psi_{\lambda}\mid_{[ 0,u_{\theta}] }=\widehat{\varphi}_{\lambda }\mid_{[ 0,u_{\theta}] }. \label{33} \end{equation} From \eqref{32} and \eqref{33} it follows that $u_0$ is a local $\widehat{C^{1}}(T) $-minimizer of $\widehat{\varphi}_{\lambda}$. Invoking Proposition \ref{Prop:3}, we infer that $u_0$ is a local $W_{p}$-minimizer of $\widehat{\varphi}_{\lambda}$. We consider the following Carath\'{e}odory function \begin{equation} \eta_{\lambda}(t,x) =\begin{cases} \lambda u_0(t) ^{q-1}+f(t,u_0(t)) +\gamma u_0(t) ^{p-1} & \text{if } x\leq u_0(t) \\ \lambda x^{q-1}+f(t,x) +\gamma x^{p-1} & \text{if } u_0(t) \| \beta\| _{\infty}$. Let $H_{\lambda}(t,x) =\int_0^{x}\eta_{\lambda}(t,s) ds$ and consider the $C^{1}-$functional $\sigma_{\lambda}:W_{p}\to\mathbb{R}$ defined by \[ \sigma_{\lambda}(u) =\int_0^bG(u'(t)) dt+\frac{1}{p}\int_0^b(\beta(t) +\gamma) | u(t) | ^{p}dt -\int_0^bH_{\lambda}(t,u(t)) dt\text{ for all }u\in W_{p}. \] From \eqref{34} it is clear that $\sigma_{\lambda}=\widehat{\varphi}_{\lambda}+\widehat{\zeta}_{\lambda}$ for some $\widehat{\zeta}_{\lambda}\in\mathbb{R}$, hence \begin{equation} \sigma_{\lambda}\text{ satisfies the }C-\text{condition.} \label{35} \end{equation} Also, $u_0$ is a local $W_{p}$-minimizer of $\sigma_{\lambda}$ (since it is a local $W_{p}-$minimizer of $\widehat{\varphi}_{\lambda})$. So, we can find $\rho\in(0,1) $ small such that \begin{equation} \sigma_{\lambda}(u_0) <\inf\{ \sigma_{\lambda}( u) :\| u\| =\rho\} =m_{\rho} \label{36} \end{equation} (see Aizicovici-Papageorgiou-Staicu \cite{Aiz-Pa-St3}, proof of Proposition 29). Hypothesis (H3) (iii) and \eqref{34}) imply that \begin{equation} \sigma_{\lambda}(\xi) \to-\infty\quad \text{as } \xi\to+\infty,\text{ }\xi\in\mathbb{R}. \label{37} \end{equation} Then \eqref{35}, \eqref{36}, \eqref{37} enable us to use Theorem \ref{Thm:1} (the mountain pass theorem). So, we can find $\widehat{u}\in W_{p}$ such that \begin{equation} \widehat{u}\in K_{\sigma_{\lambda}}\text{ and } m_{\rho}\leq\sigma_{\lambda }(\widehat{u}) . \label{38} \end{equation} From \eqref{36}, \eqref{38} it follows that $\widehat{u}\neq u_0$. Also $\sigma_{\lambda}'(\widehat{u}) =0$, hence \begin{equation} A(\widehat{u}) +(\beta(t) +\gamma) | \widehat{u}| ^{p-2}\widehat{u}=N_{\eta_{\lambda}}( \widehat{u}) . \label{39} \end{equation} Acting on \eqref{39} with $(u_0-\widehat{u}) ^{+}\in W_{p}$ and using \eqref{34}, we show that $u_0\leq\widehat{u}$, and so, \[ \widehat{u}\in\mathcal{S}(\lambda) \subseteq \operatorname{int} \widehat{C}_{+}. \] Moreover, reasoning as in the first part of the proof, we conclude that \[ \widehat{u}-u_0\in \operatorname{int}\widehat{C}_{+} \] \end{proof} Next we deal with the critical case $\lambda=\lambda^{\ast}$. To treat this case, we first need some auxiliary results. Hypotheses (H2) and (H3) (i), (iv) imply that given $\lambda>0$ and $\varepsilon\in(0,\lambda) $, there is a $C_{15}>0$ such that \begin{equation} \lambda x^{q-1}+f(t,x) -\beta(t) x^{p-1} \geq(\lambda-\varepsilon) x^{q-1}-C_{15}x^{r-1}\quad \text{for a.a. $t\in T$, all }x\geq0. \label{40} \end{equation} This unilateral growth condition on the reaction of \eqref{ePlambda} leads to the auxiliary periodic problem $(AP_\lambda$), \begin{equation} \begin{gathered} -(a(| u'(t) |)u'(t)) '=(\lambda-\varepsilon) u(t) ^{q-1} -C_{15}u(t) ^{r-1}\quad \text{a.e. on }T,\\ u(0) =u(b) ,\quad u'(0)=u'(b) ,\quad u>0,\; \varepsilon\in(0,\lambda) . \end{gathered} \label{APlambda} \end{equation} \begin{proposition} \label{Prop:11} If hypotheses {\rm (H1)--(H3)} hold and $\lambda>0$, then problem \eqref{APlambda} has a unique positive solution $\overline{u}_{\lambda}\in \operatorname{int}\widehat{C}_{+}$ and the map $\lambda \to\overline{u}_{\lambda}$ is nondecreasing from $(0,\infty) $ into $\widehat{C^{1}}(T) $ (that is, if $\lambda<\mu$, then $\overline{u}_{\lambda}\leq\overline{u}_{\mu})$ \end{proposition} \begin{proof} First we show the existence of a positive solution for the problem \eqref{APlambda}. For this purpose, we introduce the $C^{1}$-functional $\epsilon_{\lambda}:W_{p}\to\mathbb{R}$ defined by \[ \epsilon_{\lambda}(u) =\int_0^b G(u'(t)) dt+\frac{1}{p}\| u\| _{p}^{p}-\frac{\lambda-\varepsilon}{q}\| u^{+}\|_{q}^{q} +\frac{C_{15}}{r}\| u^{+}\| _{r}^{r}-\frac{1}{p}\| u^{+}\| _{p}^{p}\] for all $u\in W_{p}$. We observe that since by hypothesis $q0. \label{51} \end{equation} From \eqref{51}, reasoning as in the proof of Proposition \ref{Prop:4}, and using hypothesis (H3) (iii), we infer that $\{ u_{n}\} _{n\geq1}\subseteq W_{p}$ is bounded. So, we may assume that \begin{equation} u_{n}\overset{w}{\to}u_{\ast}\text{ in }W_{p}\quad\text{and}\quad u_{n}\to u_{\ast}\text{ in }C(T) \quad \text{as } n\to\infty. \label{52} \end{equation} On \eqref{48} we act with $u_{n}-u_{\ast}\in W_{p}$, pass to the limit as $n\to\infty$ and use \eqref{52}. Then \[ \lim_{n\to\infty}\langle A(u_{n}) ,u_{n}-u_{\ast }\rangle =0, \] hence $u_{n}\to u_{\ast}\text{ in }W_{p}$ (see Proposition \ref{Prop:2}); therefore \begin{equation} A(u_{\ast}) +\beta(t) u_{\ast}^{p-1}=\lambda ^{\ast}u_{\ast}^{q-1}+N_{f}(u_{\ast}) \text{ for all }n\geq1. \label{53} \end{equation} From Propositions \ref{Prop:11} and \ref{Prop:12}, we have \[ \overline{u}_{\lambda_1}\leq\overline{u}_{\lambda_{n}}\leq u_{n}\quad \text{for all }n\geq1. \] Then $\overline{u}_{\lambda_1}\leq u_{\ast}$; therefore $u_{\ast}\in\mathcal{S}(\lambda^{\ast})$ (see \eqref{53}). Hence $\lambda^{\ast}\in\mathcal{P}$ and $\mathcal{P}=(0,\lambda^{\ast}]$. \end{proof} \begin{proof}[Proof of Theorem \ref{Thm:14} ] We just observe that the conclusions of Theorem \ref{Thm:14} follow directly from Propositions \ref{Prop:7}, \ref{Prop:9}, \ref{Prop:11}, \ref{Prop:13}. The existence of the smallest positive solution follows as in \cite{Aiz-Pa-St16} using the lower bound for the elements of $\mathcal{S} (\lambda) $ established in Proposition \ref{Prop:12}. The monotonicity of the curve $\lambda\to u_{\lambda}^{\ast}$ is established as the corresponding result for $\lambda\to\overline {u}_{\lambda}$ in the proof of Proposition \ref{Prop:11}, using hypothesis (H3) (v). \end{proof} \subsection*{Acknowledgements} The authors wish to thank the knowledgeable referee for his/her useful remarks and for providing additional references. The third author gratefully acknowledges the partial support by FEDER funds through COMPETE - Operational Programme Factors of Competitiveness and by Portuguese funds through the Center for Research and Development in Mathematics and Applications, and by the Portuguese Foundation for Science and Technology (FCT), within project PEst-C/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-022690. \begin{thebibliography}{99} \bibitem{Aiz-Pa-St3} S.~Aizicovici, N.~S. Papageorgiou, V.~Staicu; \newblock Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints. \newblock {\em Mem. Amer. Math. Soc.}, 196(915), 2008. \bibitem{Aiz-Pa-St12} S.~Aizicovici, N.~S. Papageorgiou, V.~Staicu; \newblock Positive solutions for nonlinear periodic problems with concave terms. \newblock {\em J. Math. Anal. Appl.}, 381:866--883, 2011. \bibitem{Aiz-Pa-St19} S.~Aizicovici, N.~S. Papageorgiou, V.~Staicu; \newblock Positive solutions for nonlinear nonhomogeneous periodic eigenvalue problems. \newblock {\em Ann. Univ. Buch. Math., Ser. 3(LXI).}, 3:129--144, 2012. \bibitem{Aiz-Pa-St16} S.~Aizicovici, N.~S. Papageorgiou, V.~Staicu; \newblock Nodal and multiple solutions for nonlinear periodic problems with competing nonlinearities. \newblock {\em Commun. Contemp. Math.}, 15:1350001--1350030, 2013. \bibitem{Am-Ra} A.~Ambrosetti, P.~Rabinowitz; \newblock Dual variational methods in critical point theory and applications. \newblock {\em J. Functional. Anal.}, 14:349--381, 1973. \bibitem{Ba-Di} M.~Badii, J.~I.~Diaz; \newblock On the time periodic free boundary associated to some nonlinear parabolic equations. \newblock {\em Bound. Value Probl.}, Vol. 2010:17 pages, 2010. doi:10.1155/2010/147301. \bibitem{BeN-DCo} A.~Ben~Naoum, C.~De~Coster; \newblock On the existence and multiplicity of positive solutions of the {p-L}aplacian separated boundary value problem. \newblock {\em Differential Integral Equations}, 10:1093--1112, 1997. \bibitem{Br-Ma} H.~Brezis, J.~Mawhin; \newblock Periodic solutions of the forced relativistic pendulum. \newblock {\em Differential Integral Equations}, 23:801--810, 2010. \bibitem{DeC} C.~De~Coster; \newblock Pairs of positive solutions for the one dimensional p-{L}aplacian. \newblock {\em Nonlinear Anal.}, 23:669--681, 1994. \bibitem{Di-Sa} J.~I. Diaz, J.~E. Saa; \newblock Existence et unicit\'e de solutions positives pour certaines equations elliptiques quasilineaires. \newblock {\em C. R. Math. Acad. Sci. Paris}, 305:521--524, 1987. \bibitem{Gas-Pa2} L.~Gasinski, N.~S. Papageorgiou; \newblock {\em Nonlinear Analysis}. \newblock Chapman \&Hall/ CRC Press, Boca Raton, 2006. \bibitem{Hu-Pa7} S.~Hu, N.~S. Papageorgiou; \newblock Multiple positive solutions for nonlinear periodic problems. \newblock {\em Nonlinear Anal.}, 73:3675--3687, 2010. \bibitem{Ma-NJ-Za} R.~Manasevich, F.~Njoku, F.~Zanolin; \newblock Positive solutions for the one-dimensional {p-L}aplacian. \newblock {\em Differential Inegral Equations}, 8:1321--1338, 1995. \bibitem{NJ-Za} F.~Njoku, F.~Zanolin; \newblock Positive solutions for two-point {BVPs}: existence and multiplicity results. \newblock {\em Nonlinear Anal.}, 13:191--202, 1989. \bibitem{Pu-Se} P.~Pucci, J.~Serrin; \newblock {\em The Maximum Principle}. \newblock Birkhauser, Basel, 2007. \bibitem{Wan2}J.~Wang; \newblock The existence of positive solutions for the one-dimensional {p-L}aplacian. \newblock {\em Proc.Amer. Math. Soc.}, 125:2275--2283, 1997. \end{thebibliography} \end{document}