\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{mathrsfs} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 117, pp. 1--15.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/117\hfil Global well-posedness] {Global well-posedness of damped multidimensional generalized Boussinesq equations} \author[Y. Niu, X. Peng, M. Zhang \hfil EJDE-2015/117\hfilneg] {Yi Niu, Xiuyan Peng, Mingyou Zhang} \address{Yi Niu \newline College of Automation, Harbin Engineering University, 150001, China} \email{niuyipde@163.com} \address{Xiuyan Peng \newline College of Automation, Harbin Engineering University, 150001, China} \email{pxygll@163.com} \address{Mingyou Zhang \newline College of Automation, Harbin Engineering University, 150001, China} \email{zmy1985624@163.com} \thanks{Submitted June 3, 2014. Published April 30, 2015.} \subjclass[2010]{35A01, 35B44, 35L75} \keywords{Cauchy problem; global solution; finite time blow up; damping term} \begin{abstract} We study the Cauchy problem for a sixth-order Boussinesq equations with the generalized source term and damping term. By using Galerkin approximations and potential well methods, we prove the existence of a global weak solution. Furthermore, we study the conditions for the damped coefficient to obtain the finite time blow up of the solution. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} \label{sec1} In this article, we consider the Cauchy problem for damped multidimensional generalized Boussinesq equations \begin{gather} u_{tt}-\Delta u-\Delta u_{tt}+\Delta^2 u_{tt}- k\Delta u_t=\Delta f(u), \quad x\in\mathbb{R}^n, \; t>0,\label{1.1}\\ u(x,0)=u_0(x), \quad u_t(x,0)=u_1(x), \quad x\in\mathbb{R}^n, \label{1.2} \end{gather} where $k$ is a positive constant, and $f(u)$ satisfies \begin{itemize} \item[(A1)] $f(u)=-|u|^{p-1}u$, $\frac{n+2}{n}\le p<\frac{n+2}{n-2}$ for $n\ge 3$, $10, \end{equation} which can be derived by using the exact hydro-dynamical set of equations in plasma. A modification of the IBq equation analogous to the modified Korteweg-de Vries equation yields \begin{equation}\label{1.7} u_{tt}-\Delta u-\Delta u_{tt}=\Delta (u^3). \end{equation} This equation is the so-called IMBq (modified IBq) equation. Wang and Chen \cite{s6,s7} considered the existence of local and global solutions, the nonexistence of solutions, and the existence of global small amplitude solutions for \eqref{1.7} with a general source term $\Delta f(u)$. Through investigating the water wave problem, Schneider \cite{s3} improved the model \eqref{1.3} as follows \begin{equation} u_{tt}-u_{xx}-u_{xxtt}- \mu u_{xxxx}+u_{xxxxtt}=(u^2)_{xx}, \label{1.4} \end{equation} where $x, t, \mu\in \mathbb{R}$ and $u(x,t)\in \mathbb{R}$. This nonlinear wave equation not only models the water wave problem with surface tension, but can also be formally derived from the two-dimensional water wave problem. Because of the linear instability, equation \eqref{1.4} with $\mu>0$ is known as the ``bad'' Boussinesq equation. For the case $\mu=-1$, Wang and Mu \cite{s14} showed that \eqref{1.4} has blow up and scattering solution. By using contracting mapping principle, Wang and Guo \cite{s15} proved the existence and uniqueness for the Cauchy problem \eqref{1.4} with $\mu=-1$. Furthermore, they gave the sufficient conditions of blowup of the solution for the problem in finite time. For the multidimensional case \eqref{1.4} and the special case of nonlinear term like $u^p$, the Littlewood-Paley dyadic decomposition guarantees the global existence and scattering results of solution with the small initial data \cite{s16}. Xu and Liu \cite{s10} considered the initial boundary value problem of the generalized Pochhammer-Chree equation \begin{align} u_{tt}-u_{xx}-u_{xxt}-u_{xxtt}=f(u)_{xx}, \end{align} where $x\in\Omega=(0,1)$. By using the contract mapping principle, they established the existence of local solutions. After modifying the source term $f(u)_{xx}$, they discussed the $W^{k,p}$ global solution and global nonexistence of generalized IMBq equations. Necat Polat \cite{s13,s20} studied the Cauchy problem of the generalized damped multidimensional Boussinesq equation with double dispersive term \begin{equation}\label{1.10} u_{tt}-\Delta u-\Delta u_{tt}+\Delta^2 u- k\Delta u_t=\Delta f(u). \end{equation} First, by starting with the contraction mapping principle, the authors pointed out the locally well-posedness of the Cauchy problem. Then the authors obtain the necessary a priori bound. Thanks to the a priori bound, every local solution is indeed global in time. Finally, by using the concavity method, the authors proved that the local solution of the Cauchy problem blows up in finite time with negative and nonnegative initial energy. Unfortunately, it is much less known for the sixth order equations with strong damping term. In this article, we study the Cauchy problem \eqref{1.1}, \eqref{1.2}, which is not only the multidimensional generalized sixth order Boussinesq equation, but also includes both nondecreasing source term and strong damping term. To deal with such problem, we refer to the papers \cite{s8,s9,s10,s17,s18,s19} especially the work by Xu and Liu \cite{s17} who proved that the Cauchy problem \eqref{1.1}, \eqref{1.2} for the multidimensional sixth order equation with the generalized source term has the global $H^m$ solution and the finite time blow up solution. However, the method they employed can not be used directly to solve the sixth order Boussinesq equation with strong damping term considered in this article. So we improve the standard concavity method and exploit further the character of the Nehari manifold in order to give a threshold result of global existence and nonexistence of solutions, and point that the solution blows up in correspondence of the sufficiently small damping coefficient. This paper is organized as follows. In Section 2 we give some preliminary lemmas and local existence theorem. In Section 3 we give the sufficient conditions for existence and nonexistence of global weak solution for problem \eqref{1.1}, \eqref{1.2}, and provide the proofs of the main Theorems. In Section 4 we give some remarks on the main results ofthis article. \section{Preliminary lemmas and local existence}\label{sec3} To prove the existence of local solutions, and the main results of this article, we provide some preliminary lemmas. Firstly, we denote $L^p(\mathbb{R}^n)$ and $H^s (\mathbb{R}^n)$ by $L^p$ and $H^s$ respectively, with the norm $\|\cdot\|_p=\|\cdot\|_{L^p(\mathbb{R}^n)}$, $\|\cdot\|=\|\cdot\|_{L^2(\mathbb{R}^n)}$ and the inner product $(u,v)=\int_{\mathbb{R}^n} uv {\rm d}x$. We also define the space $$ H=\{u\in H^1: (-\Delta)^{-1/2} u\in L^2\}, $$ with the norm $$ \|u\|_{H}^2=\|u\|_{H^1}^2+ \|(-\Delta)^{-1/2} u\|_{L^2}^2, $$ where $(-\Delta)^{-\alpha}v= \mathscr{F}^{-1} \left( |\xi|^{-2\alpha} \mathscr{F} v\right)$, $\mathscr{F}$ and $\mathscr{F}^{-1}$ are the Fourier transformation and the inverse Fourier transformation respectively. For problem \eqref{1.1}-\eqref{1.2} we introduce the functionals \begin{gather*} J(u)= \frac{1}{2} \|u\|^2+ \int_{\mathbb{R}^n} F(u) dx,\quad F(u)=\int_0^u f(s){\rm d} s, \\ I(u)= \|u\|^2+ \int_{\mathbb{R}^n} uf(u) dx, \\ d=\inf_{u\in\mathcal{N}} J(u),\quad \mathcal{N}=\{u\in H^1\mid I(u)=0, \|u\|\neq 0\}. \end{gather*} And we define the following subsets of $H^1(\mathbb{R}^n)$: \begin{gather*} W= \{u\in H^1: I(u)>0,\;J(u)0\}\cup\{0\};\\ V'= \{u\in H^1: I(u)<0\}. \end{gather*} \begin{definition}\label{def1.1} \rm We call $u(x,t)$ a weak solution of problem \eqref{1.1}, \eqref{1.2} on $\mathbb{R}^n\times [0,T)$, if $u\in L^\infty(0,T;H^1)$, $u_t \in L^\infty(0,T;H)$ satisfy \begin{itemize} \item[(i)] for all $v\in H$ and all $t\in [0,T)$, \begin{equation}\label{1.13a} \begin{split} &\left( (-\Delta)^{-1/2} u_t, (-\Delta)^{-1/2} v\right)+(\nabla u_t,\nabla v)+(u_t,v)+ k(u, v)\\ &+ \int_0^t \left((u,v)+ (f(u),v)\right) {\rm d}\tau \\ &=\left( (-\Delta)^{-1/2} u_1, (-\Delta)^{-1/2} v\right)+(\nabla u_1,\nabla v)+ k(u_0, v)\,. \end{split} \end{equation} \item[(ii)] There holds $u(x,0)=u_0(x)$ in $H^1$ and \begin{equation}\label{1.14a} u_t(x,0)=u_1(x) \quad \text{in } H. \end{equation} \item[(iii)] for all $t\in [0,T)$, \begin{equation}\label{1.15a} E(t)+k\int_0^t\|u_{\tau}\|^2 {\rm d} \tau \le E(0) \end{equation} where $$ E(t)=\frac{1}{2}\|u_t \|_H^2+\frac{1}{2}\|u \|+^2 \int_{\mathbb{R}^n} F(u) {\rm d} x,\quad F(u)=\int_0^u f(s){\rm d} s. $$ \end{itemize} \end{definition} We present the following theorem about local existence \cite{s3,s13}. \begin{theorem} \label{thm2.2} Suppose that $f(x)$ satisfies {\rm (A1)} and $u_0(x),u_1(x)\in H$. Then \eqref{1.1}- \eqref{1.2} admits a unique local solution $u(x,t)\in H$. \end{theorem} Let $u_0\in H^1$, $u_1\in H$, $\{w_j\}_{j=1}^\infty$ be a basis function system in $H$. We construct the approximate solutions of problem \eqref{1.1}, \eqref{1.2} \begin{equation}\label{4.1} u_m (x,t)=\sum_{j=1}^m g_{jm} (t) w_j (x), \ m=1,2,\dots, \end{equation} satisfying \begin{gather}\label{4.2} \begin{aligned} &\left( (-\Delta)^{-1/2} u_{mtt}, (-\Delta)^{-1/2} w_s\right)+ (u_m,w_s) + (u_{mtt}, w_s)\\ &+(\nabla u_{mtt}, \nabla w_s)+ k(u_{mt},w_s)+ (f(u_m),w_s)=0, \quad s=1,2,\dots, m, \end{aligned} \\ \label{4.3} u_m (x,0)=\sum_{j=1}^m a_{jm} w_j (x)\to u_0(x) \quad \text{in } H^1,\\ \label{4.4} u_{mt} (x,0)=\sum_{j=1}^m b_{jm} w_j (x)\to u_1(x) \quad \text{in } H. \end{gather} Multiplying \eqref{4.2} by $g'_{sm}(t)$ and summing for $s$ we obtain $$ \frac{\rm d}{{\rm d}t} E_m(t)+k\|u_{mt}\|^2=0 $$ and \begin{equation}\label{4.5} E_m (t)+k\int_0^t\|u_{m\tau}\|^2{\rm d}\tau=E_m(0), \end{equation} where \begin{equation}\label{4.6} E_m(t)=\frac{1}{2}\|u_{mt}\|_H^2+\frac{1}{2}\|u_{m}\|^2 +\int_{\mathbb{R}^n} F(u_m) {\rm d} x,\ \ F(u)=\int_0^u f(s){\rm d} s. \end{equation} \begin{lemma}\label{lem2.2} Let $f(u)$ satisfy {\rm (A1)} and $u\in H^1$. We have \begin{itemize} \item[(i)] $\lim_{\lambda\to 0} J(\lambda u)=0$. \item[(ii)] $I(\lambda u)=\lambda\frac{\rm d}{{\rm d}\lambda} J(\lambda u)$, $\forall\ \lambda >0$. Furthermore if $\int_{\mathbb{R}^n} uf(u){\rm d}x<0$ and $\varphi(\lambda)=-\frac{1}{\lambda} \int_{\mathbb{R}^n} uf(\lambda u){\rm d}x$, then $I(\lambda u)>0$ for $\forall \lambda>0$. \item[(iii)] $\lim_{\lambda\to +\infty} J(\lambda u)=-\infty$. \item[(iv)] $\varphi(\lambda)$ is increasing on $0<\lambda<\infty$. \item[(v)] $\lim_{\lambda\to 0}\varphi(\lambda)=0$, $\lim_{\lambda\to +\infty}\varphi(\lambda)=+\infty$. \item[(vi)] In the interval $0<\lambda <\infty$, there exists a unique $\lambda^\ast=\lambda^\ast(u)$ such that $$ \frac{\rm d}{{\rm d}\lambda} J(\lambda u)\Big|_{\lambda=\lambda^\ast}=0. $$ \item[(vii)] $J(\lambda u)$ is increasing on $0<\lambda\le\lambda^\ast$, decreasing on $\lambda^\ast\le \lambda<\infty$ and takes the maximum at $\lambda=\lambda^\ast$. \item[(viii)] $I(\lambda u)>0$ for $0<\lambda<\lambda^\ast$, $I(\lambda u)<0$ for $\lambda^\ast<\lambda<\infty$ and $I(\lambda^\ast u)=0$. \end{itemize} \end{lemma} \begin{proof} Parts (i)--(iii) are obvious. Part (iv) and Part (v) follow from $$ \varphi(\lambda)=-\frac{1}{\lambda} \int_{\mathbb{R}^n} uf(\lambda u){\rm d}x=-\lambda^{p-1} \int_{\mathbb{R}^n} uf( u){\rm d}x. $$ Note that $\int_{\mathbb{R}^n} uf( u){\rm d}x\neq 0$ implies $\|u\|\neq 0$ and \begin{equation}\label{2.1o} \frac{\rm d}{{\rm d}\lambda} J(\lambda u)= \lambda\left( \|u\|^2-\varphi(\lambda)\right), \end{equation} which together with Part (iv) and Part (v) give Part (vi) and Part (vii). Part (viii) follows from Part (ii) and \eqref{2.1o}. \end{proof} \begin{lemma}\label{lem2.3} Let $f(u)$ satisfy {\rm (A1)} and $u\in H^1$. We obtain \begin{itemize} \item[(i)] If $0<\|u\|0$; \item[(ii)] If $I(u)<0$, then $\|u\|>r_0$; \item[(iii)] If $I(u)=0$ and $\|u\|\neq 0$, i.e. $u\in\mathcal{N}$, then $\|u\|\ge r_0$, where $$ r_0=\Big(\frac{1}{a C_\ast^{p+1}}\Big)^\frac{1}{p-1}, \quad C_\ast=\sup_{u\in H^1, u\neq 0} \frac{\|u\|_{p+1}}{\|u\|}. $$ \end{itemize} \end{lemma} \begin{proof} (i) If $0<\|u\|0$ follows from \begin{align*} -\int_{\mathbb{R}^n} uf(u) dx &\le \int_{\mathbb{R}^n} |uf(u)| dx =a\|u\|_{p+1}^{p+1}\le a C_\ast^{p+1} \|u\|^{p+1}\\ &=a C_\ast^{p+1} \|u\|^{p-1} \|u\|^{2}< \|u\|^{2}. \end{align*} (ii) If $I(u)<0$, then $\|u\|>r_0$ follows from $$ \|u\|^{2}< - \int_{\mathbb{R}^n} uf(u) dx\le a C_\ast^{p+1} \|u\|^{p-1} \|u\|^{2}. $$ \item[(iii)] If $I(u)=0$ and $\|u\|\neq 0$, then we have $$ \|u\|^{2}= - \int_{\mathbb{R}^n} uf(u) dx\le a C_\ast^{p+1} \|u\|^{p-1} \|u\|^{2}, $$ which together with $\|u\|\neq 0$ gives $\|u\|\ge r_0$. \end{proof} \begin{lemma}\label{lem2.4} Let $f(u)$ satisfy {\rm (A1)}, we have \begin{itemize} \item[(i)] \begin{equation}\label{2.1} d\ge d_0=\frac{p-1}{2(p+1)} \Big( \frac{1}{aC_\ast^{p+1}}\Big)^{\frac{2}{p-1}}. \end{equation} \item[(ii)] If $u\in H^1$ and $I(u)<0$, then \begin{equation}\label{2.3a} I(u)< (p+1)\left(J(u)-d\right). \end{equation} \end{itemize} \end{lemma} \begin{proof} (i) For any $u\in\mathcal{N}$, by Lemma \ref{lem2.3} we have $\|u\|\ge r_0$ and \begin{align*} J(u)&= \frac{1}{2} \|u\|^2+ \int_{\mathbb{R}^n} F(u) dx= \frac{1}{2} \|u\|^2+\frac{1}{p+1} \int_{\mathbb{R}^n} u f(u) dx\\ &= \Big(\frac{1}{2}-\frac{1}{p+1}\Big) \|u\|^2+ \frac{1}{p+1} I(u)=\frac{p-1}{2(p+1)} \|u\|^2 \ge \frac{p-1}{2(p+1)} r^2_0, \end{align*} which gives \eqref{2.1}. (ii) Let $u\in H^1$ and $I(u)<0$, then from Lemma \ref{lem2.2} it follows that there exists a $\lambda^\ast$ such that $0<\lambda^\ast<1$ and $I(\lambda^\ast u)=0$. From the definition of $d$ we have \begin{equation}\label{2.4} \begin{split} d &\le J(\lambda^\ast u) = \frac{1}{2}\| \lambda^\ast u \|^2+ \int_{\mathbb{R}^n} F(\lambda^\ast u) dx\\ &= \frac{1}{2}\| \lambda^\ast u \|^2+ \frac{1}{p+1} \int_{\mathbb{R}^n} \lambda^\ast u f(\lambda^* u)dx\\ &=\Big(\frac{1}{2}-\frac{1}{p+1}\Big) \|\lambda^* u\|^2+ \frac{1}{p+1} I(\lambda^\ast u)\\ &= \frac{p-1}{2(p+1)} \|\lambda^\ast u\|^2=\lambda^{\ast 2} \frac{p-1}{2(p+1)} \| u\|^2 \\ &< \frac{p-1}{2(p+1)} \| u\|^2. \end{split} \end{equation} From \eqref{2.4} and $$ J(u)=\frac{p-1}{2(p+1)} \| u\|^2+ \frac{1}{p+1} I(u), $$ we obtain $$ d<\frac{p-1}{2(p+1)} \| u\|^2=J(u)- \frac{1}{p+1} I( u), $$ which gives \eqref{2.3a}. \end{proof} \begin{lemma}\label{lem4.1} Let $f(u)$ satisfy {\rm (A1)}, $u_0\in H^1$ and $u_1\in H $. We conclude that $F(u_0)\in L^1$. And for the approximate solutions $u_m$ defined by \eqref{4.1}--\eqref{4.4}, there holds $E_m(0)\to E(0)$ as $m\to\infty$, where $$ E(0)=\frac{1}{2}\left(\|u_1\|_H^2 +\|u_0\|^2\right)+\int_{\mathbb{R}^n} F(u_0) {\rm d} x. $$ \end{lemma} \begin{proof} First from the assumptions we have $$ |F(u)|\le \frac{a }{p +1} |u|^{p +1}, \quad \forall u\in \mathbb{R}, $$ where $\frac{2n+2}{n}\ \le p +1< \frac{2n}{n-2}$ for $n\ge 3$ or $2

0$ or $\|u_0\|= 0$, i.e $u_0\in W'$. Then for the approximate solutions $u_m$ defined by \eqref{4.1}--\eqref{4.4} there holds $u_m\in W'$ for $0\le t<\infty$ and sufficiently large $m$. Furthermore we have \begin{equation}\label{4.8} \|u_m\|^2\le \frac{2(p+1)}{p-1}d, \quad \|u_{mt}\|_H^2<2d, \quad 0\le t<\infty, \end{equation} for sufficiently large $m$. \end{lemma} \begin{proof} Arguing by contradiction, we assume that there exists a $\bar{t}>0$ such that $u_m (\bar{t})\notin W'$ for some sufficiently large $m$. Then by the continuity of $I(u_m)$ with respect to $t$ it follows that there exists a $t_0>0$ such that $u_m(t_0)\in \partial W'$. On the other hand, from the definition of $W'$ we have $0\notin \partial W'$. Hence $I(u_m(t_0))=0$ and $\|u_m(t_0)\|\neq 0$ for some sufficiently large $m$. From the definition of $d$ we obtain $J(u_m(t_0))\ge d$, which contradicts (by \eqref{4.5}) \begin{equation} \label{4.7} E_m(t)=\frac{1}{2}\|u_{mt}\|_H^2+J(u_m)\leq E_m(0)0$. Hence \begin{equation*} \Big| \int_{\mathbb{R}^n} F(u_\nu) {\rm d} x - \int_{\mathbb{R}^n} F(u) {\rm d} x\Big| \le \int_{\mathbb{R}^n} |f(v_\nu)| |u_\nu-u| {\rm d} x \le \|f(v_\nu)\|_{\bar{r}} \|u_\nu-u\|_{\bar{q}}, \end{equation*} where $\bar{q}=p+1$, $\bar{r}=\frac{p+1}{p}$, $u_\nu=u+\theta (u_\nu-u)$, $0<\theta<1$. From $\|u_\nu-u\|_{\bar{q}}\to 0$ as $\nu\to\infty$ and $$ \|f(v_\nu)\|_{\bar{r}}^{\bar{r}}= \int_{\mathbb{R}^n} \left(a|v_\nu|^p\right)^{\bar{r}} {\rm d}x= a^{\frac{p+1}{p}} \|v_\nu\|_{p+1}^{p+1}\le C, $$ we obtain $$ \int_{\mathbb{R}^n} F(u_\nu) {\rm d} x \to \int_{\mathbb{R}^n} F(u) {\rm d} x \quad \text{as } \nu\to\infty. $$ Hence from \eqref{4.5} we obtain \begin{align*} &\frac{1}{2}\left(\|(-\Delta)^{-1/2} u_{t}\|^2+\|\nabla u_t\|^2+\|u_t\|^2+ \|u\|^2 \right)+k\int_0^t\|u_{\tau}\|^2\rm d\tau\\ &\le \frac{1}{2}\Big(\liminf_{\nu\to\infty} \|(-\Delta)^{-1/2} u_{\nu t}\|^2+\liminf_{\nu\to\infty} \|\nabla u_{\nu t}\|^2 +\liminf_{\nu\to\infty} \|u_{\nu t}\|^2+ \liminf_{\nu\to\infty} \|u_\nu\|^2 \Big)\\ &\quad +k\liminf_{\nu\to\infty}\int_0^t\|u_{\tau}\|^2\rm d\tau\\ &\le \liminf_{\nu\to\infty} \Big( \frac{1}{2}\|(-\Delta)^{-1/2} u_{\nu t}\|^2+ \frac{1}{2}\|\nabla u_{\nu t}\|^2+\frac{1}{2}\|u_{\nu t}\|^2 +\frac{1}{2}\|u_\nu\|^2 +k\int_0^t\|u_{\tau}\|^2\rm d\tau\Big)\\ &= \liminf_{\nu\to\infty} \Big( E_\nu(0)- \int_{\mathbb{R}^n} F(u_\nu) {\rm d} x\Big)\\ &=\lim_{\nu\to\infty} \Big( E_\nu(0)- \int_{\mathbb{R}^n} F(u_\nu) {\rm d} x\Big)\\ &=E (0)- \int_{\mathbb{R}^n} F(u ) {\rm d} x, \end{align*} which gives $E(t)\le E(0)$ for $0\le t<\infty$. Therefore $u(x)$ is a global weak solution of problem \eqref{1.1}, \eqref{1.2}. Finally from Theorem \ref{thm3.1} we obtain $u(t)\in W$ for $0\le t<\infty$. \end{proof} \begin{theorem}\label{thm4.5} Let $f(u)$ satisfy {\rm (A1)}, $u_0\in H^1$, $u_1\in H$, $(-\Delta)^{-1/2} u_0\in L^2$ and $E(0)r_0$. From $d_0=\frac{p-1}{2(p+1)}r_0^2$, we obtain \begin{equation}\label{4.18} (p-1)\Big(\frac{E(0)}{d_0}\Big)\|u\|^2\ge (p-1)\Big(\frac{E(0)}{d_0}\Big)r_0^2=2(p+1)E(0). \end{equation} We can derive \begin{align*} \ddot{\phi}(t) &\ge (4+\varepsilon)\|u_t\|^2+(p-1-\varepsilon) \left(\|(-\Delta)^{-1/2} u_t\|^2+\|\nabla u_t\|^2\right)\\ &\quad +(p-1-\varepsilon)\|u_t\|^2+\Big((p-1)\Big(1-\frac{E(0)}{d_0}\Big) -\varepsilon\Big)\|u\|^2 +\varepsilon\|u\|^2\\ &\quad +(p-1)\Big(\frac{E(0)}{d_0}\Big)\|u\|^2 -2k(u_t,u)-2(p+1)E(0). \end{align*} On the other hand, \begin{align*} 2k|(u_t,u)| &\le (p-1-\varepsilon)\|u_t\|^2+\frac{k^2}{(p-1-\varepsilon)}\|u\|^2\\ &\le (p-1-\varepsilon)\|u_t\|^2+\Big((p-1)\Big(1-\frac{E(0)}{d_0}\Big) -\varepsilon\Big)\|u\|^2. \end{align*} Hence we have \begin{equation}\label{4.19} \ddot{\phi}(t) \ge(4+\varepsilon)\|u_t\|_H^2+\varepsilon\|u\|^2>(4+\varepsilon)\|u_t\|_H^2+\varepsilon r_0^2. \end{equation} From \eqref{4.14}, \eqref{4.16} and \eqref{4.19}, it follows that there exists a $\delta_0$ such that for all above cases there holds \begin{equation}\label{4.20} \ddot{\phi}(t) \ge (4+\varepsilon)\|u_t\|_H^2+\delta_0. \end{equation} Hence \begin{equation}\label{4.21} \phi(t)\ddot{\phi}(t)-\frac{\varepsilon+4}{4}\big(\dot{\phi}(t)\big)^2 \ge \delta_0\|u_t\|_H^2\ge 0, \end{equation} and \begin{equation}\label{4.22} \big(\phi^{-\alpha}(t)\big)'' =\frac{-\alpha}{\phi(t)^{\alpha+2}} \Big(\phi(t)\ddot{\phi}(t)-(\alpha+1)\big(\dot{\phi}(t)\big)^2\Big)\le 0, \end{equation} $$ \alpha=\frac{\varepsilon}{4}, \quad 0< t<\infty. $$ On the other hand, from \eqref{4.20} we obtain $$ \dot{\phi}(t)\ge \delta_0 t+\dot{\phi}(0), \quad 0< t<\infty. $$ Hence there exists a $t_0\ge 0$ such that $\dot{\phi}(t)> \dot{\phi}(t_0)>0$ for $t> t_0$ and $$ \phi(t)> \dot{\phi}(t_0)(t-t_0)+\phi(t_0)\ge \dot{\phi}(t_0)(t-t_0), \ t_00$ such that $\phi(t_1)>0$ and $\dot{\phi}(t_1)>0$. From this and \eqref{4.22} it follows that there exists a $T_1>0$ such that \[ \lim_{t\to T_1} \phi^{-\alpha}(t)=0, \] and \begin{equation}\label{4.23} \lim_{t\to T_1}\phi(t)=+\infty, \end{equation} which contradicts $T=+\infty$. So we prove the nonexistence of global weak solutions. \end{proof} \section{Remarks} In this section, we give some remarks on the main results of this paper. First Theorem \ref{thm4.5} can be written as follows \begin{theorem}\label{thm4.10} Let $f(u)$, $u_0$ and $u_1$ be same as those in Theorem \ref{thm4.6} and \ref{thm4.5}. Assume that $E(0)0$. Hence the weak solution exists globally. (ii) If $\|u_0\|\ge r_0$, then from \begin{align*} &\frac{1}{2}\|u_1\|_H^2+k\int_0^t\| u_1\|^2{\rm d}\tau + \frac{p-1}{2(p+1)} \|u_0 \|^2+ \frac{1}{p+1} I(u_0 )\\ &\le E(0)r_0$ by the surface $\|u\|=r_0$. Furthermore, we have all weak solutions $u(t)$ of problem \eqref{1.1}, \eqref{1.2} with $E(0)0. $$ \end{corollary} \begin{proof} From $$ (-\Delta)^{-1/2} u= \int_0^t (-\Delta)^{-1/2} u_\tau {\rm d}\tau+ (-\Delta)^{-1/2} u_0, \quad 0\le t<\infty, $$ we obtain \begin{align*} \|(-\Delta)^{-1/2} u\| &\le \int_0^t \|(-\Delta)^{-1/2} u_\tau\| {\rm d}\tau+ \|(-\Delta)^{-1/2} u_0\|\\ &\le T \max_{0\le t\le T} \left(\|(-\Delta)^{-1/2} u_t\|\right)+ \|(-\Delta)^{-1/2} u_0\|, \quad 0\le t\le T, \end{align*} which gives \begin{gather*} (-\Delta)^{-1/2} u\in L^\infty (0,T; L^2), \quad \forall T>0, \\ u(t)\in L^\infty (0,T; H), \quad \forall T>0. \end{gather*} \end{proof} \subsection*{Acknowledgements} This work was supported by the National Natural Science Foundation of China (11471087, 41306086). \begin{thebibliography}{99} \bibitem{s1} Boussinesq, J.; \emph{Theorie des ondes et de remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contene dans ce canal des vitesses sensiblement pareilles de la surface au foud.} J. Math Pures Appl., 1872, \textbf{217}: 55-108. \bibitem{s18} Liu, Y. C.; Xu, R. Z.; \emph{Global existence and blow up of solutions for Cauchy problem of generalized Boussinesq equation}. Phys. D, 2008, \textbf{237}(6): 721-731. \bibitem{s5} Makhankov, V. G.; \emph{Dynamics of classical solitons (in nonintegrable systems)}. Phys. Rep., 1978, \textbf{35}(1): 1-128. \bibitem{s13} Polat, N.; Erta\c{s}, A.; \emph{Existence and blow-up of solution of Cauchy problem for the generalized damped multidimensional Boussinesq equation}. J. Math. Anal. Appl., 2009, \textbf{349}(1): 10-20. \bibitem{s20} Polat, N.; Pi\c{s}kin, E.; \emph{Asymptotic behavior of a solution of the Cauchy problem for the generalized damped multidimensional Boussinesq equation}. Applied Mathematics Letters, 2012, \textbf{25}: 1871-1874. \bibitem{s3} Schneider, G.; Eugene, C. W.; \emph{Kawahara dynamics in dispersive media}. Phys. D, 2001, \textbf{152/153}: 108-110. \bibitem{s6} Wang, S. B.; Chen, G. W.; \emph{Small amplitude solutions of the generalized IMBq equation}. J. Math. Anal. Appl, 2002, \textbf{274}(2): 846-866. \bibitem{s7} Wang, S. B.; Chen, G. W.; \emph{The Cauchy problem for the generalized IMBq equation in $W^{s,p}(\mathbb{R}^n)$}. J. Math. Anal. Appl., 2002, \textbf{262}(1): 38-54. \bibitem{s15} Wang, Y. P.; , Guo, B. L.; \emph{The Cauchy problem for a generalized Boussinesq type equation}. Chinese Ann. Math. Ser. A, 2008, \textbf{29}(2): 185-194. \bibitem{s14} Wang, Y., Mu, C. L.; \emph{Blow-up and scattering of solution for a generalized Boussinesq equation}. Appl. Math. Comput., 2007, \textbf{188}(2): 1131-1141. \bibitem{s16} Xia, S. X.; Yuan, J.; \emph{Existence and scattering of small solutions to a Boussinesq type equation of sixth order}. Nonlinear Anal., 2010, \textbf{73}(4): 1015-1027. \bibitem{s9} Xu, R. Z.; \emph{Cauchy problem of generalized Boussinesq equation with combined power-type nonlinearities}. Mathematical Methods in the Applied Sciences, 2011, \textbf{34}(18): 2318-2328. \bibitem{s8} Xu, R. Z.; Ding, Y. H.; \emph{Global solutions and finite time blow up for damped Klein-Gordon equation}. Acta Mathematica Scientia, 2013, \textbf{33}(3): 643-652. \bibitem{s10} Xu, R. Z.; Liu, Y. C.; \emph{Global existence and blow-up of solutions for generalized Pochhammer-Chree equations}. Acta Mathematica Scientia, 2010, \textbf{30}(5): 1793-1807. \bibitem{s17} Xu, R. Z.; Liu, Y. C.; Liu, B. W.; \emph{The Cauchy problem for a class of the multidimensional Boussinesq-type equation}. Nonlinear Anal., 2011, \textbf{74}(6): 2425-2437. \bibitem{s19} Xu, R. Z.; Liu, Y. C.; \emph{Global existence and nonexistence of solution for Cauchy problem of multidimensional double dispersion equations}. J. Math. Anal. Appl., 2009, \textbf{359}(2): 739-751. \end{thebibliography} \end{document}