\documentclass[reqno]{amsart}
\usepackage{hyperref}
\usepackage{mathrsfs}
\AtBeginDocument{{\noindent\small
\emph{Electronic Journal of Differential Equations},
Vol. 2015 (2015), No. 117, pp. 1--15.\newline
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
\newline ftp ejde.math.txstate.edu}
\thanks{\copyright 2015 Texas State University - San Marcos.}
\vspace{9mm}}
\begin{document}
\title[\hfilneg EJDE-2015/117\hfil Global well-posedness]
{Global well-posedness of damped multidimensional generalized
Boussinesq equations}
\author[Y. Niu, X. Peng, M. Zhang \hfil EJDE-2015/117\hfilneg]
{Yi Niu, Xiuyan Peng, Mingyou Zhang}
\address{Yi Niu \newline
College of Automation, Harbin Engineering
University, 150001, China}
\email{niuyipde@163.com}
\address{Xiuyan Peng \newline
College of Automation, Harbin Engineering
University, 150001, China}
\email{pxygll@163.com}
\address{Mingyou Zhang \newline
College of Automation, Harbin Engineering
University, 150001, China}
\email{zmy1985624@163.com}
\thanks{Submitted June 3, 2014. Published April 30, 2015.}
\subjclass[2010]{35A01, 35B44, 35L75}
\keywords{Cauchy problem; global solution; finite time blow up; damping term}
\begin{abstract}
We study the Cauchy problem for a sixth-order Boussinesq equations
with the generalized source term and damping term.
By using Galerkin approximations and potential well methods, we prove
the existence of a global weak solution. Furthermore, we study the conditions
for the damped coefficient to obtain the finite time blow up of the solution.
\end{abstract}
\maketitle
\numberwithin{equation}{section}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{corollary}[theorem]{Corollary}
\allowdisplaybreaks
\section{Introduction} \label{sec1}
In this article, we consider the Cauchy problem for damped multidimensional
generalized Boussinesq equations
\begin{gather}
u_{tt}-\Delta u-\Delta u_{tt}+\Delta^2 u_{tt}- k\Delta
u_t=\Delta f(u), \quad x\in\mathbb{R}^n, \; t>0,\label{1.1}\\
u(x,0)=u_0(x), \quad u_t(x,0)=u_1(x), \quad x\in\mathbb{R}^n, \label{1.2}
\end{gather}
where $k$ is a positive constant, and $f(u)$ satisfies
\begin{itemize}
\item[(A1)] $f(u)=-|u|^{p-1}u$,
$\frac{n+2}{n}\le p<\frac{n+2}{n-2}$ for $n\ge 3$, $1
0,
\end{equation}
which can be derived by using the exact hydro-dynamical set of equations
in plasma. A modification of the IBq equation analogous to the
modified Korteweg-de Vries equation yields
\begin{equation}\label{1.7}
u_{tt}-\Delta u-\Delta u_{tt}=\Delta (u^3).
\end{equation}
This equation is the so-called IMBq (modified IBq) equation.
Wang and Chen \cite{s6,s7} considered the existence of local and global solutions,
the nonexistence of solutions, and the existence of global small amplitude
solutions for \eqref{1.7} with a general source term $\Delta f(u)$.
Through investigating the water wave problem, Schneider \cite{s3}
improved the model \eqref{1.3} as follows
\begin{equation}
u_{tt}-u_{xx}-u_{xxtt}- \mu u_{xxxx}+u_{xxxxtt}=(u^2)_{xx}, \label{1.4}
\end{equation}
where $x, t, \mu\in \mathbb{R}$ and $u(x,t)\in \mathbb{R}$.
This nonlinear wave equation not only models the water wave problem
with surface tension, but can also be formally derived from the
two-dimensional water wave problem.
Because of the linear instability, equation \eqref{1.4} with $\mu>0$
is known as the ``bad'' Boussinesq equation. For the case $\mu=-1$,
Wang and Mu \cite{s14} showed that \eqref{1.4} has blow up and
scattering solution. By using contracting mapping principle,
Wang and Guo \cite{s15} proved the existence and uniqueness for the
Cauchy problem \eqref{1.4} with $\mu=-1$.
Furthermore, they gave the sufficient conditions of blowup of the
solution for the problem in finite time. For the multidimensional
case \eqref{1.4} and the special case of nonlinear term like $u^p$,
the Littlewood-Paley dyadic decomposition guarantees the global existence
and scattering results of solution with the small initial data \cite{s16}.
Xu and Liu \cite{s10} considered the initial boundary value problem
of the generalized Pochhammer-Chree equation
\begin{align}
u_{tt}-u_{xx}-u_{xxt}-u_{xxtt}=f(u)_{xx},
\end{align}
where $x\in\Omega=(0,1)$. By using the contract mapping principle,
they established the existence of local solutions.
After modifying the source term $f(u)_{xx}$, they discussed the $W^{k,p}$ global
solution and global nonexistence of generalized IMBq equations.
Necat Polat \cite{s13,s20} studied the Cauchy problem of the generalized
damped multidimensional Boussinesq equation with double dispersive term
\begin{equation}\label{1.10}
u_{tt}-\Delta u-\Delta u_{tt}+\Delta^2 u- k\Delta u_t=\Delta
f(u).
\end{equation}
First, by starting with the contraction mapping principle,
the authors pointed out the locally well-posedness of the Cauchy problem.
Then the authors obtain the necessary a priori bound.
Thanks to the a priori bound, every local solution is indeed global in time.
Finally, by using the concavity method, the authors proved that the
local solution of the Cauchy problem blows up in finite time with negative
and nonnegative initial energy.
Unfortunately, it is much less known for the sixth order equations with
strong damping term.
In this article, we study the Cauchy problem \eqref{1.1}, \eqref{1.2},
which is not only the multidimensional generalized sixth order Boussinesq equation,
but also includes both nondecreasing source term and strong damping term.
To deal with such problem, we refer to the papers \cite{s8,s9,s10,s17,s18,s19}
especially the work by Xu and Liu \cite{s17} who proved that the Cauchy
problem \eqref{1.1}, \eqref{1.2} for the multidimensional sixth order
equation with the generalized source term has the global $H^m$ solution
and the finite time blow up solution.
However, the method they employed can not be used directly to solve the
sixth order Boussinesq equation with strong damping term considered in
this article. So we improve the standard concavity method and exploit
further the character of the Nehari manifold in order to give a threshold
result of global existence and nonexistence of solutions, and point that
the solution blows up in correspondence of the sufficiently small
damping coefficient. This paper is organized as follows.
In Section 2 we give some preliminary lemmas and local existence theorem.
In Section 3 we give the sufficient conditions for existence and
nonexistence of global weak solution for problem \eqref{1.1}, \eqref{1.2},
and provide the proofs of the main Theorems.
In Section 4 we give some remarks on the main results ofthis article.
\section{Preliminary lemmas and local existence}\label{sec3}
To prove the existence of local solutions, and the main results of this article,
we provide some preliminary lemmas.
Firstly, we denote $L^p(\mathbb{R}^n)$ and $H^s (\mathbb{R}^n)$ by $L^p$
and $H^s$ respectively, with the norm
$\|\cdot\|_p=\|\cdot\|_{L^p(\mathbb{R}^n)}$,
$\|\cdot\|=\|\cdot\|_{L^2(\mathbb{R}^n)}$ and the inner product
$(u,v)=\int_{\mathbb{R}^n} uv {\rm d}x$. We also define the space
$$
H=\{u\in H^1: (-\Delta)^{-1/2} u\in L^2\},
$$
with the norm
$$
\|u\|_{H}^2=\|u\|_{H^1}^2+ \|(-\Delta)^{-1/2} u\|_{L^2}^2,
$$
where $(-\Delta)^{-\alpha}v= \mathscr{F}^{-1} \left(
|\xi|^{-2\alpha} \mathscr{F} v\right)$, $\mathscr{F}$ and
$\mathscr{F}^{-1}$ are the Fourier transformation and the inverse
Fourier transformation respectively.
For problem \eqref{1.1}-\eqref{1.2} we introduce the functionals
\begin{gather*}
J(u)= \frac{1}{2} \|u\|^2+
\int_{\mathbb{R}^n} F(u) dx,\quad F(u)=\int_0^u f(s){\rm d} s, \\
I(u)= \|u\|^2+ \int_{\mathbb{R}^n} uf(u) dx, \\
d=\inf_{u\in\mathcal{N}} J(u),\quad
\mathcal{N}=\{u\in H^1\mid I(u)=0, \|u\|\neq 0\}.
\end{gather*}
And we define the following subsets of $H^1(\mathbb{R}^n)$:
\begin{gather*}
W= \{u\in H^1: I(u)>0,\;J(u)0\}\cup\{0\};\\
V'= \{u\in H^1: I(u)<0\}.
\end{gather*}
\begin{definition}\label{def1.1} \rm
We call $u(x,t)$ a weak solution of problem \eqref{1.1}, \eqref{1.2}
on $\mathbb{R}^n\times [0,T)$, if
$u\in L^\infty(0,T;H^1)$, $u_t \in L^\infty(0,T;H)$
satisfy
\begin{itemize}
\item[(i)] for all $v\in H$ and all $t\in [0,T)$,
\begin{equation}\label{1.13a}
\begin{split}
&\left( (-\Delta)^{-1/2} u_t, (-\Delta)^{-1/2}
v\right)+(\nabla u_t,\nabla v)+(u_t,v)+ k(u, v)\\
&+ \int_0^t \left((u,v)+ (f(u),v)\right) {\rm d}\tau \\
&=\left( (-\Delta)^{-1/2} u_1, (-\Delta)^{-1/2}
v\right)+(\nabla u_1,\nabla v)+ k(u_0, v)\,.
\end{split}
\end{equation}
\item[(ii)] There holds $u(x,0)=u_0(x)$ in $H^1$ and
\begin{equation}\label{1.14a}
u_t(x,0)=u_1(x) \quad \text{in } H.
\end{equation}
\item[(iii)] for all $t\in [0,T)$,
\begin{equation}\label{1.15a}
E(t)+k\int_0^t\|u_{\tau}\|^2 {\rm d} \tau \le E(0)
\end{equation}
where
$$
E(t)=\frac{1}{2}\|u_t \|_H^2+\frac{1}{2}\|u \|+^2
\int_{\mathbb{R}^n} F(u) {\rm d} x,\quad F(u)=\int_0^u f(s){\rm d} s.
$$
\end{itemize}
\end{definition}
We present the following theorem about local existence \cite{s3,s13}.
\begin{theorem} \label{thm2.2}
Suppose that $f(x)$ satisfies {\rm (A1)} and $u_0(x),u_1(x)\in H$.
Then \eqref{1.1}- \eqref{1.2} admits a unique local solution $u(x,t)\in H$.
\end{theorem}
Let $u_0\in H^1$, $u_1\in H$, $\{w_j\}_{j=1}^\infty$ be a basis
function system in $H$. We construct the approximate solutions of
problem \eqref{1.1}, \eqref{1.2}
\begin{equation}\label{4.1}
u_m (x,t)=\sum_{j=1}^m g_{jm} (t) w_j (x), \ m=1,2,\dots,
\end{equation}
satisfying
\begin{gather}\label{4.2}
\begin{aligned}
&\left( (-\Delta)^{-1/2} u_{mtt}, (-\Delta)^{-1/2}
w_s\right)+ (u_m,w_s) + (u_{mtt}, w_s)\\
&+(\nabla u_{mtt}, \nabla w_s)+ k(u_{mt},w_s)+ (f(u_m),w_s)=0, \quad s=1,2,\dots, m,
\end{aligned} \\
\label{4.3}
u_m (x,0)=\sum_{j=1}^m a_{jm} w_j (x)\to u_0(x) \quad \text{in } H^1,\\
\label{4.4}
u_{mt} (x,0)=\sum_{j=1}^m b_{jm} w_j
(x)\to u_1(x) \quad \text{in } H.
\end{gather}
Multiplying \eqref{4.2} by $g'_{sm}(t)$ and summing for $s$ we obtain
$$
\frac{\rm d}{{\rm d}t} E_m(t)+k\|u_{mt}\|^2=0
$$
and
\begin{equation}\label{4.5}
E_m (t)+k\int_0^t\|u_{m\tau}\|^2{\rm d}\tau=E_m(0),
\end{equation}
where
\begin{equation}\label{4.6}
E_m(t)=\frac{1}{2}\|u_{mt}\|_H^2+\frac{1}{2}\|u_{m}\|^2
+\int_{\mathbb{R}^n} F(u_m) {\rm d} x,\ \ F(u)=\int_0^u f(s){\rm d} s.
\end{equation}
\begin{lemma}\label{lem2.2}
Let $f(u)$ satisfy {\rm (A1)} and $u\in H^1$. We have
\begin{itemize}
\item[(i)]
$\lim_{\lambda\to 0} J(\lambda u)=0$.
\item[(ii)]
$I(\lambda u)=\lambda\frac{\rm d}{{\rm d}\lambda} J(\lambda u)$,
$\forall\ \lambda >0$.
Furthermore if $\int_{\mathbb{R}^n} uf(u){\rm d}x<0$ and
$\varphi(\lambda)=-\frac{1}{\lambda} \int_{\mathbb{R}^n} uf(\lambda
u){\rm d}x$, then $I(\lambda u)>0$ for $\forall \lambda>0$.
\item[(iii)]
$\lim_{\lambda\to +\infty} J(\lambda u)=-\infty$.
\item[(iv)]
$\varphi(\lambda)$ is increasing on $0<\lambda<\infty$.
\item[(v)]
$\lim_{\lambda\to 0}\varphi(\lambda)=0$, $\lim_{\lambda\to
+\infty}\varphi(\lambda)=+\infty$.
\item[(vi)] In the interval $0<\lambda <\infty$, there exists a
unique $\lambda^\ast=\lambda^\ast(u)$ such that
$$
\frac{\rm d}{{\rm d}\lambda} J(\lambda
u)\Big|_{\lambda=\lambda^\ast}=0.
$$
\item[(vii)]
$J(\lambda u)$ is increasing on $0<\lambda\le\lambda^\ast$,
decreasing on $\lambda^\ast\le \lambda<\infty$ and takes the maximum
at $\lambda=\lambda^\ast$.
\item[(viii)]
$I(\lambda u)>0$ for $0<\lambda<\lambda^\ast$, $I(\lambda u)<0$ for
$\lambda^\ast<\lambda<\infty$ and $I(\lambda^\ast u)=0$.
\end{itemize}
\end{lemma}
\begin{proof}
Parts (i)--(iii) are obvious.
Part (iv) and Part (v) follow from
$$
\varphi(\lambda)=-\frac{1}{\lambda} \int_{\mathbb{R}^n} uf(\lambda
u){\rm d}x=-\lambda^{p-1} \int_{\mathbb{R}^n} uf( u){\rm d}x.
$$
Note that $\int_{\mathbb{R}^n} uf( u){\rm d}x\neq 0$ implies
$\|u\|\neq 0$ and
\begin{equation}\label{2.1o}
\frac{\rm d}{{\rm d}\lambda} J(\lambda u)= \lambda\left(
\|u\|^2-\varphi(\lambda)\right),
\end{equation}
which together with Part (iv) and Part (v) give Part (vi) and Part
(vii).
Part (viii) follows from Part (ii) and \eqref{2.1o}.
\end{proof}
\begin{lemma}\label{lem2.3}
Let $f(u)$ satisfy {\rm (A1)} and $u\in H^1$. We obtain
\begin{itemize}
\item[(i)]
If $0<\|u\|0$;
\item[(ii)]
If $I(u)<0$, then $\|u\|>r_0$;
\item[(iii)]
If $I(u)=0$ and $\|u\|\neq 0$, i.e. $u\in\mathcal{N}$, then
$\|u\|\ge r_0$, where
$$
r_0=\Big(\frac{1}{a C_\ast^{p+1}}\Big)^\frac{1}{p-1}, \quad
C_\ast=\sup_{u\in H^1, u\neq 0} \frac{\|u\|_{p+1}}{\|u\|}.
$$
\end{itemize}
\end{lemma}
\begin{proof}
(i) If $0<\|u\|0$ follows from
\begin{align*}
-\int_{\mathbb{R}^n} uf(u) dx
&\le \int_{\mathbb{R}^n} |uf(u)| dx
=a\|u\|_{p+1}^{p+1}\le a C_\ast^{p+1} \|u\|^{p+1}\\
&=a C_\ast^{p+1} \|u\|^{p-1} \|u\|^{2}< \|u\|^{2}.
\end{align*}
(ii)
If $I(u)<0$, then $\|u\|>r_0$ follows from
$$
\|u\|^{2}< - \int_{\mathbb{R}^n} uf(u) dx\le a C_\ast^{p+1}
\|u\|^{p-1} \|u\|^{2}.
$$
\item[(iii)]
If $I(u)=0$ and $\|u\|\neq 0$, then we have
$$
\|u\|^{2}= - \int_{\mathbb{R}^n} uf(u) dx\le a C_\ast^{p+1}
\|u\|^{p-1} \|u\|^{2},
$$
which together with $\|u\|\neq 0$ gives $\|u\|\ge r_0$.
\end{proof}
\begin{lemma}\label{lem2.4}
Let $f(u)$ satisfy {\rm (A1)}, we have
\begin{itemize}
\item[(i)]
\begin{equation}\label{2.1}
d\ge d_0=\frac{p-1}{2(p+1)} \Big(
\frac{1}{aC_\ast^{p+1}}\Big)^{\frac{2}{p-1}}.
\end{equation}
\item[(ii)]
If $u\in H^1$ and $I(u)<0$, then
\begin{equation}\label{2.3a}
I(u)< (p+1)\left(J(u)-d\right).
\end{equation}
\end{itemize}
\end{lemma}
\begin{proof}
(i) For any $u\in\mathcal{N}$, by Lemma \ref{lem2.3} we have
$\|u\|\ge r_0$ and
\begin{align*}
J(u)&= \frac{1}{2} \|u\|^2+ \int_{\mathbb{R}^n} F(u) dx=
\frac{1}{2} \|u\|^2+\frac{1}{p+1} \int_{\mathbb{R}^n} u f(u)
dx\\
&= \Big(\frac{1}{2}-\frac{1}{p+1}\Big) \|u\|^2+
\frac{1}{p+1} I(u)=\frac{p-1}{2(p+1)} \|u\|^2 \ge
\frac{p-1}{2(p+1)} r^2_0,
\end{align*}
which gives \eqref{2.1}.
(ii) Let $u\in H^1$ and $I(u)<0$, then from Lemma \ref{lem2.2} it follows
that there exists a $\lambda^\ast$ such that $0<\lambda^\ast<1$ and
$I(\lambda^\ast u)=0$. From the definition of $d$ we have
\begin{equation}\label{2.4}
\begin{split}
d
&\le J(\lambda^\ast u)
= \frac{1}{2}\| \lambda^\ast u \|^2+
\int_{\mathbb{R}^n} F(\lambda^\ast u) dx\\
&= \frac{1}{2}\| \lambda^\ast u \|^2+ \frac{1}{p+1}
\int_{\mathbb{R}^n} \lambda^\ast u f(\lambda^* u)dx\\
&=\Big(\frac{1}{2}-\frac{1}{p+1}\Big) \|\lambda^* u\|^2+
\frac{1}{p+1} I(\lambda^\ast u)\\
&= \frac{p-1}{2(p+1)} \|\lambda^\ast u\|^2=\lambda^{\ast 2}
\frac{p-1}{2(p+1)} \| u\|^2 \\
&< \frac{p-1}{2(p+1)} \| u\|^2.
\end{split}
\end{equation}
From \eqref{2.4} and
$$
J(u)=\frac{p-1}{2(p+1)} \| u\|^2+ \frac{1}{p+1} I(u),
$$
we obtain
$$
d<\frac{p-1}{2(p+1)} \| u\|^2=J(u)- \frac{1}{p+1} I( u),
$$
which gives \eqref{2.3a}.
\end{proof}
\begin{lemma}\label{lem4.1}
Let $f(u)$ satisfy {\rm (A1)}, $u_0\in H^1$ and $u_1\in H $.
We conclude that $F(u_0)\in L^1$. And for the approximate solutions
$u_m$ defined by \eqref{4.1}--\eqref{4.4}, there holds $E_m(0)\to E(0)$
as $m\to\infty$, where
$$
E(0)=\frac{1}{2}\left(\|u_1\|_H^2 +\|u_0\|^2\right)+\int_{\mathbb{R}^n} F(u_0) {\rm d} x.
$$
\end{lemma}
\begin{proof}
First from the assumptions we have
$$
|F(u)|\le \frac{a }{p +1} |u|^{p +1}, \quad \forall u\in \mathbb{R},
$$
where $\frac{2n+2}{n}\ \le p +1< \frac{2n}{n-2}$ for
$n\ge 3$ or $20$ or $\|u_0\|= 0$, i.e $u_0\in W'$. Then for the approximate
solutions $u_m$ defined by
\eqref{4.1}--\eqref{4.4} there holds $u_m\in W'$ for
$0\le t<\infty$ and sufficiently large $m$. Furthermore we have
\begin{equation}\label{4.8}
\|u_m\|^2\le \frac{2(p+1)}{p-1}d, \quad
\|u_{mt}\|_H^2<2d, \quad 0\le t<\infty,
\end{equation}
for sufficiently large $m$.
\end{lemma}
\begin{proof}
Arguing by contradiction, we assume that there exists a $\bar{t}>0$
such that $u_m (\bar{t})\notin W'$ for some sufficiently large $m$.
Then by the continuity of $I(u_m)$ with respect to $t$ it follows
that there exists a $t_0>0$ such that $u_m(t_0)\in \partial W'$. On
the other hand, from the definition of $W'$ we have $0\notin
\partial W'$. Hence $I(u_m(t_0))=0$ and $\|u_m(t_0)\|\neq 0$ for
some sufficiently large $m$. From the definition of $d$ we obtain
$J(u_m(t_0))\ge d$, which contradicts (by \eqref{4.5})
\begin{equation} \label{4.7}
E_m(t)=\frac{1}{2}\|u_{mt}\|_H^2+J(u_m)\leq E_m(0)0$.
Hence
\begin{equation*}
\Big| \int_{\mathbb{R}^n} F(u_\nu) {\rm d} x - \int_{\mathbb{R}^n}
F(u) {\rm d} x\Big|
\le \int_{\mathbb{R}^n} |f(v_\nu)| |u_\nu-u| {\rm d} x
\le \|f(v_\nu)\|_{\bar{r}} \|u_\nu-u\|_{\bar{q}},
\end{equation*}
where $\bar{q}=p+1$, $\bar{r}=\frac{p+1}{p}$, $u_\nu=u+\theta
(u_\nu-u)$, $0<\theta<1$. From
$\|u_\nu-u\|_{\bar{q}}\to 0$ as $\nu\to\infty$
and
$$
\|f(v_\nu)\|_{\bar{r}}^{\bar{r}}= \int_{\mathbb{R}^n}
\left(a|v_\nu|^p\right)^{\bar{r}} {\rm d}x= a^{\frac{p+1}{p}}
\|v_\nu\|_{p+1}^{p+1}\le C,
$$
we obtain
$$
\int_{\mathbb{R}^n} F(u_\nu) {\rm d} x \to \int_{\mathbb{R}^n} F(u)
{\rm d} x \quad \text{as } \nu\to\infty.
$$
Hence from \eqref{4.5} we obtain
\begin{align*}
&\frac{1}{2}\left(\|(-\Delta)^{-1/2} u_{t}\|^2+\|\nabla u_t\|^2+\|u_t\|^2+ \|u\|^2
\right)+k\int_0^t\|u_{\tau}\|^2\rm d\tau\\
&\le \frac{1}{2}\Big(\liminf_{\nu\to\infty}
\|(-\Delta)^{-1/2} u_{\nu t}\|^2+\liminf_{\nu\to\infty} \|\nabla u_{\nu t}\|^2
+\liminf_{\nu\to\infty} \|u_{\nu t}\|^2+
\liminf_{\nu\to\infty} \|u_\nu\|^2 \Big)\\
&\quad +k\liminf_{\nu\to\infty}\int_0^t\|u_{\tau}\|^2\rm d\tau\\
&\le \liminf_{\nu\to\infty} \Big(
\frac{1}{2}\|(-\Delta)^{-1/2} u_{\nu t}\|^2+
\frac{1}{2}\|\nabla u_{\nu t}\|^2+\frac{1}{2}\|u_{\nu t}\|^2
+\frac{1}{2}\|u_\nu\|^2 +k\int_0^t\|u_{\tau}\|^2\rm d\tau\Big)\\
&= \liminf_{\nu\to\infty} \Big( E_\nu(0)- \int_{\mathbb{R}^n}
F(u_\nu) {\rm d} x\Big)\\
&=\lim_{\nu\to\infty} \Big( E_\nu(0)-
\int_{\mathbb{R}^n} F(u_\nu) {\rm d} x\Big)\\
&=E (0)- \int_{\mathbb{R}^n} F(u ) {\rm d} x,
\end{align*}
which gives $E(t)\le E(0)$ for $0\le t<\infty$. Therefore
$u(x)$ is a global weak solution of problem \eqref{1.1},
\eqref{1.2}.
Finally from Theorem \ref{thm3.1} we obtain $u(t)\in W$
for $0\le t<\infty$.
\end{proof}
\begin{theorem}\label{thm4.5}
Let $f(u)$ satisfy {\rm (A1)}, $u_0\in H^1$, $u_1\in H$,
$(-\Delta)^{-1/2} u_0\in L^2$ and
$E(0)r_0$.
From $d_0=\frac{p-1}{2(p+1)}r_0^2$, we obtain
\begin{equation}\label{4.18}
(p-1)\Big(\frac{E(0)}{d_0}\Big)\|u\|^2\ge
(p-1)\Big(\frac{E(0)}{d_0}\Big)r_0^2=2(p+1)E(0).
\end{equation}
We can derive
\begin{align*}
\ddot{\phi}(t)
&\ge (4+\varepsilon)\|u_t\|^2+(p-1-\varepsilon)
\left(\|(-\Delta)^{-1/2} u_t\|^2+\|\nabla u_t\|^2\right)\\
&\quad +(p-1-\varepsilon)\|u_t\|^2+\Big((p-1)\Big(1-\frac{E(0)}{d_0}\Big)
-\varepsilon\Big)\|u\|^2 +\varepsilon\|u\|^2\\
&\quad +(p-1)\Big(\frac{E(0)}{d_0}\Big)\|u\|^2 -2k(u_t,u)-2(p+1)E(0).
\end{align*}
On the other hand,
\begin{align*}
2k|(u_t,u)|
&\le (p-1-\varepsilon)\|u_t\|^2+\frac{k^2}{(p-1-\varepsilon)}\|u\|^2\\
&\le (p-1-\varepsilon)\|u_t\|^2+\Big((p-1)\Big(1-\frac{E(0)}{d_0}\Big)
-\varepsilon\Big)\|u\|^2.
\end{align*}
Hence we have
\begin{equation}\label{4.19}
\ddot{\phi}(t) \ge(4+\varepsilon)\|u_t\|_H^2+\varepsilon\|u\|^2>(4+\varepsilon)\|u_t\|_H^2+\varepsilon r_0^2.
\end{equation}
From \eqref{4.14}, \eqref{4.16} and \eqref{4.19}, it follows that there
exists a $\delta_0$ such that for all above cases there holds
\begin{equation}\label{4.20}
\ddot{\phi}(t) \ge (4+\varepsilon)\|u_t\|_H^2+\delta_0.
\end{equation}
Hence
\begin{equation}\label{4.21}
\phi(t)\ddot{\phi}(t)-\frac{\varepsilon+4}{4}\big(\dot{\phi}(t)\big)^2
\ge \delta_0\|u_t\|_H^2\ge 0,
\end{equation}
and
\begin{equation}\label{4.22}
\big(\phi^{-\alpha}(t)\big)''
=\frac{-\alpha}{\phi(t)^{\alpha+2}}
\Big(\phi(t)\ddot{\phi}(t)-(\alpha+1)\big(\dot{\phi}(t)\big)^2\Big)\le
0,
\end{equation}
$$
\alpha=\frac{\varepsilon}{4}, \quad 0< t<\infty.
$$
On the other hand, from \eqref{4.20} we obtain
$$
\dot{\phi}(t)\ge \delta_0 t+\dot{\phi}(0), \quad 0< t<\infty.
$$
Hence there exists a $t_0\ge 0$ such that $\dot{\phi}(t)>
\dot{\phi}(t_0)>0$ for $t> t_0$ and
$$
\phi(t)> \dot{\phi}(t_0)(t-t_0)+\phi(t_0)\ge \dot{\phi}(t_0)(t-t_0),
\ t_00$ such that $\phi(t_1)>0$ and
$\dot{\phi}(t_1)>0$. From this and \eqref{4.22} it follows that
there exists a $T_1>0$ such that
\[
\lim_{t\to T_1} \phi^{-\alpha}(t)=0,
\]
and
\begin{equation}\label{4.23}
\lim_{t\to T_1}\phi(t)=+\infty,
\end{equation}
which contradicts $T=+\infty$. So we prove the nonexistence of
global weak solutions.
\end{proof}
\section{Remarks}
In this section, we give some remarks on the main results of this paper.
First Theorem \ref{thm4.5} can be written as follows
\begin{theorem}\label{thm4.10}
Let $f(u)$, $u_0$ and $u_1$ be same as those in Theorem \ref{thm4.6}
and \ref{thm4.5}. Assume that $E(0)0$. Hence the weak solution
exists globally.
(ii) If $\|u_0\|\ge r_0$, then from
\begin{align*}
&\frac{1}{2}\|u_1\|_H^2+k\int_0^t\| u_1\|^2{\rm d}\tau
+ \frac{p-1}{2(p+1)} \|u_0 \|^2+ \frac{1}{p+1}
I(u_0 )\\
&\le E(0)r_0$ by the surface $\|u\|=r_0$.
Furthermore, we have all weak solutions $u(t)$ of problem
\eqref{1.1}, \eqref{1.2}
with $E(0)0.
$$
\end{corollary}
\begin{proof}
From
$$
(-\Delta)^{-1/2} u= \int_0^t (-\Delta)^{-1/2} u_\tau
{\rm d}\tau+ (-\Delta)^{-1/2} u_0, \quad 0\le t<\infty,
$$
we obtain
\begin{align*}
\|(-\Delta)^{-1/2} u\|
&\le \int_0^t
\|(-\Delta)^{-1/2} u_\tau\| {\rm d}\tau+
\|(-\Delta)^{-1/2} u_0\|\\
&\le T \max_{0\le t\le T} \left(\|(-\Delta)^{-1/2}
u_t\|\right)+ \|(-\Delta)^{-1/2} u_0\|, \quad 0\le t\le T,
\end{align*}
which gives
\begin{gather*}
(-\Delta)^{-1/2} u\in L^\infty (0,T; L^2), \quad \forall T>0, \\
u(t)\in L^\infty (0,T; H), \quad \forall T>0.
\end{gather*}
\end{proof}
\subsection*{Acknowledgements}
This work was supported by the National Natural Science Foundation
of China (11471087, 41306086).
\begin{thebibliography}{99}
\bibitem{s1} Boussinesq, J.;
\emph{Theorie des ondes et de remous qui se
propagent le long d'un canal rectangulaire horizontal, en
communiquant au liquide contene dans ce canal des vitesses
sensiblement pareilles de la surface au foud.}
J. Math Pures Appl., 1872, \textbf{217}: 55-108.
\bibitem{s18} Liu, Y. C.; Xu, R. Z.;
\emph{Global existence and blow up of solutions for Cauchy problem of
generalized Boussinesq equation}. Phys. D, 2008, \textbf{237}(6): 721-731.
\bibitem{s5} Makhankov, V. G.;
\emph{Dynamics of classical solitons (in nonintegrable systems)}.
Phys. Rep., 1978, \textbf{35}(1): 1-128.
\bibitem{s13} Polat, N.; Erta\c{s}, A.;
\emph{Existence and blow-up of solution of Cauchy problem for the generalized
damped multidimensional Boussinesq equation}.
J. Math. Anal. Appl., 2009, \textbf{349}(1): 10-20.
\bibitem{s20} Polat, N.; Pi\c{s}kin, E.;
\emph{Asymptotic behavior of a solution of the Cauchy problem for the generalized
damped multidimensional Boussinesq equation}.
Applied Mathematics Letters, 2012, \textbf{25}: 1871-1874.
\bibitem{s3} Schneider, G.; Eugene, C. W.;
\emph{Kawahara dynamics in dispersive media}.
Phys. D, 2001, \textbf{152/153}: 108-110.
\bibitem{s6} Wang, S. B.; Chen, G. W.;
\emph{Small amplitude solutions of the generalized IMBq equation}.
J. Math. Anal. Appl, 2002, \textbf{274}(2): 846-866.
\bibitem{s7} Wang, S. B.; Chen, G. W.;
\emph{The Cauchy problem for the generalized IMBq equation in
$W^{s,p}(\mathbb{R}^n)$}. J. Math. Anal. Appl., 2002, \textbf{262}(1): 38-54.
\bibitem{s15} Wang, Y. P.; , Guo, B. L.;
\emph{The Cauchy problem for a generalized Boussinesq type equation}.
Chinese Ann. Math. Ser. A, 2008, \textbf{29}(2): 185-194.
\bibitem{s14} Wang, Y., Mu, C. L.;
\emph{Blow-up and scattering of solution for a generalized Boussinesq equation}.
Appl. Math. Comput., 2007, \textbf{188}(2): 1131-1141.
\bibitem{s16} Xia, S. X.; Yuan, J.;
\emph{Existence and scattering of small solutions to a Boussinesq type
equation of sixth order}. Nonlinear Anal., 2010, \textbf{73}(4): 1015-1027.
\bibitem{s9} Xu, R. Z.;
\emph{Cauchy problem of generalized Boussinesq equation with combined
power-type nonlinearities}. Mathematical Methods in the Applied Sciences,
2011, \textbf{34}(18): 2318-2328.
\bibitem{s8} Xu, R. Z.; Ding, Y. H.;
\emph{Global solutions and finite time blow up for damped Klein-Gordon equation}.
Acta Mathematica Scientia, 2013, \textbf{33}(3): 643-652.
\bibitem{s10} Xu, R. Z.; Liu, Y. C.;
\emph{Global existence and blow-up of solutions for generalized
Pochhammer-Chree equations}. Acta Mathematica Scientia, 2010,
\textbf{30}(5): 1793-1807.
\bibitem{s17} Xu, R. Z.; Liu, Y. C.; Liu, B. W.;
\emph{The Cauchy problem for a class of the multidimensional Boussinesq-type
equation}. Nonlinear Anal., 2011, \textbf{74}(6): 2425-2437.
\bibitem{s19} Xu, R. Z.; Liu, Y. C.;
\emph{Global existence and nonexistence of solution for Cauchy problem of
multidimensional double dispersion equations}. J. Math. Anal. Appl., 2009,
\textbf{359}(2): 739-751.
\end{thebibliography}
\end{document}