\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 118, pp. 1--11.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/118\hfil Positive ground state solutions] {Positive ground state solutions to Schr\"{o}dinger-Poisson systems with a negative non-local term} \author[Y.-P. Gao, S.-L. Yu, C.-L. Tang \hfil EJDE-2015/118\hfilneg] {Yan-Ping Gao, Sheng-Long Yu, Chun-Lei Tang} \address{Yan-Ping Gao \newline School of Mathematics and Statistics, Southwest University, Chongqing 400715, China} \email{gao0807@swu.edu.cn} \address{Sheng-Long Yu \newline School of Mathematics and Statistics, Southwest University, Chongqing 400715, China} \email{ysl345827434@163.com} \address{Chun-Lei Tang (corresponding author)\newline School of Mathematics and Statistics, Southwest University, Chongqing 400715, China} \email{tangcl@swu.edu.cn, Phone +86 23 68253135, Fax +86 23 68253135} \thanks{Submitted January 20, 2015. Published April 30, 2015.} \subjclass[2010]{35J47, 35J50, 35J99} \keywords{Schr\"{o}dinger-Poisson system; ground state solution; \hfill\break\indent variational methods} \begin{abstract} In this article, we study the Schr\"{o}dinger-Poisson system \begin{gather*} -\Delta u+u-\lambda K(x)\phi(x)u=a(x)|u|^{p-1}u, \quad x\in\mathbb{R}^3, \\ -\Delta\phi=K(x)u^{2},\quad x\in\mathbb{R}^3, \end{gather*} with $p\in(1,5)$. Assume that $a:\mathbb{R}^3\to \mathbb{R^{+}}$ and $K:\mathbb{R}^3\to \mathbb{R^{+}}$ are nonnegative functions and satisfy suitable assumptions, but not requiring any symmetry property on them, we prove the existence of a positive ground state solution resolved by the variational methods. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction and main results} In this article we study the Schr\"{o}dinger-Poisson system \begin{equation} \begin{gathered} -\Delta u+V(x)u+\lambda K(x)\phi(x)u=f(x,u), \quad x\in\mathbb{R}^3, \\ -\Delta\phi=K(x)u^{2},\quad x\in\mathbb{R}^3, \end{gathered}\label{e1.1} \end{equation} where $V(x)=1$, $\lambda<0$, $f(x,s)=a(x)s^{p}$ and $a(x), K(x)$ satisfying some suitable assumptions, we will prove problem \eqref{e1.1} exists a positive ground state solution. Similar problems have been widely investigated and it is well known they have a strong physical meaning because they appear in quantum mechanics models (see e.g. \cite{C5}) and in semiconductor theory \cite{C3,C4,C15,C16}. Variational methods and critical point theory are always powerful tools in studying nonlinear differential equations. In recent years, system \eqref{e1.1} has been studied widely via modern variational methods under the various hypotheses, see \cite{A,AD,C15,C17,DR} and the references therein. Many researches have been devoted to the study of problem \eqref{e1.1}, but they mainly concern either the autonomous case or, in the non-autonomous case, the search of the so-called semi-classical states. We refer the reader interested in a detailed bibliography to the survey paper \cite{A}. All these works deal with systems like \eqref{e1.1} with $\lambda>0$ and the nonlinearity $f(x,s)=s^{p}$ with $p$ subcritical. To the best of our knowledge, there are only a few article on the existence of ground state solutions to \eqref{e1.1} with the negative coefficient of the non-local term. Recently, in \cite{GV}, the author obtained a ground state solution. In \cite{GV1}, the author considered the nonlinearity $f(x,s)=a(x)s^{2}$ and obtained a ground state solution. In this article, we consider the nonlinearity $f(x,s)=a(x)s^{p}$ for following Schr\"{o}dinger-Poisson system \begin{equation} \begin{gathered} -\Delta u+u-\lambda K(x)\phi(x)u=a(x)|u|^{p-1}u, \quad x\in\mathbb{R}^3, \\ -\Delta\phi=K(x)u^{2},\quad x\in\mathbb{R}^3. \end{gathered} \label{eSP} %\tag{$SP$} \end{equation} It is worth noticing that there are few works concerning on this case up to now. As we shall see in Section 2, problem \eqref{eSP} can be easily transformed in a nonlinear Schr\"{o}dinger equation with a non-local term. Briefly, the Poisson equation is solved by using the Lax-Milgram theorem, then, for all $u \in H^{1}(\mathbb\mathbb{R}^{3})$, a unique $\phi_{u}\in D^{1,2}(\mathbb{R}^{3})$ is obtained, such that $-\Delta \phi=K(x)u^{2}$ and that, inserted into the first equation, gives \begin{align}\label{e1} -\Delta u+u-\lambda K(x)\phi_{u}(x)u^{2}=a(x)|u|^{p-1}u, \quad x\in\mathbb{R}^3. \end{align} This problem is variational and its solutions are the critical points of the functional defined in $H^{1}(\mathbb{R}^{3})$ by \begin{align}\label{e1.3} I(u)=\frac{1}{2}\|u\|^{2}-\frac{\lambda}{4} \int_{\mathbb{R}^{3}} K(x)\phi_{u}(x) u^{2}dx -\frac{1}{p+1}\int_{\mathbb{R}^{3}} a(x)|u|^{p+1}dx. \end{align} In our research, we deal with the case in which $p\in{(1, 5)}$, moreover we always assume that $a(x)$ and $K(x)$ satisfy: \begin{itemize} \item[(A1)] There exists a constant $c>0$, such that $a(x)>c$ for all $x \in\mathbb{R}^{3}$ and $a(x)-c\in L^\frac{6}{5-p}(\mathbb{R}^3)$; \item[(K1)] $K\in L^2(\mathbb{R}^3)$. \end{itemize} Our main result reads as follows. \begin{theorem} \label{thm1.1} Suppose $a, K:\mathbb{R}^3\to\mathbb{R}^+$, $\lambda>0$ and $p\in(1,5)$. Let {\rm (A1), (K1)} hold. Then problem \eqref{eSP} has a positive ground state solution. \end{theorem} \begin{remark} \label{rmk1.1} \rm To the best of our knowledge, there are only two articles \cite{GV,GV1} on the existence of ground state solutions to \eqref{e1.1} with the negative coefficient of the non-local. In \cite{GV}, the author discusses the negative coefficient of the non-local term under symmetry assumption, but we get the positive ground state solution without any symmetry assumption. Compared with the \cite{GV1}, we do not need conditions $$ \lim_{|x|\to+\infty}a(x)=a_\infty \quad\text{and}\quad \lim_{|x|\to+\infty}K(x)=K_\infty. $$ \end{remark} The remainder of this paper is organized as follows. In Section 2, notation and preliminaries are presented. In Section 3, we give the proof of Theorem 1.1. \section{Notation and preliminaries} Hereafter we use the following notation: $H^1(\mathbb{R}^3)$ is the usual Sobolev space endowed with the standard scalar product and norm $$ (u,v)=\int_{\mathbb{R}^{3}}(\nabla u\cdot\nabla v+uv)dx; \quad \|u\|^2=\int_{\mathbb{R}^{3}}(|\nabla u|^2+u^2)dx. $$ $D^{1,2}(\mathbb{R}^3)$ is the completion of $C^{\infty}_0(\mathbb{R}^3)$ with respect to the norm $$ \|u\|_{D^{1,2}}=\Big(\int_{\mathbb{R}^{3}}|\nabla u|^2dx\Big)^{1/2}. $$ $L^p(\Omega)$, $1\leq p \leq +\infty$, $\Omega\subseteq\mathbb{R}^3$, denotes a Lebesgue space, the norm in $L^p(\Omega)$ is denoted by $\|u\|_{L^p(\Omega)}=|u|_{p,\Omega}$ when $\Omega$ is a proper subset of $\mathbb{R}^3$, by $\|u\|_{L^p(\Omega)}=|\cdot|_p$ when $\Omega=\mathbb{R}^3$. $L^\infty(\Omega)$ is the space of measurable functions in $\Omega $; that is, $$\operatorname{ess\,sup}_{x\in\Omega}|u(x)| =\inf\{C>0:|u(x)|\leq C\text{ a. e. in }\Omega\}<+\infty. $$ For any $\rho >0$ and for any $z\in\mathbb{R}^3$, $B_\rho(z)$ denotes the ball of radius $\rho$ centered at $z$, and $|B_\rho(z)|$ denotes its Lebesgue measure. $C,C_0,C_{1},C_{2}$ are various positive constants which can change from line to line. From the embeddings, $H^1(\mathbb{R}^3) \hookrightarrow L^6(\mathbb{R}^3)$ and $D^{1,2}(\mathbb{R}^3) \hookrightarrow L^6(\mathbb{R}^3)$, we obtain the inequalities \begin{gather*} |u|_{6}\leq C_{1}\|u\| \quad \forall u\in H^1(\mathbb{R}^3)\backslash\{0\},\\ |u|_{6}\leq C_{2}\|u\| \quad \forall u\in D^{1,2}(\mathbb{R}^3)\backslash\{0\}. \end{gather*} It is well known and easy to show that problem \eqref{eSP} can be reduced to a single equation with a non-local term. Actually, considering for all $u\in H^1(\mathbb{R}^3)$, the linear functional $L_u$ defined in $D^{1,2}(\mathbb{R}^3)$ by $$ L_u(v)=\int_{\mathbb{R}^3}K(x)u^2v\,dx, $$ the H\"{o}lder and Sobolev inequalities imply \begin{equation} L_u(v)\leq |K|_2|u^2|_3|v|_6 =|K|_2|u|^{2}_{6}|v|_6 \leq C_{2} |K|_2\cdot|u|^{2}_{6}\|v\|_{D^{1,2}}.\label{Luv} \end{equation} Hence, from the Lax-Milgram theorem, for every $u\in H^{1}(\mathbb{R}^3)$, the Poisson equation $-\Delta\phi=K(x)u^2$ exists a unique $\phi_u\in D^{1,2}(\mathbb{R}^3)$ such that \begin{equation} \label{2.2} \int_{\mathbb{R}^3}K(x)u^2v\,dx =\int_{\mathbb{R}^3}\nabla\phi_u\cdot\nabla v\,dx, \end{equation} for any $v\in D^{1,2}(\mathbb{R}^3)$. Using integration by parts, we get $$ \int_{\mathbb{R}^3}\nabla\phi_u\cdot\nabla v\,dx =-\int_{\mathbb{R}^3}v\Delta\phi_udx, $$ therefore, $$ -\Delta\phi_u=K(x)u^2, $$ in a weak sense and the representation formula \begin{align} \phi_u=\int_{\mathbb{R}^3}\frac{K(y)}{|x-y|}u^2(y)dy =\frac{1}{|x|}\ast Ku^2 \label{Pukxx} \end{align} holds. Moreover, $\phi_u>0$ when $u\neq0$, because $K$ does, and by \eqref{Luv}, \eqref{2.2} and the Sobolev inequality, the relations \begin{gather}\label{puD} \|\phi_u\|_{D^{1,2}}\leq C_{2} C^{2}_{1} \cdot|K|_2\|u\|^2, \quad |\phi_u|_6\leq C_{2}\|\phi_u\|_{D^{1,2}}, \\ \label{y} \int_{\mathbb{R}^3}\int_{\mathbb{R}^3}\frac{K(x)K(y)}{|x-y|}u^2(x)u^2(y)dxdy =\int_{\mathbb{R}^3}K(x)\phi_uu^{2}dx \leq C_{2}^{2} C_{1}^{4}\cdot |K|_{2}^{2}\|u\|^4 \end{gather} hold. Substituting $\phi_u$ in problem \eqref{eSP}, we are led to \eqref{e1}, whose solutions can be obtained by looking for critical points of the functional $I:H^{1}(\mathbb{R}^3)\to \mathbb{R}$ where $I$ is defined in \eqref{e1.3}. Indeed, \eqref{puD} and \eqref{y} imply that $I$ is a well-defined $C^{2}$ functional, and that \begin{equation} \langle I'(u),v\rangle=\int_{\mathbb{R}^3}\Big(\nabla u\cdot\nabla v+uv -\lambda K(x)\phi_uuv-a(x)|u|^{p-1}uv\Big)dx. \end{equation} Hence, if $u\in H^1(\mathbb{R}^3)$ is a critical point of $I$, then the pair $(u,\phi_u)$, with $\phi_u$ as in \eqref{Pukxx}, is a solution of \eqref{eSP}. Let us define the operator $\Phi$:$H^1(\mathbb{R}^3)\to D^{1,2}(\mathbb{R}^3)$ as $$ \Phi[u]=\phi_u. $$ In the next lemma we summarize some properties of $\Phi$, useful for the study our problem. \begin{lemma}[\cite{GC}] \label{lem2.1} \begin{itemize} \item[(1)] $\Phi$ is continuous; \item[(2)] $\Phi$ maps bounded sets into bounded sets; \item[(3)] if $u_n \rightharpoonup u$ in $H^1(\mathbb{R}^3)$ then $\Phi[u_n] \rightharpoonup \Phi[u]$ in $D^{1,2}(\mathbb{R}^3)$; \item[(4)] $\Phi[tu]=t^2\Phi[u]$ for all $t\in\mathbb{R}$. \end{itemize} \end{lemma} \begin{lemma}[\cite{P}] \label{lem2.2} Suppose $r>0$, $20, \quad \forall u\in\mathcal{N} \end{align} Using this inequality, $\lambda>0$, $K>0$, $a>0$, when $10, \end{aligned} \end{equation} when $3\leq p<5$, \begin{equation} \label{Iu13} \begin{aligned} I(u)&=\frac{1}{4}\|u\|^2+\Big(\frac{1}{4}-\frac{1}{p+1}\Big) \int_{\mathbb{R}^3}a(x)|u|^{p+1}dx \\ &\geq \frac{1}{4}\|u\|^2 \\ &\geq \frac{1}{4}C_1^{2} >0. \end{aligned} \end{equation} Setting $m:=\inf\{I(u):u\in\mathcal{N}\}$, as a consequence of Lemma 3.1, $m$ turns out to be a positive number. Then we obtain a sequence $\{u_n\}\subset\mathcal{N}$, such that \begin{align}\label{Iunm} \lim_{n\to\infty}I(u_n)=m. \end{align} \end{proof} Now we give the proof of our main result. \begin{proof}[Proof of Theorem 1.1] First, we prove that \begin{equation} m0$ such that $t_0w_\infty \in\mathcal{N}$. Indeed, from \eqref{Gu}, for all $t\geq0$ one has $$ G(tw_\infty)=t^{2}\|w_\infty\|^2-\lambda t^{4}\int_{\mathbb{R}^3}K(x) \phi_{w_\infty}w_\infty^{2}dx-t^{p+1}\int_{\mathbb{R}^3}a(x)|w_\infty|^{p+1}dx, $$ then $G(0)=0$ and $G(tw_\infty)\to-\infty$ as $t\to+\infty$. Moreover, $$ G_{t}'(tw_\infty) =t\Big(2\|w_\infty\|^2-4\lambda t^{2}\int_{\mathbb{R}^3}K(x) \phi_{w_\infty}w_\infty^{2}dx -(p+1)t^{p-1}\int_{\mathbb{R}^3}a(x)|w_\infty|^{p+1}dx\Big), $$ then there exists $t_{\rm max}>0$ such that $G_{t}'(tw_\infty)>0$ for all $0t_{\rm max}$. Then $G(tw_\infty)$ is increasing for all $0t_{\rm max}$. Thus there exists $t_0>0$ such that $G(t_0w_\infty)=0$. That is, $t_0w_\infty \in\mathcal{N}$. Our claim is true. It follows that \begin{equation} \label{m} \begin{aligned} m&\leq I(t_0w_\infty) \\ &=\frac{t_0^2}{2}\|w_\infty\|^2-\frac{t_0^4}{4} \lambda\int_{\mathbb{R}^3}K(x)\phi_{w_\infty}(x)w_\infty ^2dx -\frac{t_0^{p+1}}{p+1}\int_{\mathbb{R}^3}a(x)|w_\infty|^{p+1}dx \\ &< \frac{t_0^2}{2}\|w_\infty\|^2-\frac{t_0^{p+1}}{p+1}\int_{\mathbb{R}^3}c|w_\infty|^{p+1}dx \\ &\leq \Big(\frac{1}{2}-\frac{1}{p+1}\Big)\|w_\infty\|^2 \\ &=I_\infty(w_\infty) =m_\infty. \end{aligned} \end{equation} We assume that $\{u_n\}$ is what obtained in \eqref{Iunm}. From \eqref{Pukxx}, we can get $\{|u_n|\}$ is also a minimize sequence. Setting $u_n(x)\geq0$ in $\mathbb{R}^3$ a.e. by \eqref{Iu12} and \eqref{Iu13}, we have if $p\in{(1,3)}$, then $$ I(u_n)\geq\Big(\frac{1}{2}-\frac{1}{p+1}\Big)\|u_n\|^2, $$ and if $p\in{[3,5)}$, then $$ I(u_n)\geq\frac{1}{4}\|u_n\|^2. $$ In both cases, being $I(u_n)$ is bounded, $\{u_n\}$ is also bounded. On the other hand, since $\{u_n\}$ is bounded in $H^1(\mathbb{R}^3)$, there exists $\overline{u}\in H^1(\mathbb{R}^3)$ such that, up to a subsequence, \begin{gather} u_n\rightharpoonup\overline{u}, \quad\text{in }H^1(\mathbb{R}^3);\label{unu2}\\ u_n\to\overline{u}, \quad\text{in }L^{p+1}_{\rm loc}(\mathbb{R}^3);\label{ll}\\ u_n(x)\to\overline{u}(x), \quad\text{ a.e. in }\mathbb{R}^3. \end{gather} Setting $$ z_{n}^{1}(x)=u_n(x)-\overline{u}(x). $$ Obviously, $z_{n}^{1}\rightharpoonup0$ in $H^1(\mathbb{R}^3)$, but not strongly. A direct computation gives \begin{equation} \|u_n\|^2=\|z_{n}^{1}+\overline{u}\|^2 =\|z_{n}^{1}\|^2+\|\overline{u}\|^2+o(1).\label{un2z} \end{equation} According to the Brezis-Lieb Lemma \cite{HE}, we deduce \begin{align}\label{unp1p1} |u_n|_{p+1}^{p+1}=|\overline{u}|_{p+1}^{p+1}+|z_{n}^{1}|_{p+1}^{p+1}+o(1). \end{align} Then, we claim that, for any $h\in H^1(\mathbb{R}^3)$, we have \begin{align}\label{Runp} \int_{\mathbb{R}^3}|u_n|^{p-1}u_nh\,dx\to\int_{\mathbb{R}^3} |\overline{u}|^{p-1}\overline{u}h\,dx. \end{align} For every $h\in C^{\infty}_0(\mathbb{R}^3)$, there exists a bounded open subset $\Omega\subset\mathbb{R}^3$, such that $\operatorname{supp}h\subset\Omega$, where $\operatorname{supp}h=\overline{\{x\in\mathbb{R}^3:h(x)\neq0\}}$. From \eqref{ll}, we have \begin{align*} &\big|\int_{\mathbb{R}^3}|u_n|^{p-1}u_nh\,dx -|\overline{u}|^{p-1}\overline{u}h\,dx\big|\\ &<\int_{\mathbb{R}^3}\big||u_n|^{p-1}u_nh-|\overline{u}|^{p-1}\overline{u}h\big|dx\\ &\leq \int_{\mathbb{R}^3}p(|u_n|^{p-1}+|\overline{u}|^{p-1})|u_n-\overline{u}||h|dx\\ &=\int_{\mathbb{R}^3}p|u_n|^{p-1}|u_n-\overline{u}||h|dx +\int_{\mathbb{R}^3}p|\overline{u}|^{p-1}|u_n-\overline{u}||h|dx\\ &0$ and $\rho>0$, the relations \begin{gather} |u^{2}_{n}-\overline{u}^2|_{3,B_\rho(0)}<\varepsilon,\label{u2nu}\\ |\phi_{u_n}-\phi_{\overline{u}}|_{6,B_\rho(0)}<\varepsilon \label{punp} \end{gather} hold for large $n$. On the other hand, $u_n$ being bounded in $H^1(\mathbb{R}^3)$, $\phi_{u_n}$ is bounded in $D^{1,2}(\mathbb{R}^3)$ and in $L^{6}(\mathbb{R}^3)$, because of (2) of Lemma 2.1 and the continuity of the Sobolev embedding of $D^{1,2}(\mathbb{R}^3)$ in $L^{6}(\mathbb{R}^3)$. Moreover $K\in L^2(\mathbb{R}^3)$, for any $\varepsilon>0$, there exists $\overline{\rho}=\overline{\rho}(\varepsilon)$ such that \begin{align}\label{k2B0} |K|_{2,\mathbb{R}^3\backslash B_\rho(0)}<\varepsilon, \quad \forall\rho\geq\overline{\rho}. \end{align} Hence, by \eqref{u2nu} and \eqref{k2B0}, for large $n$, we deduce that \begin{align*} &\Big|\int_{\mathbb{R}^3}K(x)\phi_{u_n}u^{2}_{n}dx -\int_{\mathbb{R}^3}K(x)\phi_{\overline{u}}\overline{u}^2dx\Big|\\ &\leq \Big|\int_{\mathbb{R}^3}K(x)\phi_{u_n}(u^{2}_{n}-\overline{u}^2)dx +\int_{\mathbb{R}^3}K(x)(\phi_{u_n}-\phi_{\overline{u}})\overline{u}^2dx\Big|\\ &\leq \Big|\int_{\mathbb{R}^3}K(x)\phi_{u_n}(u^{2}_{n}-\overline{u}^2)dx\Big| +\Big|\int_{\mathbb{R}^3}K(x)(\phi_{u_n}-\phi_{\overline{u}})\overline{u}^2dx\Big|\\ &\leq \Big|\int_{\mathbb{R}^3\backslash B_\rho(0)}K(x)\phi_{u_n}(u^{2}_{n} -\overline{u}^2)dx\Big| +\Big|\int_{B_\rho(0)}K(x)\phi_{u_n}(u^{2}_{n}-\overline{u}^2)dx\Big|\\ &\quad +\Big|\int_{\mathbb{R}^3\backslash B_\rho(0)}K(x)(\phi_{u_n} -\phi_{\overline{u}})\overline{u}^2dx\Big| +\Big|\int_{B_\rho(0)}K(x)(\phi_{u_n}-\phi_{\overline{u}})\overline{u}^2dx\Big|\\ &\leq |K|_{2,\mathbb{R}^3\backslash B_\rho(0)} \Big(|\phi_{u_n}|_{6,\mathbb{R}^3\backslash B_\rho(0)}|u^{2}_{n} -\overline{u}^2|_{3,\mathbb{R}^3\backslash B_\rho(0)} \\ &\quad +|\phi_{u_n}-\phi_{\overline{u}}|_{6,\mathbb{R}^3\backslash B_\rho(0)} |\overline{u}^2|_{3,\mathbb{R}^3\backslash B_\rho(0)}\Big) +|K|_{2,B_\rho(0)}|\phi_{u_n}|_{6,B_\rho(0)}|u^{2}_{n} -\overline{u}^2|_{3,B_\rho(0)}\\ &\quad +|K|_{2,B_\rho(0)}|\phi_{u_n} -\phi_{\overline{u}}|_{6,B_\rho(0)}|\overline{u}^2|_{3,B_\rho(0)}\\ &\leq C\varepsilon \end{align*} which proves \eqref{k1}. Analogously, by \eqref{punp} and \eqref{k2B0}, for large $n$, we infer that \[ \Big|\int_{\mathbb{R}^3}K(x)\phi_{u_n}u_nh\,dx -\int_{\mathbb{R}^3}K(x)\phi_{\overline{u}}\overline{u}h\,dx\Big| \leq\varepsilon \] which proves \eqref{k2}. Therefore, by \eqref{un2z}, \eqref{unp1p1} and \eqref{k1} respectively, we obtain \begin{equation} \begin{aligned} I(u_n) &=\frac{1}{2}\|u_n\|^2-\frac{\lambda}{4}\int_{\mathbb{R}^3}K(x)\phi_{u_n}u^{2}_{n}dx -\frac{1}{p+1}\int_{\mathbb{R}^3}a(x)|u_n|^{p+1}dx\\ &=\frac{1}{2}\|z_{n}^{1}\|^2+\frac{1}{2}\|\overline{u}\|^2 -\frac{\lambda}{4}\int_{\mathbb{R}^3}K(x)\phi_{\overline{u}}\overline{u}^2dx -\frac{1}{p+1}\int_{\mathbb{R}^3}a(x)|\overline{u}|^{p+1}dx\\ &\quad -\frac{c}{p+1}\int_{\mathbb{R}^3}|z_{n}^{1}|^{p+1}dx+o(1)\\ &=I(\overline{u})+I_\infty(z_{n}^{1})+o(1). \end{aligned} \label{IuIz} \end{equation} By \eqref{Runp} and \eqref{k2} for any $h\in C^{\infty}_0(\mathbb{R}^3)$, \begin{equation} \begin{aligned} \langle I'(u_n),h\rangle &=\int_{\mathbb{R}^3}(\nabla u_n\cdot\nabla h+u_nh -\lambda K(x)\phi_{u_n}u_nh-a(x)|u_n|^{p-1}u_nh)dx\\ &=\int_{\mathbb{R}^3}(\nabla \overline{u}\cdot\nabla h +\overline{u}h-\lambda K(x)\phi_{\overline{u}}\overline{u}h -a(x)|\overline{u}|^{p-1}\overline{u}h)dx+o(1)\\ &=\langle I'(\overline{u}),h\rangle+o(1). \end{aligned} \label{zz} \end{equation} We now claim that \begin{equation}\label{nIuu} \nabla I(u_n)\to 0, \quad\text{in } H^1(\mathbb{R}^3). \end{equation} By Lagrange's multiplier theorem, we know that there exists $\lambda_n\in\mathbb{R}$ such that \begin{equation} \label{o1nI} o(1)=\nabla I|_\mathcal{N}(u_n)=\nabla I(u_n)-\lambda_n\nabla G(u_n). \end{equation} So, taking the scalar product with $u_n$, we obtain \[ o(1)=(\nabla I(u_n),u_n)-\lambda_n(\nabla G(u_n),u_n). \] $G$ turns out to be a $C^1$ functional. Using \eqref{Ituu} and $\lambda>0, K>0, a>0$, when $10$ a.e. in $\mathbb{R}^3$. Let us prove $\delta=0$. Actually, if $\delta>0$, there exists sequence $\{y_{n}^{1}\}\subset\mathbb{R}^3$, such that $$ \int_{B_1(y_{n}^{1})}|z_{n}^{1}|^{p+1}dx>\frac{\delta}{2}. $$ Let us now consider $z_{n}^{1}(\cdot+y_{n}^{1})$. We assume that $z_{n}^{1}(\cdot+y_{n}^{1})\rightharpoonup u^1$ in $H^1(\mathbb{R}^3)$ and, then, $z_{n}^{1}(x+y_{n}^{1})$ $\to$ $u^1(x)$ a.e. on $\mathbb{R}^3$. Since $$ \int_{B_1(0)}|z_{n}^{1}(x+y_{n}^{1})|^{p+1}dx>\frac{\delta}{2}, $$ from the Rellich theorem it follows that $$ \int_{B_1(0)}|u^1(x)|^{p+1}dx\geq\frac{\delta}{2}, $$ and thus $u^1\neq0$. Finally, let us set $$ z_{n}^{2}(x)=z_{n}^{1}(x+y_{n}^{1})-u^1(x). $$ Then, using \eqref{un2z}, \eqref{unp1p1} and the Brezis-Lieb Lemma, we have \begin{gather} \|z_{n}^{2}\|^2=\|z_{n}^{1}\|^2-\|u^1\|^2+o(1),\label{shang} \\ |z_{n}^{2}|_{p+1}^{p+1}=|u_n|_{p+1}^{p+1} -|\overline{u}|_{p+1}^{p+1}-|u^1|_{p+1}^{p+1}+o(1). \label{xia} \end{gather} These equalities imply $$ I_\infty(z_{n}^{2})=I_\infty(z_{n}^{1})-I_\infty(u^1)+o(1), $$ hence, by using \eqref{IuIz}, we obtain \begin{equation} \label{un} \begin{aligned} I(u_n)&=I(\overline{u})+I_\infty(z_{n}^{1})+o(1)\\ &=I(\overline{u})+I_\infty(u^1)+I_\infty(z_{n}^{2})+o(1). \end{aligned} \end{equation} Using \eqref{1I}, \eqref{shang} and \eqref{xia}, we obtain \begin{align*} \langle I'_\infty(z_{n}^{1}),z_{n}^{1}\rangle &= \|z_{n}^{1}\|^2-c|z_{n}^{1}|_{p+1}^{p+1}\\ &= \|u^1\|^2-c|u^1|_{p+1}^{p+1}+\|z_{n}^{2}\|^2-c|z_{n}^{2}|_{p+1}^{p+1}+o(1) \\ &= \langle I'_\infty(u^1),u^1\rangle +\langle I'_\infty(z_{n}^{2}),z_{n}^{2}\rangle+o(1), \end{align*} which implies \[ o(1)=\langle I'_\infty(z_{n}^{2}),z_{n}^{2}\rangle =\|z_{n}^{2}\|^2-c|z_{n}^{2}|^{p+1}_{p+1}. \] Moreover, we obtain \begin{equation} \label{zn} I_\infty(z_{n}^{2}) = \frac{1}{2}\|z_{n}^{2}\|^2-\frac{c}{p+1}|z_{n}^{2}|^{p+1}_{p+1} = \Big(\frac{1}{2}-\frac{1}{p+1}\Big)\|z_{n}^{2}\|^2+o(1). \end{equation} Since $z_{n}^{1}\rightharpoonup u^1$ in $H^1(\mathbb{R}^3)$ and $u^{1}\neq0$, according to \eqref{1I}, one has $u^{1}\in\mathcal{N}_\infty$. Because of $\overline{u} \in \mathcal{N}$, from Lemma 3.1, we obtain $I(\overline{u})>0$. Thus, using \eqref{un} and \eqref{zn}, we obtain \begin{align*} m&=\liminf_{n\to\infty}I(u_n) \\ &\geq I(\overline{u})+I_\infty(u^1)+\liminf_{n\to\infty}I_\infty(z_{n}^{2}) \\ &\geq I_\infty(u^1) \geq m_\infty \end{align*} which contradicts with \eqref{mm}. \end{proof} \subsection*{Acknowledgments} This research was supported by National Natural Science Foundation of China (No.11471267). The authors would like to thank the anonymous referees for their valuable suggestions. \begin{thebibliography}{99} \bibitem{CO} C. O. Alves; \emph{Schr\"{o}dinger-Possion equations without Ambrosetti-Rabinowitz condition}, J. Math. Anal. Appl. 377 (2011) 584-592. \bibitem{A} A. Ambrosetti; \emph{On Schr\"{o}dinger-Poisson systems}, Milan J. Math. 76 (2008) 257-274. \bibitem{AA1} A. Azzollini; \emph{Concentration and compactness in nonlinear Schr\"{o}dinger-Poisson system with a general nonlinearity}, J. Differential Equations 249 (2010) 1746-1763. \bibitem{AD} A. Ambrosetti, D. Ruiz; \emph{Multiple bound states for the Schr\"{o}dinger-Poisson problem}, Commun. Contemp. Math. 10 (2008) 391-404. \bibitem{AP} A. Ambrosetti, P. Rabinowitz; \emph{Dual variational methods in critical point theory and applications}, J. Funct. Anal. 14 (1973) 349-381. \bibitem{AA} A. Azzollini, A. Pomponio; \emph{Ground state solutions for the nonlinear Schr\"{o}dinger-maxwell equations}, J. Math. Anal. Appl. 345 (2008) 90-108. \bibitem{C3} V. Benci, D. Fortunato; \emph{An eigenvalue problem for the Schr\"{o}inger-Maxwell equations}, Topol. Methods Nonlinear Anal. 11 (1998) 283-293. \bibitem{C4} V. Benci, D. Fortunato; \emph{Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations}, Rev. Math. Phys. 14 (2002) 409-420. \bibitem{C5} R. Benguria, H. Brezis, E.H. Lieb; \emph{The Thomas-Fermi-von Weizs$\ddot{a}$cker theory of atoms and molecules}, Comm. Math. Phys. 79 (1981) 167-80. \bibitem{HE} H. Brezis, E. Lieb; \emph{A relation between pointwise convergence of functions and convergence of functionals}, Proc. Amer. Math. Soc. 88 (1983) 486-490. \bibitem{GC} G. Cerami, Giusi Vaira; \emph{Positive solutions for some non-autonomous Schr\"{o}dinger-Poisson systems}, J. Differential Equations 248 (2010) 521-543. \bibitem{MKK} M. K. Kwong; \emph{Uniqueness of positve solutions of $\Delta u-u+u^p=0$ in $\mathbb{R}^N$}, Arch. Ration. Mech. Anal. 105 (1989) 243-266. \bibitem{P} P. L. Lions; \emph{The concentration-compactness principle in the calculus of variations. The locally compact case, part 2}, Anal. Nonlin\'{e}aire I (1984) 223-283. \bibitem{C15} P. L. Lions; \emph{Solutions of Hartree-Fock equations for Coulomb systems}, Comm. Math. Phys. 109 (1984) 33-97. \bibitem{C16} P. Markowich, C. Ringhofer, C. Schmeiser; \emph{Semiconductor Equations}, Springer-Verlag, New York, 1990. \bibitem{DR} D. Ruiz; \emph{The Schr\"{o}dinger-Poisson equation under the effect of a nonlinear local term}, J. Funct. Anal. 237 (2006) 655-674. \bibitem{GV} G. Vaira; \emph{Ground states for Schr\"{o}dinger-Poisson type systems}, Ricerche mat. 60 (2011) 263-297. \bibitem{GV1} G. Vaira; \emph{Existence of bounded states for Schr\"{o}dinger-Poisson type systems}, S. I. S. S. A. 251 (2012) 112-146. \bibitem{C17} M. Willem; \emph{Minimax Theorems}, Progr. Nonlinear Differential Equations Appl., vol. 24, Birkh\"{a}user, 1996. \bibitem{LZ} L. Zhao, F. Zhao; \emph{On the existence of solutions for the Schr\"{o}dinger-Poisson equations}, J. Math. Anal. Appl. 346 (2008) 155-169. \end{thebibliography} \end{document}