\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{graphicx,epic} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 119, pp. 1--16.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/119\hfil Existence of infinitely many sign-changing solutions] {Existence of infinitely many sign-changing solutions for elliptic problems with critical exponential growth} \author[D. S. Pereira \hfil EJDE-2015/119\hfilneg] {Denilson S. Pereira} \address{Denilson S. Pereira \newline Universidade Federal de Campina Grande\\ Unidade Acad\^emica de Matem\'atica - UAMat\\ CEP: 58.429-900 - Campina Grande - PB, Brazil} \email{denilsonsp@dme.ufcg.edu.br} \thanks{Submitted January 29, 2015. Published April 30, 2015.} \subjclass[2010]{35A15, 35J15} \keywords{Variational method; critical exponential growth; \hfill\break\indent sign-changing solution} \begin{abstract} In this work we prove the existence of infinitely many nonradial solutions, that change sign, to the problem \begin{gather*} -\Delta u=f(u)\quad\text{in }B\\ u=0\quad\text{on }\partial B, \end{gather*} where $B$ is the unit ball in $\mathbb{R}^2$ and $f$ is a continuous and odd function with critical exponential growth. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{claim}[theorem]{Claim} \allowdisplaybreaks \section{Introduction} Let $\Omega\subset\mathbb{R}^N$ be a bounded domain with smooth boundary and $f:\mathbb{R}\to\mathbb{R}$ be a $C^1$ function with $f(-t)=-f(t)$. Consider the problem \begin{equation} \label{eP} \begin{gathered} -\Delta u=f(u),\quad \text{in } \Omega, \\ \mathcal{B}u=0,\quad \text{on } \partial \Omega, \end{gathered} \end{equation} when $N\geq 4$, $\mathcal{B}u=u$ and $f(t)=|t|^{\frac{4}{N-2}}+\lambda t$, Br\'ezis-Niremberg \cite{BN} proved that \eqref{eP} admits a non-trivial positive solution, provided $00. \end{equation} Moreover, there exists a positive constant $C=C(\alpha,|\Omega|)$ such that \begin{equation} \label{X1} \sup_{||u||_{H_0^{1}(\Omega)} \leq 1} \int_{\Omega} e^{\alpha u^2} dx \leq C , \quad \text{for all } \alpha \leq 4 \pi . \end{equation} Motivated by inequality in \eqref{X1}, we say that the nonlinearity $f$ has critical exponential growth if $f$ behaves like $e^{\alpha_0s^2}$, as $|s|\to\infty$, for some $\alpha_0>0$. More precisely, $$ \lim_{|s|\to\infty}\frac{|f(s)|}{e^{\alpha s^2}}=0,\; \forall\alpha>\alpha_0\quad \text{and}\quad \lim_{|s|\to\infty}\frac{|f(s)|}{e^{\alpha s^2}}=+\infty,\; \forall \alpha<\alpha_0. $$ In this case, Adimurthi \cite{Ad} proved that \eqref{eP} admits a positive solution, provided that $\lim_{t\to\infty}tf(t)e^{\alpha t^2}=\infty$. Using a more weaker condition (see \cite[Remark 4.2]{Ad}), Adimurthi in \cite{ad1} also proved the exitence of many solutions for the Dirichlet problem with critical exponential growth for the $N$-Laplacian. Adimurthi-Yadava \cite{AY}, proved that \eqref{eP} has a solution that changes sign and, when $\Omega$ is a ball in $\mathbb{R}^2$, \eqref{eP} has infinitely many radial solutions that change sign. Inspired in \cite{CK}, this paper is concerned with the existence of infinitely many non-radial sign changing solutions for \eqref{eP} when $f$ has critical exponential growth and $\Omega$ is a ball in $\mathbb{R}^2$. Our main result complements the studies made in \cite{CK,MMF}, because we consider the case where $f$ has critical exponential growth in $\mathbb{R}^2$. It is important to notice that in both studies mentioned above was considered the Neumann boundary condition in order that the Pohozaev identity (see \cite{P}) ensures that the problem \eqref{eP} with the Dirichlet boundary condition, has no solutions for $\lambda<0$ and $N\geq 3$. Since the Pohozaev identity is not available in dimension two, in our case we can use the Dirichlet boundary condition. Here we use the following assumptions \begin{enumerate} \item[(F1)] There is $C>0$ such that $$ |f(s)|\leq Ce^{4\pi |s|^2},\quad \text{for all } s\in\mathbb{R}; $$ \item[(F2)] $\lim_{s\to 0} f(s)/s=0$; \item[(H1)] There are $s_0>0$ and $M>0$ such that $$ 0< F(s):=\int_0^{s}f(t)dt\leq M|f(s)|\quad \text{for all } |s|\geq s_0. $$ \item[(H2)] $0\frac{1}{2\pi d_m^2}$, where $d_m$ is the radius of the largest open ball contained in $A_m$. \end{itemize} Hypothesis (H3) was initially considered in Adimurthi \cite{Ad}. This hypothesis will be fundamental to ensure not only the existence but also the multiplicity of sign-changing solutions. As we will see bellow, assuming (H3) in place of (H3'), we have the existence of positive solution of \eqref{ePm}, for every $m\in\mathbb{N}$. This is the content of the next result. \begin{theorem}\label{th1} Under the assumptions {\rm (F1)--(F2)} and {\rm (H1)--(H3)}, problem \eqref{ePm} has a positive solution, for every $m\in\mathbb{N}$. \end{theorem} \section{Proof of Theorem \ref{th1}} In what follows, for an open set $\Theta\subset\mathbb{R}^2$ we denote $L^q(\Theta)$ and $H_0^1(\Theta)$ norms by $$ |u|_{q,\Theta}=\Big(\int_{\Theta}|u|^q\Big)^{1/q}, \quad \|u\|_{\Theta}=\Big(\int_{\Theta}|\nabla u|^2\Big)^{1/2}, $$ respectively. Since we are interested in positive solutions to \eqref{ePm}, we assume that $$ f(s)=0,\quad \text{for all } s\leq 0. $$ Associated with problem \eqref{ePm}, we have the functional $I: H_0^1(A_m)\to\mathbb{R}$ defined by $$ I(u)=\frac{1}{2}\int_{A_m}|\nabla u|^2-\int_{A_m}F(u). $$ In our case, $\partial A_m$ is not of class $C^1$. However, the functional $I$ is well defined. In fact, for each $u\in H_0^1(A_m)$, let us consider $u^{*}\in H_0^1(B)$ the zero extension of $u$ in $B$ defined by $$ u^{*}(x)=\begin{cases} u(x),& \text{if } x\in A_m,\\ 0,& \text{if } x\in B\setminus A_m. \end{cases} $$ Clearly, $$ \|u\|_{A_m}=\|u^{*}\|_{B}. $$ Then, from (F1) and the Trudinger-Moser inequality \eqref{X0} $$ \big|\int_{A_m}F(u)\big|=\big|\int_{B}F(u^{*})\big| \leq \int_{B}|F(u^{*})|\leq C\int_{B}e^{4\pi|u^{*}|^2}<\infty. $$ Moreover, using a standard argument we can prove that the functional $I$ is of class $C^1$ with $$ I'(u)v=\int_{A_m}\nabla u\nabla v-\int_{A_m}f(u)v,\quad \text{for all } u,v\in H_0^1(A_m). $$ Therefore, critical points of $I$ are precisely the weak solutions of \eqref{ePm}. The next lemma ensures that the functional $I$ has the mountain pass geometry. \begin{lemma}\label{mpg} \begin{itemize} \item[(a)] There are $r,\rho>0$ such that $I(u)\geq\rho>0$ for all $\|u\|_{A_m}=r$. \item[(b)] There is $e\in H_0^1(A_m)$ such that $\|e\|_{A_m}>r$ and $ I(e)<0$. \end{itemize} \end{lemma} \begin{proof} Using the definition of $I$ and the growth of $f$, we obtain $$ I(u)\geq\frac{1}{2}\int_{A_m}|\nabla u|^2-\frac{\epsilon}{2}\int_{A_m}|u|^2-C\int_{A_m}|u|^qe^{\beta|u|^2}, $$ or equivalently, $$ I(u)\geq\frac{1}{2}\int_{B}|\nabla u^{*}|^2-\frac{\epsilon}{2}\int_{B}|u^{*}|^2-C\int_{B}|u^{*}|^qe^{\beta|u^{*}|^2}. $$ By the Poincar\'e's inequality, $$ I(u)\geq\frac{1}{2}\int_{B}|\nabla u^{*}|^2-\frac{\epsilon}{2\lambda_1}\int_{B}|\nabla u^{*}|^2-C\int_{B}|u^{*}|^qe^{\beta|u^{*}|^2}, $$ where $\lambda_1$ is the first eigenvalue of $(-\Delta, H_0^1(B))$. Fixing $\epsilon>0$ sufficiently small, we have $C_1:=\frac{1}{2}-\frac{\epsilon}{2\lambda_1}>0$, from where it follows that $$ I(u)\geq C_1\int_{B}|\nabla u^{*}|^2-C\int_B|u^{*}|^qe^{\beta|u^{*}|^2}. $$ Notice that, from Trudinger-Moser inequality \eqref{X1}, $e^{\beta|u^{*}|^2}\in L^2(B)$ and by continuous embedding $|u^{*}|^q\in L^2(B)$. Since $H_0^1(B)\hookrightarrow L^{2q}(B)$ for all $q\geq 1$, by H\"older's inequality \begin{align*} \int_B|u^{*}|^qe^{\beta|u^{*}|^2} &\leq\Big(\int_B|u^{*}|^{2q}\Big)^{1/2} \Big(e^{2\beta|u^{*}|^2}\Big)^{1/2}\\ &\leq |u^{*}|_{2q,B}^q\Big(\int_B e^{2\beta|u^{*}|^2}\Big)^{1/2}\\ &\leq C\|u^{*}\|_B^q\Big(\int_B e^{2\beta|u^{*}|^2}\Big)^{1/2}. \end{align*} We claim that for $r>0$ small enough, we have $$ \sup_{\|u^{*}\|_B=r}\int_Be^{2\beta|u^{*}|^2}<\infty. $$ In fact, note that $$ \int_Be^{2\beta|u^{*}|^2}=\int_Be^{2\beta\|u^{*}\|_B^2 (\frac{|u^{*}|}{\|u^{*}\|_B})^2}. $$ Choosing $r>0$ small enough such that $\alpha:=2\beta r^2<4\pi$ and using the Trudinger-Moser inequality \eqref{X1}, $$ \sup_{\|u^{*}\|_B=r}\int_Be^{2\beta |u^{*}|^2}\leq\sup_{\|v\|_B\leq 1}\int_Be^{\alpha|v|^2}<\infty. $$ Thus, $$ I(u)\geq C_1\|u^{*}\|_B^2-C_2\|u^{*}\|_B^q. $$ Fixing $q>2$, we derive $$ I(u)\geq C_1r^2-C_2r^q:=\rho>0, $$ for $r=\|u\|_{A_m}=\|u^{*}\|_B$ small enough, which shows that the item (a) holds. To prove (b), first notice that \noindent{\bf Claim 1.} For each $\epsilon>0$, there exists $\overline{s}_\epsilon>0$ such that $$ F(s)\leq\epsilon f(s)s,\quad \text{for all }x\in A_m,~|s|\geq \overline{s}_\epsilon. $$ In fact, from hypothesis (H1) $$ \big|\frac{F(s)}{sf(s)}\big|\leq\frac{M}{|s|},\quad \text{for all } |s|\geq s_0. $$ For $p>2$, claim 1 with $\epsilon=1/p>0$, guarantees the existence of $\overline{s}_\epsilon>0$ such that $$ pF(s)\leq f(s)s,\quad \text{for all } s\geq \overline{s}_\epsilon, $$ which implies the existence of constants $C_1,C_2>0$ satisfying $$ F(s)\geq C_1|s|^{p}-C_2,\quad \text{for all } s\geq 0. $$ Thus, fixing $\varphi\in C_0^\infty(A_m)$ with $\varphi\geq 0$ and $\varphi\neq 0$. For $t\geq 0$, we have $$ \int_{A_m}F(t\varphi) \geq\int_{A_m}(C_1|t\varphi|^{p}-C_2) \geq C_1|t|^{p}\int_{A_m}|\varphi|-C_2|A_m|, $$ from where it follows that \begin{equation}\label{4.1} \int_{A_m}F(t\varphi)\geq C_3|t|^{p}-C_4. \end{equation} From \eqref{4.1}, if $t\geq 0$, $$ I(t\varphi)\leq \frac{t^2}{2}\|\varphi\|_{A_m}^2-C_3|t|^{p}+C_4. $$ Since $p>2$, $I(t\varphi)\to-\infty$ as $t\to +\infty$. Fixing $t_0$ large enough and let $e=t_0\varphi$, we obtain $$ \|e\|_{A_m}\geq r\quad\text{and}\quad I(e)<0. $$ \end{proof} The next lemma is crucial for proving that the energy functional $I$ satisfies the Palais-Smale condition and its proof can be found in \cite{DOR}. \begin{lemma}\label{1.6} Let $\Omega\subset\mathbb{R}^N$ be a bounded domain and $(u_n)$ be a sequence of functions in $L^1(\Omega)$ such that $u_n$ converging to $u\in L^1(\Omega)$ in $L^1(\Omega)$. Assume that $f(u_n(x))$ and $f(u(x))$ are also $L^1(\Omega)$ functions. If $$ \int_\Omega|f(u_n)u_n|\leq C,\quad \text{for all }n\in\mathbb{N}, $$ then $f(u_n)$ converges in $L^1(\Omega)$ to $f(u)$. \end{lemma} \begin{lemma}\label{ld} The functional $I$ satisfies the $(PS)_d$ condition, for all $d\in(0,1/2)$. \end{lemma} \begin{proof} Let $d<1/2$ and $(u_n)$ be a $(PS)_d$ sequence for the functional $I$; i.e., $$ I(u_n)\to d\quad \text{and}\quad I'(u_n)\to 0, \quad\text{as } n\to+\infty. $$ For each $n\in\mathbb{N}$, let us define $\epsilon_n=\sup_{\|v\|_{A_m}\leq 1}\{|I'(u_n)v|\}$, then $$ |I'(u_n)v|\leq \epsilon_n\|v\|_{A_m}, $$ for all $v\in H_0^1(A_m)$, where $\epsilon_n=o_n(1)$. Thus \begin{gather}\label{d1} \frac{1}{2}\int_{A_m}|\nabla u_n|^2-\int_{A_m}F(u_n)=d+o_n(1), \quad \forall n\in\mathbb{N}, \\ \label{d2} \Big|\int_{A_m}\nabla u_n\nabla v-\int_{A_m}f(u_n)v\Big| \leq\epsilon_n\|v\|_{A_m},\quad \text{for all } n\in\mathbb{N},\; v\in H_0^1(A_m). \end{gather} From \eqref{d1} and Claim $1$, for any $\epsilon>0$, there is $n_0\in\mathbb{N}$ such that $$ \frac{1}{2}\|u_n\|_{A_m}^2=\frac{1}{2}\int_{A_m}|\nabla u_n|^2 \leq\epsilon+d+\int_{A_m}F(u_n)\leq C_\epsilon+\epsilon\int_{A_m}f(u_n)u_n, $$ for all $n\geq n_0$. Using \eqref{d2} with $v=u_n$, we obtain $$ \big(\frac{1}{2}-\epsilon\big)\|u_n\|^2_{A_m}\leq C_\epsilon+\epsilon\|u_n\|_{A_m}, \quad \text{for all } n\geq n_0. $$ Thus, the sequence $(u_n)$ is bounded. Since $H_0^1(A_m)$ is a reflexive Banach space, there exits $u\in H_0^1(A_m)$ such that, for some subsequence, $$ u_n\rightharpoonup u\quad \text{in } H_0^1(A_m). $$ Furthermore, from compact embedding, \begin{gather*} u_n\to u\quad \text{in } L^q(A_m),~q\geq 1, \\ u_n(x)\to u(x)\quad\text{a.e. in } A_m. \end{gather*} On the other hand, using \eqref{d2} with $v=u_n$, we obtain $$ -\epsilon_n\|u_n\|_{A_m}\leq\int_{A_m}|\nabla u_n|^2-\int_{A_m}f(u_n)u_n, $$ which implies $$ \int_{A_m}f(u_n)u_n\leq\|u_n\|_{A_m}^2-\epsilon_n\|u_n\|_{A_m}\leq C, \quad \text{for all } n\in\mathbb{N}. $$ From Lemma \ref{1.6}, $f(u_n)\to f(u)$ in $L^1(A_m)$. Then, there is $h\in L^1(A_m)$ such that $$ |f(u_n(x))|\leq h(x),\quad \text{a.e. in } A_m, $$ and from (H1), $|F(u_n)|\leq M h(x)$, a.e. in $A_m$. Furthermore, $$ F(u_n(x))\to F(u(x))\quad \text{a.e. in } A_m. $$ Consequently, by the Lebesgue's dominated convergence, $$ \int_{A_m}F(u_n)-\int_{A_m}F(u)=o_n(1). $$ Thus, from \eqref{d1}, $$ \frac{1}{2}\|u_n\|_{A_m}^2-\int_{A_m}F(u)-d=o_n(1), $$ which implies \begin{equation}\label{d3} \lim_{n\to\infty}\|u_n\|_{A_m}^2=2\Big(d+\int_{A_m}F(u)\Big). \end{equation} Using again \eqref{d2} with $v=u_n$, we obtain $$ \Big|\|u_n\|_{A_m}^2-\int_{A_m}f(u_n)u_n\Big|\leq o_n(1), $$ from where we derive \begin{align*} \Big|\int_{A_m}f(u_n)u_n-2\Big(d+\int_{A_m}F(u)\Big)\Big| &\leq \Big|\|u_n\|_{A_m}^2-\int_{A_m}f(u_n)u_n\Big|\\ &\quad +\Big|\|u_n\|_{A_m}^2-2\Big(d+\int_{A_m}F(u)\Big)\Big|. \end{align*} Then $$ \lim_{n\to\infty}\int_{A_m}f(u_n)u_n=2\Big(d+\int_{A_m}F(u)\Big). $$ Furthermore, from (H2), $$ 2\int_{A_m}F(u) \leq 2\lim_{n\to\infty}\int_{A_m}F(u_n) \leq\lim_{n\to\infty}\int_{A_m}f(u_n)u_n=2d+2\int_{A_m}F(u), $$ which implies that $d\geq 0$. \smallskip \noindent{\bf Claim 2.} For any $v\in H_0^{1}(A_m)$, $$ \int_{A_m}\nabla u\nabla v=\int_{A_m}f(u)v. $$ In fact, let us fix $v\in H_0^{1}(A_m)$ and notice that \begin{align*} &\Big|\int_{A_m}\nabla u\nabla v-\int_{A_m}f(u)v\Big|\\ &\leq\Big|\int_{A_m}\nabla u_n\nabla v-\int_{A_m}\nabla u\nabla v\Big| +\Big|\int_{A_m}f(u_n)v-\int_{A_m}f(u)v\Big|\\ &\quad +\Big|\int_{A_m}\nabla u_n\nabla v-\int_{A_m}f(u_n)v\Big|. \end{align*} Using Lemma \ref{1.6}, the weak convergence $u_n\rightharpoonup u$ in $H_0^1(A_m)$ and the estimate in \eqref{d2}, we derive $$ \Big|\int_{A_m}\nabla u\nabla v-\int_{A_m}f(u) v\Big| \leq o_n(1)+\|v\|_{A_m}o_n(1), $$ and the proof of Claim 2 is complete. Note that from (H2) and Claim 2, $$ J(u)\geq\frac{1}{2}\int_{A_m}|\nabla u|^2-\frac{1}{2}\int_{A_m}f(u)u=0. $$ Now, We split the proof into three cases: \smallskip \noindent{\bf Case 1.} The level $d=0$. By the lower semicontinuity of the norm, $$ \|u\|_{A_m}\leq\liminf_{n\to\infty}\|u_n\|_{A_m}, $$ then $$ \frac{1}{2}\|u\|_{A_m}^2\leq\frac{1}{2}\|u_n\|_{A_m}^2. $$ Using \eqref{d3}, $$ 0\leq I(u)\leq\frac{1}{2}\liminf\|u_n\|_{A_m}^2-\int_{A_m}F(u), $$ which implies $$ 0\leq I(u)\leq\int_{A_m}F(u)-\int_{A_m}F(u)=0, $$ from where $I(u)=0$, or equivalently, $$ \|u\|_{A_m}^2=2\int_{A_m}F(u). $$ Using again \eqref{d3}, we derive $$ \|u_n\|_{A_m}^2-\|u\|_{A_m}^2=o_n(1), $$ since $H_0^1(A_m)$ be a Hilbert space, $u_n\to u$ in $H_0^1(A_m)$. Therefore, $I$ satisfies the Palais-Smale at the level $d=0$. \smallskip \noindent{\bf Case 2.} The level $d\neq 0$ and the weak limit $u\equiv 0$. We will show that this can not occur for a Palais-Smale sequence. \smallskip \noindent{\bf Claim 3.} There are $q>1$ and a constant $C>0$ such that $$ \int_{A_m}|f(u_n)|^q0$, $$ \|u_n\|_{A_m}^2\leq 2d+\epsilon, \quad \text{for all } n\geq n_0, $$ for some $n_0\in\mathbb{N}$. Furthermore, from (F1), $$ \int_{A_m}|f(u_n)|^q\leq C\int_{A_m}e^{4\pi qu_n^2} =C\int_{B}e^{4\pi\|u_n^{*}\|_B^2(\frac{u_n}{\|u_n^{*}\|_B})^2}. $$ By the Trudinger-Moser inequality \eqref{X1}, the last integral in the equality above is bounded if $4\pi q\|u_n^{*}\|_B^2<4\pi$ and this occur if we take $q>1$ sufficiently close to $1$ and $\epsilon$ small enough, because $d<1/2$, which proves the claim. Then, using \eqref{d2} with $v=u_n$, we obtain $$ \Big|\int_{A_m}|\nabla u_n|^2-\int_{A_m}f(u_n)u_n \Big| \leq\epsilon_n\|u_n\|_{A_m}\leq \epsilon_nC,\quad \text{for all }n\in\mathbb{N}. $$ Thus, \begin{equation}\label{d4} \|u_n\|_{A_m}^2\leq o_n(1)+\int_{A_m}f(u_n)u_n,\quad \text{for all } n\in\mathbb{N}. \end{equation} Furthermore, from H\"older inequality, we can estimate the integral above as follows $$ \int_{A_m}f(u_n)u_n\leq\Big(\int_{A_m}|f(u_n)|^q\Big)^{1/q} \Big(\int_{A_m}|u_n|^{q'}\Big)^{1/q'},\quad \text{for all } n\in\mathbb{N}, $$ and since $u_n\to 0$ in $L^{q'}(A_m)$, $\int_{A_m}f(u_n)u_n=o_n(1)$. Then, from \eqref{d4}, \begin{equation}\label{vivo} \|u_n\|_{A_m}^2\to 0,\quad \text{as }n\to\infty, \end{equation} which contradicts \eqref{d3}, because $$ \|u_n\|_{A_m}^2\to 2d\neq 0,\quad \text{as } n\to\infty, $$ proving that $d\neq 0$ and $u=0$ does not occur. \smallskip \noindent{\bf Case 3.} The level $d\neq 0$ and the weak limit $u\neq 0$. Since $$ I(u)=\frac{1}{2}\|u\|_{A_m}^2-\int_{A_m}F(u) \leq\liminf_{n}\Big(\frac{1}{2}\|u_n\|_{A_m}^2-\int_{A_m}F(u_n)\Big)=d, $$ we have $I(u)\leq d$. \smallskip \noindent{\bf Claim 4.} $I(u)=d$. Suppose by contradiction that $I(u)1$ and $n_0\in\mathbb{N}$ such that $$ \int_{A_m}|f(u_n)|^q1$ and $n_0\in\mathbb{N}$ such that \begin{equation}\label{viv30} q\|u_n^{*}\|_B^2\leq p<\frac{1}{1-\|v\|_B^2},\quad \text{for all }n\geq n_0. \end{equation} To prove that \eqref{viv30} occur, notice that $I(u)\geq 0$ and $d<1/2$, which implies that $$ 2<\frac{1}{d-I(u)}, $$ from where it follows that $$ 2\Big(d+\int_BF(u^{*})\Big)<\frac{d+\int_BF(u^{*})}{d-I(u)} =\frac{1}{1-\|v\|_B^2}. $$ Thus, for $q>1$ sufficiently close to $1$, $$ 2q\Big(d+\int_BF(u)\Big)<\frac{1}{1-\|v\|_B^2}. $$ From \eqref{d3}, there are $p>1$ and $n_0\in\mathbb{N}$ such that $$ q\|u_n^{*}\|_B^2\leq p<\frac{1}{1-\|v\|_B^2}, $$ for all $n\geq n_0$ which implies that \eqref{viv30} occur. Therefore, Claim \ref{viv35} holds. Now, we will show that $u_n\to u$ in $H_0^1(A_m)$. First, notice that from H\"older inequality and \eqref{viv35}, $$ \int_{A_m}f(u_n)(u_n-u) \leq\int_{A_m}(|f(u_n)|^q)^{1/q}\Big(\int_{A_m}|u_n-u|^{q'}\Big)^{1/q'} \leq C|u_n-u|_{q',A_m}, $$ where $1/q+1/q'=1$. Since $u_n\to u$ in $L^{q'}(A_m)$, \begin{equation}\label{viv40} \int_{A_m}f(u_n)(u_n-u)=o_n(1). \end{equation} Using \eqref{d2} with $v=u_n-u$ and \eqref{viv40}, we obtain $\langle u_n-u,u_n\rangle=o_n(1)$, and since $u_n\rightharpoonup u$ in $H_0^1(A_m)$, $$ \|u_n-u\|_{A_m}^2=\langle u_n-u,u_n\rangle-\langle u_n-u,u\rangle=o_n(1). $$ Then $\|u_n\|_{A_m}^2\to\|u\|_{A_m}^2$ and this together with \eqref{d3} contradicts \eqref{d5}. Which proves that $I(u)=d$, i.e., $$ \|u\|_{A_m}^2=2\Big(d+\int_{A_m}F(u)\Big). $$ Furthermore, from \eqref{d3}, $\|u_n\|_{A_m}\to\|u\|_{A_m}$ as $n\to \infty$. Therefore $$ u_n\to u~~\text{em}~~ H_0^1(A_m). $$ \end{proof} From Lemma \ref{mpg} and the Mountain pass Theorem without compactness conditions (see \cite{W}), there is a $(PS)_{c_m}$ sequence $(u_n)\subset H_0^1(A_m)$ such that $$ I(u_n)\to c_m\quad text{and}\quad I'(u_n)\to 0, $$ where \begin{gather*} c_m=\inf_{\gamma\in\Gamma}\max_{t\in[0,1]} I(\gamma(t)), \\ \Gamma=\{\gamma\in C([0,1],H_0^1(A_m)): \gamma(0)=0 \text{ and } I(\gamma(1))<0\}. \end{gather*} To conclude the proof of existence of positive solution for \eqref{ePm}, it remains to show that $c_m\in(-\infty,1/2)$. For this, we introduce the following Moser's functions (see \cite{M}): $$ \overline{w}_n(x)=\frac{1}{\sqrt{2\pi}} \begin{cases} (\ln(n))^{1/2},& 0\leq|x|\leq 1/n\\ \frac{\ln(1/|x|)}{(\ln(n))^{1/2}}, & 1/n\leq|x|\leq 1\\ 0,&|x|\geq 1 \end{cases} $$ Let $d_m>0$ and $x_m\in A_m$ such that $B_{d_m}(x_m)\subset A_m$ and define $$ w_n(x)=\overline{w}_n\Big(\frac{x-x_m}{d_m}\Big), $$ we have $w_n\in H_0^1(A_m)$, $\|w_n\|_{A_m}=1$ and $\operatorname{supp} w_n\subset B_{d_m}(x_m)$. We claim that the exists $n\in\mathbb{N}$ such that $\max_{t\geq 0}I(tw_n)<\frac{1}{2}$. In fact, suppose by contradiction that this is not the case. Then, there exist $t_n>0$ such that \begin{equation}\label{e1} \max_{t\geq 0}I(tw_n)=I(t_nw_n)\geq \frac{1}{2}. \end{equation} It follows from \eqref{e1} and (H1) that \begin{equation}\label{e2} t_n^2\geq 1. \end{equation} Furthermore, $\frac{d}{dt}I(tw_n)\left|_{t=t_n}\right.=0$, i.e., \begin{equation}\label{e5} t_n^2=\int_{A_m}f(t_nw_n)t_nw_n, \end{equation} which implies that \begin{equation}\label{e3} t_n^2\geq\int_{B_{d_m/n}(x_m)}f(t_nw_n)t_nw_n. \end{equation} In what follows, we fix a positive constant $\beta_m$ satisfying \begin{equation}\label{eq7} \beta_m>\frac{1}{2\pi d_m^2}. \end{equation} From (H3), there exists $s_m=s_m(\beta_m)>0$ such that \begin{equation}\label{bm} f(s)s\geq\beta_m e^{4\pi s^2},~\text{for all}~ s\geq s_m. \end{equation} Using \eqref{bm} in \eqref{e3} and the definition of $w_n$ in $B_{d_m/n}(0)$, we obtain \begin{equation} t_n^2\geq \beta_m\pi \frac{d_m^2}{n^2}e^{2t_n^2\ln(n)} \end{equation} for $n$ large enough, or equivalently, \begin{equation}\label{1} t_n^2\geq \beta_m\pi d_m^2e^{2\ln(n)(t_n^2-1)}, \end{equation} it implies that the sequence $(t_n)$ is bounded. Moreover, from \eqref{1} and \eqref{e2}, $t_n^2\to 1$ as $n\to \infty$. Now, let us define $$ C_n=\{x\in B_{d_m}(x_m):t_nw_n(x)\geq s_m\},\quad D_n=B_{d_m}(x_m)\setminus C_n. $$ With the above notations and using \eqref{e5}, $$ t_n^2\geq\int_{B_{d_m/n}(x_m)}f(t_nw_n)t_nw_n=\int_{C_n}f(t_nw_n)t_nw_n+\int_{D_n}f(t_nw_n)t_nw_n $$ and by \eqref{bm}, $$ t_n^2\geq\int_{D_n}f(t_nw_n)t_nw_n+\beta_m\int_{C_n}e^{4\pi t_n^2w_n^2} $$ or equivalently, \begin{equation}\label{e2.2} t_n^2\geq\int_{D_n}f(t_nw_n)t_nw_n+\beta_m\int_{B_{d_m}(x_m)}e^{4\pi t_n^2w_n^2}-\beta_m\int_{D_n}e^{4\pi t_n^2w_n^2}. \end{equation} Notice that \begin{gather*} w_n(x)\to 0 \quad \text{a.e. in } B_{d_m}(x_m),\\ \chi_{D_n}(x)\to 1~~\text{a.e. in}~~ B_{d_m}(x_m), \\ e^{4\pi t_n^2w_n^2}\chi_{D_n}\leq e^{4\pi t_n^2s_m^2}\in L^1(B_{d_m}(x_m)). \end{gather*} Then, by Lebesgue's dominated convergence \begin{equation}\label{e2.1} \lim_n\int_{D_n}e^{4\pi t_n^2w_n^2}=\lim_n\int_{B_{d_m}(x_m)}e^{4\pi t_n^2w_n^2}\chi_{D_n}=\int_{B_{d_m}(x_m)}1=\pi d_m^2. \end{equation} Furthermore, \begin{gather*} f(t_nw_n)t_nw_n\chi_{D_n}\leq Ct_nw_ne^{4\pi t_n^2w_n^2}\leq Cs_m e^{4\pi s_m^2}\in L^1(B_{d_m}(x_m)),\\ f(t_nw_n(x))t_nw_n(x)\chi_{D_n}(x)\to 0~~\text{a.e. in}~~B_{d_m}(x_m). \end{gather*} Thus, using again Lebesgue's dominated convergence, \begin{equation}\label{e1.1} \lim_n\int_{D_n}f(t_nw_n)t_nw_n=0 \end{equation} Passing to the limit $n\to\infty$ in \eqref{e2.2} and using \eqref{e2.1} and \eqref{e1.1}, $$ 1\geq\beta_m\lim_n\int_{B_{d_m}(x_m)}e^{4\pi t_n^2w_n^2}-\beta_m\pi d_m^2. $$ Since $t_n^2\geq 1$, we obtain \begin{equation}\label{e2.3} 1\geq\beta_m\lim_n\Big[\int_{B_{d_m}(x_m)}e^{4\pi w_n^2}\Big]-\beta_m\pi d_m^2. \end{equation} On the other hand, since $$ \int_{B_{d_m}(x_m)}e^{4\pi w_n^2} =d_m^2\int_{B_1(0)}e^{4\pi\overline{w}_n^2} =d_m^2\big\{\frac{\pi}{n^2}e^{4\pi\frac{1}{2\pi}\ln(n)} +2\pi\int_{1/n}^1e^{4\pi\frac{1}{2\pi}\frac{[\ln(1/r)]^2}{\ln(n)}}rdr\big\}, $$ making a changing of variables $s=\ln(1/r)/\ln(n)$, $$ \int_{B_{d_m}(x_m)}e^{4\pi w_n^2}=\pi d_m^2+2\pi d_m^2\ln(n)\int_0^1e^{2s^2\ln(n)-2s\ln(n)}, $$ and since $$ \lim_{n\to\infty}\left[ 2\ln(n)\int_0^1e^{2\ln(n)(s^2-s)}ds\right]=2, $$ we have $$ \lim_{n\to\infty}\int_{B_{d_m}(x_m)}e^{4\pi w_n^2}=\pi d_m^2+2\pi d_m^2=3\pi d_m^2. $$ Using the last limit in \eqref{e2.3}, we obtain $$ 1\geq 3\beta_m\pi d_m^2-\beta\pi d_m^2=2\beta\pi d_m^2, $$ from where we derive $$ \beta_m\leq\frac{1}{2\pi d_m^2}, $$ which contradicts the choice of $\beta_m$ in \eqref{eq7}. Then, $$ \max_{t\geq 0}I(tw_n)<\frac{1}{2}, $$ proving that $c_m<1/2$, for any $m\in\mathbb{N}$ fixed arbitrarily. \ \section{Proof of Theorem \ref{sb}} We shall use the following proposition. \begin{proposition}\label{p4u} Let $A$ be an angular sector contained on the positive half plane of $\mathbb{R}^2$ such that one of its boundary lies in $x_1$ axis, and denote such boundary of $A$ by $B_0=\{x=(x_1,x_2)\in A:~ x_2=0\}$. Consider $A'$ the reflection $A$ with respect to $x_1$ axis. Suppose that $u$ is a solution of the problem \begin{equation} \label{eP2} \begin{gathered} -\Delta u=f(u),\quad \text{in } A, \\ u=0,\quad \text{on } B_0, \end{gathered} \end{equation} where $f$ is a real, continuous and odd function. Then, the function $\tilde{u}$ such that $\tilde{u}= u$ in $A$ and $\tilde{u}$ is antisymmetric with respect to $x_1$ axis, $$ \tilde{u}(x_1,x_2)=\begin{cases} u(x_1,x_2),&\text{in } A\\ -u(x_1,-x_2),&\text{in } A'\\ 0,&\text{on }B_0 \end{cases} $$ satisfies $$ -\Delta \tilde{u}=f(\tilde{u})\quad \text{in } A\cup A'. $$ \end{proposition} \begin{proof} Since $u$ is a solution of \eqref{eP2}, we have $$ \int_{A}\nabla u\nabla \varphi=\int_{A}f(u)\varphi,\quad \text{for all } \varphi\in C^\infty_c(A). $$ We want to prove that $$ \int_{A\cup A'}\nabla \tilde{u}\nabla \phi=\int_{A\cup A'}f(\tilde{u})\phi,\quad \text{for all } \phi\in C^\infty_0(A\cup A'). $$ For any $\phi\in C^\infty_0(A\cup A')$, $$ \int_{A\cup A'}f(\tilde{u})\phi=\int_{A}f(u(x_1,x_2))\phi(x_1,x_2) +\int_{A'}f(-u(x_1,-x_2))\phi(x_1,x_2). $$ Since $f$ is an odd function, \begin{align*} \int_{A\cup A'}f(\tilde{u})\phi &=\int_{A}f(u(x_1,x_2))\phi(x_1,x_2)+\int_{A'}f(-u(x_1,-x_2))\phi(x_1,x_2)\\ &=\int_{A}f(u(x_1,x_2))\phi(x_1,x_2)-\int_{A'}f(u(x_1,-x_2))\phi(x_1,x_2)\\ &=\int_{A}f(u(x_1,x_2))\phi(x_1,x_2)-\int_{A}f(u(x_1,x_2))\phi(x_1,-x_2). \end{align*} Thus \begin{equation}\label{e11} \int_{A\cup A'}f(\tilde{u})\phi=\int_{A}f(u)\psi, \end{equation} where $\psi(x_1,x_2)=\phi(x_1,x_2)-\phi(x_1,-x_2)$. On the other hand, \begin{align*} \int_{A\cup A'}\nabla\tilde{u}\nabla\phi &=\int_{A}\nabla u(x_1,x_2)\nabla\phi(x_1,x_2) -\int_{A'}\nabla u(x_1,-x_2)\nabla\phi(x_1,x_2)\\ &=\int_{A}\nabla u(x_1,x_2)\nabla\phi(x_1,x_2) -\int_{A}\nabla u(x_1,x_2)\nabla (\phi(x_1,-x_2))\\ &=\int_{A}\nabla u(x_1,x_2)\nabla(\phi(x_1,x_2)-\phi(x_1,-x_2)). \end{align*} Then \begin{equation}\label{e12} \int_{A\cup A' }\nabla\tilde{u}\nabla\phi=\int_{A}\nabla u\nabla\psi. \end{equation} The function $\psi$ does not in general belong to $C^\infty_0(A)$. Therefore, $\psi$ can not be used as a function test (in the definition of weak solution on $H^1(A)$). On the other hand, if we consider the sequence of functions $(\eta_k)$ in $C^{\infty}(\mathbb{R})$, defined by $$ \eta_k(t)=\eta(kt),\quad t\in\mathbb{R},\; k\in\mathbb{N}, $$ where $\eta\in C^\infty(\mathbb{R})$ is a function such that $$ \eta(t)=\begin{cases} 0, & \text{if } t<1/2,\\ 1, & \text{if } t>1. \end{cases} $$ Then $$ \varphi_k(x_1,x_2):=\eta_k(x_2)\psi(x_1,x_2)\in C^\infty_0(A), $$ which implies that \begin{equation}\label{e14} \int_{A}\nabla u\nabla\varphi_k=\int_{A}f(u)\varphi_k,\quad k\in\mathbb{N}. \end{equation} From \eqref{e11}, \eqref{e12} and \eqref{e14}, we can conclude the proof, in view of the following limits \begin{gather} \label{(I)} \int_{A}\nabla u\nabla\varphi_k\to \int_{A}\nabla u\nabla\psi, \\ \label{(II)} \int_{A}f(u)\varphi_k\to \int_{A}f(u)\psi, \end{gather} as $k\to \infty$. To see that \eqref{(I)} occur, notice that $$ \int_{A}\nabla u\nabla\varphi_k=\int_{A}\eta_k\nabla u\nabla \psi +\int_{A}\frac{\partial u}{\partial x_2}k\eta'(kx_2)\psi. $$ Clearly, $$ \int_{A}\eta_k\nabla u\nabla \psi\to\int_{A}\nabla u\nabla \psi, \quad \text{as } k\to\infty. $$ Therefore, it remains to show that \begin{equation}\label{stR} \int_{A}\frac{\partial u}{\partial x_2}k\eta'(kx_2)\psi\to 0\quad \text{as } k\to\infty. \end{equation} In fact this occurs, $$ \big|\int_{A}\frac{\partial u}{\partial x_2}k\eta'(kx_2)\psi\big| \leq kMC\int_{00$ is such that $$ |\psi(x_1,x_2)|\leq M|x_2|,\quad \text{for all } (x_1,x_2)\in A\cup A', $$ and since $$ \int_{00. \end{equation} Furthermore, there exists a positive constant $C=C(\alpha,|\Omega|)$ such that \begin{equation} \label{X11} \sup_{||u||_{H^{1}(\Omega)} \leq 1} \int_{\Omega} e^{\alpha u^2} \leq C , \quad \text{for all } \alpha \leq 2 \pi . \end{equation} \end{remark} \subsection*{Acknowledgments} The author would like to thank professor Claudianor O. Alves for his excellent advice during the graduate school. The author also thanks professor Adi Adimurthi for his helpful observations. \begin{thebibliography}{99} \bibitem{Ad} A. Adimurthi; \emph{Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $N$-Laplacian}, {Ann. Sc. Norm. Super. Pisa} 17 (1990) 393-413. \bibitem{ad1} A. Adimurthi; \emph{Some remarks on the Dirichlet problem with critical growth for the $N$-Laplacian}, {Houston J. Math.} 17, No. 1, 1991. \bibitem{AYa} A. Adimurthi, S. L. Yadava; \emph{Critical exponent problem in $\mathbb{R}^2$ with Neumann boundary condition,} Comm. Partial Differential Equations, 15 (1990), 461-501. \bibitem{AY} A Adimurthi, S. L. Yadava; \emph{Multiplicity results for semilinear elliptic equations in bounded domain of $\mathbb{R}^2$ involving critical exponent}, {Ann. Sc. Norm. Super. Pisa} 17 (1990) 481-504. \bibitem{BN} H. Br\'ezis, L. Nirenberg; \emph{Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents}, Commun. Pure Appl. Math. 36 (1983), 437–477. \bibitem {CH} D. M. Cao, P. Han; \emph{A note on the positive energy solutions for elliptic equations involving critical Sobolev exponents}, Appl. Math. Lett. 16 (2003), 1105–1113. \bibitem{CSS} G. Cerami, S. Solimini, M. Struwe; \emph{Some existence results for superlinear elliptic boundary value problems involving critical exponents}, J. Funct. Anal. {69} 3 (1986), 289-306. \bibitem {CK} M. Comte, M. C. Knaap; \emph{Solutions of elliptic equations involving critical Sobolev exponents with Neumann boundary conditions}, Manuscripta Math. {69} (1990), 43-70. \bibitem{DOR} D. G. de Figueiredo, O. H. Miyagaki, B. Ruf; \emph{Elliptic equations in $\mathbb{R}^2$ with nonlinearity in the critical growth range}, {Calc. Var. Partial Differential Equations} 3 (1995), 139-153. \bibitem {L} P. L. Lions; \emph{The concentration-compactness principle in the calculus of variations. The limit case, parte 1}, Revista Matem\'atica Iberoamericana. Vol. 1, n. 1, 145-201, 1985. \bibitem {MMF} D. C. de Morais Filho, O. H. Miyagaki, L. F. O. Faria; \emph{Infinitely many sign-changing solutions for a class of critical elliptic systems with Neumann conditions}, Proc. Roy. Soc. Edinburgh, 144 A (2014), 53-69. \bibitem {M} J. Moser; \emph{A sharp form of an inequality by N. Trudinger}, Indiana Univ. Math. J. 20 (1971), 1077-1092. \bibitem {P} S. Pohozaev; \emph{Eigenfunctions of the equations $\Delta u + \lambda f(u) = 0$}, {Dokl. Math.} 6 (1965), 1408-1411. \bibitem {T} N. Trudinger; \emph{On imbedding into Orlicz space and some applications}, J. Math. Mech. 17 (1967), 473-484. \bibitem{W} M. Willem; \emph{Minimax Theorems}, {Progress in nonlinear differential equations and their applications; v. 24} {Birkh\"auser}, 1996. \end{thebibliography} \end{document}