\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 121, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/121\hfil Nonlinear damped Schr\"odinger equation] {Nonlinear damped Schr\"odinger equation in two space dimensions} \author[T. Saanouni \hfil EJDE-2015/121\hfilneg] {Tarek Saanouni} \address{Tarek Saanouni \newline University Tunis El Manar, Faculty of Sciences of Tunis, LR03ES04 partial differential quations and applications, 2092 Tunis, Tunisia} \email{Tarek.saanouni@ipeiem.rnu.tn} \thanks{Submitted November 28, 2014. Published April 30, 2015.} \subjclass[2010]{35Q55} \keywords{Nonlinear damped Schr\"odinger equation; existence; uniqueness; \hfill\break\indent Moser-Trudinger inequality, decay} \begin{abstract} In this article, we study the initial value problem for a semi-linear damped Schr\"odinger equation with exponential growth nonlinearity in two space dimensions. We show global well-posedness and exponential decay. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} Consider the initial value problem for a damped semilinear Schr\"odinger equation \begin{equation}\label{eq1} \begin{gathered} i\dot u+\Delta u-\alpha u+\omega \Delta\dot u-\mu\dot u=\epsilon f(u),\\ u|_{t=0}= u_0,\\ u|_{\partial\Omega}=0. \end{gathered} \end{equation} This equation arises for instance in plasma physics \cite{nb} or in optical fibers models \cite{jj}. Here and hereafter $(\alpha,\mu,\omega)\in\mathbb{R}_+^3$ and $\epsilon\in\{\pm 1\}$. The set $\Omega\subset\mathbb{R}^2$ is a bounded smooth domain and $u(t,x):\mathbb{R}_+\times\Omega\to\mathbb{C}$. The nonlinearity $f$ satisfies the Hamiltonian form $f(z)=zF'(|z|^2)$, where $F\in C^1(\mathbb{R}_+)$ and vanishes on zero. Moreover, we assume that for all $\alpha>0$, there exists $C_\alpha>0$ such that \begin{equation}\label{f} |f(z_1)-f(z_2)|^2\leq C_\alpha |z_1-z_2|^2 \big(e^{\alpha |z_1|^2}-1+e^{\alpha |z_2|^2}-1\big),\quad \forall z_1,z_2\in\mathbb{C}. \end{equation} We define the energy of a solution $u$ to \eqref{eq1} by $$ E(t)=E_\alpha(u(t)):=\int_\Omega\Big(|\nabla u(t)|^2+\alpha | u(t)|^2 +\epsilon F(|u(t)|^2)\Big)\,dx. $$ The decay of the energy formally satisfies $$ \dot E(t)=-\omega \|\nabla \dot u\|_{L^2}^2-\mu\|\dot u\|_{L^2}^2. $$ If $\epsilon=-1$, the energy is positive and \eqref{eq1} is said to be defocusing, otherwise it is focusing. In the monomial case $f(u)=u|u|^{p-1}$, local well-posedness in the energy space holds for any $10$ and $X$ is an abstract space, we denote $C_T(X):=C([0,T],X)$ and $L_T^p(X):=L^p([0,T],X)$. \section{Results and background} In this section, we give the main results of this paper and some technical tools needed in the sequel. For $u\in H_0^1$, we define the quantities \begin{gather*} I_\alpha(u):=\int_\Omega\Big(|\nabla u|^2+\alpha |u|^2-\bar uf(u)\Big)\,dx;\\ m:=\inf_{0\neq u\in H_0^1}\{E(u),\,I(u)=0\},\quad N:=\{0\neq u\in H_0^1: I(u)=0\};\\ N^+:=\{u\in H_0^1: I(u)>0\}\cup\{0\};\\ (u,v)_*:=\omega(\nabla u,\nabla v)_{L^2}+\mu (u,v)_{L^2},\quad \|\cdot\|_*^2:=(u,u)_*. \end{gather*} $E_T:=C_T(H_0^1)$ endowed with the norm $\|\cdot\|_T:=\|\cdot\|_{L_T^\infty(H_0^1)}$. If $u=u(t)$, we denote for simplicity $I(t)=I_\alpha(u(t))$. The first result is about the existence of a unique local solution to \eqref{eq1}. \begin{theorem}\label{thm1} Assume that $\mu>0$, the nonlinearity satisfies \eqref{f}, and $u_0\in H_0^1$. Then there exists $T>0$ and a unique local solution to the Cauchy problem \eqref{eq1}, in the energy space $$ C([0,T],H_0^1). $$ Moreover, \begin{enumerate} \item the solution satisfies decay of the energy; \item the solution is global in the defocusing case. \end{enumerate} \end{theorem} In the next result, we assume that the nonlinearity satisfies the supplementary condition: There exist $r_0,a>0$ such that \begin{equation}\label{as} F(r_0)>0 \quad\text{and}\quad rf(r)\geq (1+a) F(r)\quad\text{for all }\quad r\in\mathbb{R}_+. \end{equation} In the focusing case, we give a result of global existence and exponential decay. \begin{theorem}\label{thm3} Assume that $\epsilon=-1$, $\omega>0$ and the nonlinearity satisfies \eqref{f} with \eqref{as}. Let $u_0\in N^+$ such that $E(0)0$ such that \[ 0<\|u(t)\|_{H_0^1}\lesssim e^{-\gamma t}, \quad\forall t\in\mathbb{R}_+. \] \end{enumerate} \end{theorem} \begin{remark} \rm The following function satisfies conditions of Theorem \ref{thm3}, $$ f(u):=\frac12 u(1+{|u|}^2)^{\frac{-1}{2}} \Big({\rm e}^{(1+{|u|}^2)^{\frac{1}{2}}}-e(1+|u|^2)^{\frac{1}{2}}\Big). $$ \end{remark} \begin{proof} We have $F(r)=e^{(1+r)^{\frac12}}-\frac{e}2(r+2)=e^t-\frac{e}2(t^2+1)$, where $t:=\sqrt{1+r}$. From direct computations, we have \begin{gather*} rF'(r)=\frac12(-1+t^2)(\frac{e^t}t-e);\\ \phi_a(t):=2(rF'(r)-(1+a)F(r))=(t-\frac1{t}-2(1+a))e^t+ea(1+t^2)+2e ;\\ \phi_a'(t)=(t-\frac1{t}-1-2a+\frac1{t^2})e^t+2eat,\quad \phi_a(1)=0=\phi_a'(1); \\ \phi_a''(t)=(t-\frac1{t}+\frac2{t^2}-\frac2{t^3}-2a)e^t+2ea,\quad \phi_a''(1)=0;\\ \phi_a'''(t)=(t-\frac1{t}+\frac3{t^2}-\frac6{t^3}+\frac6{t^4}+1-2a)e^t,\quad \phi_a'''(1)=2(2-a)e. \end{gather*} Now, taking $\phi_a'''(t)=(\psi(t)+1-2a)e^t$, where $t^4\psi(t)=t^5-t^3+3t^2-6t+6\geq 0$ for $t\geq 1$. Which implies that \eqref{as} is satisfied for any $a\in(0,1/2)$. \end{proof} In the two-dimensional space, we have the Sobolev injections \cite{AC1}, $$ H_0^1\hookrightarrow L^p,\quad\text{for any}\quad 2\leq p<\infty, $$ and it is false for $p=\infty$. The critical Sobolev embedding is described with the so called Orlicz space \cite{HMN}, which is given by the following Moser-Trudinger inequality \cite{Ad,Mo,Tr}. \begin{proposition} \label{prop2.4} Let $\alpha\in (0,4\pi)$. Then there exists a constant $\mathcal{C}_{\alpha}$ such that for all $u\in H^{1}_0$ satisfying $\|\nabla u\|_{L^{2}}\leq 1$, one has $$ \int_{\Omega}\Big(e^{\alpha |u(x)|^2}-1\Big)\,dx\leq \mathcal{C}_{\alpha}\|u\|^{2}_{L^{2}}. $$ Moreover, \begin{enumerate} \item the above inequality is false when $\alpha\geq 4\pi$; \item $\alpha=4\pi$ becomes admissible if we consider $\|u\|_{H^{1}_0}\leq 1$ rather than $\|\nabla u\|_{L^{2}}\leq 1$. In this case, one has $$ \sup_{\|u\|_{H^{1}_0}\leq 1} \int_{\Omega}e^{4\pi|u(x)|^2}\,dx<\infty $$ and this is false for $\alpha>4\pi$ \cite{Ad}. \end{enumerate} \end{proposition} \section{Proof of Theorem \ref{thm1}} We prove well-posedness of the Cauchy problem \eqref{eq1} in the energy space. We take in this section $\epsilon=1$, in fact the sign of the nonlinearity has no local effect. \subsection{Local well-posedness} \begin{lemma}\label{lem1} Let $T>0$, $u_0\in H_0^1$ and $u\in C_T(H_0^1)$. Then there exists a unique $v\in E_T$ such that \begin{equation} \label{eq2} \begin{gathered} i\dot v+\Delta v-\alpha v+\omega \Delta\dot v-\mu\dot v=f(u) \quad\text{on } [0,T]\times\Omega, \\ v|_{t=0}=u_0,\\ v|_{\partial\Omega}=0. \end{gathered} \end{equation} \end{lemma} \begin{proof} Let $W_h:=\langle w_1,\dots,w_h\rangle$, where $\{w_j\}$ is a complete system of eigenvectors of $-\Delta$ in $H_0^1$ such that $\|w_j\|_{L^2}=1$. Then, $\{w_j\}$ is orthogonal and complete on $L^2$ and $H_0^1$. Denote the associated eigenvalues $\{\lambda_j\}$. Let $$ u_0^h:=\sum_1^h\Re\Big(\int_\Omega\overline{\nabla u_0}\nabla w_j\Big)w_j. $$ Then, $u_0^h\in W_h$ and $u_0^h\rightarrow u_0$ in $H_0^1$. For $h\geq 1$, we seek for $h$ functions $\gamma_1^h,\dots,\gamma_h^h$ in $C^2[0,T]$ such that $v_h(t):=\sum_{j=1}^h\gamma_j^h(t)w_j$ solves, for any $\eta\in W_h$, the problem \begin{equation}\label{eq4} \begin{gathered} \int_\Omega\Big[i\dot v_h(t)+\Delta v_h(t)-\alpha v_h+\omega \Delta\dot v_h(t) -\mu\dot v_h(t)-f(u)\Big]\eta=0, \\ v_h(0)=u_0^h. \end{gathered} \end{equation} Taking $\eta=\bar w_j$ in \eqref{eq4}, we obtain \begin{gather*} (-i+\omega\lambda_j+\mu)\dot\gamma_j^h(t)+(\alpha+\lambda_j)\gamma_j^h(t) =-\int_\Omega f(u(t))\bar w_j\,dx, \\ \gamma_j^h(0)=\lambda_j\Re\Big(\int_\Omega\bar u_0w_j\,dx\Big). \end{gather*} Since $\int_\Omega f(u(t))w_j\,dx\in C[0,T]$, we have a unique solution $\gamma_j^h$ to the previous problem. This yields to a solution $v_h$ defined as above and satisfying \eqref{eq4}. In particular, $v_h\in C^2([0,T],H_0^1)$. Taking $\eta=\overline{\dot v_h}$ in \eqref{eq4}, yields \begin{align*} &\|\nabla v_h(t)\|_{L^2}^2+\alpha\|v_h(t)\|_{L^2}^2+2\int_0^t\|\dot v_h(s)\|_*^2\,ds\\ &=\|\nabla u^h_0\|_{L^2}^2+\alpha\|u^h_0\|_{L^2}^2 -2\int_0^t\Re(\int_\Omega\overline{f(u(s))}{\dot{v}_h}(s)\,dx)\,ds. \end{align*} Now, by Moser-Trudinger inequality, via the identity $2|ab|\leq \delta |a|^2+\frac1\delta |b|^2$, for $\delta>0$ near to zero, we have \begin{align*} 2\int_0^t\Re\Big(\int_\Omega\overline{ f(u(s))}\dot v_h(s)\,dx\Big)\,ds &\leq \frac1\delta\int_0^t\int_\Omega |f(u(s))|^2\,dx\,ds +\delta\int_0^t\int_\Omega|\dot v_h(s)|^2\,dx\,ds\\ &\leq \frac1\delta C_T+\delta\int_0^t\int_\Omega|\dot v_h(s)|^2\,dx\,ds\\ &\leq C_T+\int_0^t\|\dot v_h(s)\|_*^2\,ds. \end{align*} In fact, with Moser-Trudinger inequality, for any $0<\alpha<\frac{4\pi}{\|u\|_T^2}$, \begin{align*} \int_\Omega |f(u(s))|^2\,dx &\leq C_\alpha\int_\Omega\Big(e^{\alpha\|u\|_T^2 (\frac{|u(s)|}{\|u\|_{T}})^2}-1\Big)\,dx\\ &\leq C_\alpha\int_\Omega |u(s)|^2\,dx\leq C_\alpha\|u\|_T^2=C_T. \end{align*} Thus, $\| v_h\|_{T}^2+\int_0^T\|\dot v_h(t)\|_*^2\leq C_T$. So, $\{v_h\}$ is bounded in $H_0^1((0,T)\times\Omega)$. Then, taking the weak limit $v_h \rightharpoonup v$ in \eqref{eq4}, we obtain a weak solution $v$ to \eqref{eq2}. Since $v\in H_0^1((0,T)\times\Omega)$, we obtain $v\in C([0,T], H_0^1(\Omega))$. The existence part of the Lemma is proved. Now, for two solutions $v_1,v_2$ of \eqref{eq2} and $w:=v_1-v_2$, subtracting the equations and testing with $\overline{\dot w}$, we obtain $$ \|\nabla w(t)\|_{L^2}^2+\alpha\| w(t)\|_{L^2}^2+2\int_0^t\|w(s)\|_*^2\,ds=0. $$ The proof of Lemma \ref{lem1} is complete. \end{proof} We are ready to prove local well-posedness of \eqref{eq1}. We denote $R_0:=\|\nabla u_0\|_{L^2}$, and for $R>0$ define the closed subset of the complete metric space $E_T$, $$ X_T:=\{u\in E_T: \|u\|_T\leq R,\; u(0)=u_0\}. $$ Take the function $\phi(u):=v$, the solution to \eqref{eq2}. We shall prove that, for some $T,R>0$, $\phi$ is a contraction on $X_T$. Recall the identity \begin{align*} &\|\nabla v(t)\|_{L^2}^2+\alpha\|v(t)\|_{L^2}^2+2\int_0^t\|\dot v(s)\|_*^2\,ds\\ &=\|\nabla u_0\|_{L^2}^2+\alpha\|u_0\|_{L^2}^2-2\int_0^t \Re\Big(\int_\Omega \overline{f(u(s))}\dot v(s)\,dx\Big)\,ds. \end{align*} Moreover, for any $0<\delta <\min\{\mu,4\pi/R^2\}$, by Moser-Trudinger inequality \begin{align*} &2\int_0^t\int_\Omega |f(u(s))||\dot v(s)|\,ds\\ &\leq \frac1\delta\int_0^t\int_\Omega |f(u(s))|^2\,ds +\delta\int_0^t\int_\Omega\dot |v(s)|^2\,ds\\ &\leq \frac{C_\delta}\delta \int_0^t\int_\Omega \Big(e^{\delta |u|^2}-1\Big)\,ds +\delta\int_0^t\int_\Omega|\dot v(s)|^2\,ds\\ &\leq \frac{C_\delta}\delta \int_0^t\int_\Omega |u(s)|^2\,ds +\delta\int_0^t\int_\Omega|\dot v(s)|^2\,ds\\ &\leq \frac{C_\delta}\delta TR^2+\frac\delta\mu\int_0^t\|\dot v(s)\|_*^2\,ds \leq\frac{C_\delta}\delta TR^2+\int_0^t\|\dot v_h(s)\|_*^2\,ds. \end{align*} This implies $$ \|\nabla v(t)\|_{L^2}^2+\alpha\|v(t)\|_{L^2}^2\leq C\alpha R_0^2 +\frac{C_\delta}\delta TR^2. $$ Taking $R^2>2C\alpha R_0^2$, yields $$ \|v\|_T^2\leq \Big(\frac12+\frac{C_\delta}\delta T\Big)R^2. $$ So $\phi(X_T)\subset X_T$ for small $T>0$. Let prove that $\phi$ is contractive. Take $u_1,u_2\in X_T$, $v_i:=\phi(u_i)$, $v=v_1-v_2$ and $u=u_1-u_2$. Then, for any $\eta\in H_0^1$ and almost every $t\in[0,T]$, $$ \int_\Omega\Big(i\dot v\eta-\alpha v\eta-\nabla v\nabla\eta -\omega\nabla\dot v\nabla\eta-\mu\dot v\eta\Big)\,dx =\int_\Omega\Big( f(u_1)-f(u_2)\Big)\eta\,dx. $$ Taking the real part in the previous identity for $\eta=\overline{\dot v}$, via \eqref{f} yields, for any $\varepsilon>0$, \begin{align*} \|\nabla v(t)\|_{L^2}^2 &\leq \|\nabla v(t)\|_{L^2}^2+\alpha\|v(t)\|_{L^2}^2+2\int_0^t\|\dot v(s)\|_*^2\,ds\\ &= -2\int_0^t\Re\Big(\int_\Omega ( f(u_1)-f(u_2))\overline{\dot v}\,dx\Big)\,ds\\ &\leq \int_0^t\int_\Omega \Big[\frac1\varepsilon\Big| f(u_1) -f(u_2)\Big|^2+\varepsilon|\dot v|^2\Big]\,dx\,ds\\ &\leq \varepsilon\int_0^t\|\dot v\|_{L^2}^2\,ds +\frac1\varepsilon \int_0^t\int_\Omega \Big| f(u_1)-f(u_2)\Big|^2\,dx\,ds\\ &\leq \varepsilon\int_0^t\|\dot v\|_{L^2}^2\,ds +\frac1\varepsilon\int_0^t\Big[\int_\Omega|u|^2\Big(e^{\varepsilon |u_1|^2}-1 +e^{\varepsilon |u_2|^2}-1\Big)\,dx\Big]\,ds. \end{align*} Now, for $0<\delta<\frac\pi{R^2}$, with Moser-Trudinger inequality via Sobolev embedding, we have \begin{align*} \int_\Omega |u|^2\Big(e^{\delta |u_1|^2}-1+e^{\delta |u_2|^2}-1\Big)\,dx &\leq \|u\|_{L^4}^2\Big(\|e^{\delta |u_1|^2}-1\|_{L^2} +\|e^{\delta |u_2|^2}-1\|_{L^2}\Big)\\ &\leq \|u\|_{T}^2\Big(\|e^{2\delta |u_1|^2}-1\|_{L^1}^{\frac12} +\|e^{2\delta |u_2|^2}-1\|_{L^1}^{\frac12}\Big)\\ &\leq C_\delta\|u\|_{T}^2\Big(\| u_1\|_{L^2} +\| u_2\|_{L^2}\Big)\lesssim R\|u\|_{T}^2. \end{align*} Finally, taking $0<\varepsilon<\min\{2,\frac\pi{R^2}\}$, yields $$ \|\phi(u_1)-\phi(u_2)\|_T\lesssim \sqrt{RT}\|u_1-u_2\|_T. $$ Thus $\phi$ is a contraction of $X_T$ for $T>0$ small enough. With Picard Theorem, there exists a unique fixed point $u$ which is a solution to \eqref{eq1}. Uniqueness follows arguing as previously and applying the precedent inequality for two solutions to \eqref{eq1}, which belong to $X_T$ with a continuity argument for some $T>0$ small enough. \subsection{Global existence in the defocusing case} We recall two important facts. First, the time of local existence depends only on the quantity $\|\nabla u_0\|_{L^2}$. Second the energy dominates the $H_0^1$ norm. Let $u$ be the maximal solution of \eqref{eq1} in the space ${E}_T$ for any $00$ and a solution $v$ to \eqref{ePs} on $[s,s+\tau]$. According to the section of local existence and using decay of the energy, $\tau$ does not depend on $s$. Thus, if we let $s$ be close to $T^*$ such that $s+\tau>T^*$, we can extend $v$ for times higher than $T^*$. This fact contradicts the maximality of $T^*$. We obtain the result claimed in Theorem \ref{thm1}. \section{Proof of Theorem \ref{thm3}} We are interested on the focusing case associated to the problem \eqref{eq1}, so here and hereafter, we fix $\epsilon=-1$. By \eqref{as} we have \cite{jc}, $m=J(\varphi)>0$ where $\varphi$ is the ground state solution of $$ -\Delta\varphi+\alpha\varphi=f(\varphi). $$ If there exists $t_0>0$ such that $u(t_0)\notin N^+$, then $I(t_0)\leq 0$. With a continuity argument, there exists a time $t_1\in(0,t_0)$ such that $I(t_1)=0$ and $E(t_1)0$. We denote, for some $0<\varepsilon<\min\{\alpha,\frac a{2+a}\}$ (so satisfying \eqref{e}), the real function $$ L(t):=E(t)+\frac{\varepsilon\omega}2\int_\Omega|\nabla u(t)|^2\,dx. $$ By \eqref{e}, we have $E\lesssim L\lesssim E$. Taking account of \eqref{eq1}, we compute, for $0<\varepsilon<\frac\mu{1+\mu}$, \begin{align*} \dot L &= \dot E-\varepsilon\Big(\alpha\|u\|_{L^2}^2+\|\nabla u\|_{L^2}^2 -\int_\Omega \bar uf(u)\,dx+\int_\Omega[\mu \Re(\bar u\dot u) -\Im(\bar u\dot u)]\,dx\Big)\\ &\leq -\mu\|\dot u\|_{L^2}^2-\varepsilon\Big(E+\int_\Omega F(|u|^2)\,dx -\int_\Omega \bar uf(u)\,dx+\int_\Omega[\mu \Re(\bar u\dot u) -\Im(\bar u\dot u)]\,dx\Big)\\ &\leq -\mu\|\dot u\|_{L^2}^2-\varepsilon E+\varepsilon\int_\Omega|uf(u)|\,dx +\frac\varepsilon2(1+\mu)(\|\dot u\|_{L^2}^2+\|u\|_{L^2}^2)\\ &\leq -\varepsilon E+\varepsilon\int_\Omega|uf(u)|\,dx +\frac\varepsilon2(1+\mu)\|u\|_{L^2}^2. \end{align*} With \eqref{e}, we have $E\geq \varepsilon \|u\|_{H_0^1}^2$, thus, using Moser-Trudinger inequality, for any $0<\delta<\frac{4\pi\varepsilon}{E(0)}$, \begin{align*} \int_\Omega |uf(u)|\,dx &\leq {C_\varepsilon}\int_\Omega \Big(e^{\delta |u|^2}-1\Big)\,dx\\ &\leq {C_\varepsilon}\int_\Omega \Big(e^{\delta\|u\|_{H_0^1}^2 (\frac {|u|}{\|u\|_{H_0^1}})^2}-1\Big)\,dx\\ &\leq {C_\varepsilon}\|u\|_{L^2}^2. \end{align*} So, \[ \dot L(t) \leq -\varepsilon \Big(E-(C_\varepsilon+\frac{1+\mu}2)\|u\|_{L^2}^2\Big). \] Now, also with \eqref{e}, for $\alpha>\frac2\varepsilon[\frac{1+\mu}2+C_\varepsilon]$, we have $$ E-\big(\frac{1+\mu}2+C_\varepsilon\big)\|u\|_{L^2}^2\geq \frac\varepsilon2 E. $$ Finally, we conclude with a Gronwall argument via the inequalities $$ \dot L(t)\lesssim -E(t)\lesssim -L(t). $$ \begin{thebibliography}{99} \bibitem{Ad} S. Adachi and K. Tanaka; \emph{Trudinger type inequalities in ${\mathbb{R}}^{N}$ and their best exponent}, Proc. Amer. Math. Society, vol. 128 no. 7, (1999), 2051--2057. \bibitem{AC1} D. R. Adams; \emph{Sobolev Spaces}. Academic Press, (1975). \bibitem{HMN} H. Bahouri, M. Majdoub, N. Masmoudi; \emph{On the lack of compactness in the $2D$ critical Sobolev embedding}, Journal of Functional Analysis, vol 260, iss 1, (2011), 208--252. \bibitem{jj} K. J. Blow, N. J. Doran; \emph{Global and local chaos in the pumped nonlinear Schr\"odinger equation}, Phys. Rev. Lett., vol. 52, (1984), 526--529. \bibitem{Cas} T. Cazenave; \emph{An introduction to nonlinear Schr\"odinger equations}, Textos de Metodos Matematicos {26}, Instituto de Matematica UFRJ, (1996). \bibitem{Cas.F} T. Cazenave, F. B. Weissler; \emph{Critical nonlinear Schr\"odinger equation}, Non. Anal. TMA, {14}, (1990), 807--836. \bibitem{Col.I} J. Colliander, S. Ibrahim, M. Majdoub, N. Masmoudi; \emph{Energy critical NLS in two space dimensions}, J. Hyperbolic Differ. Equ., vol. 6 (2009), no. 3, 549--575. \bibitem{G.V} J. Ginibre, G. Velo; \emph{Scattering theory in the energy space for a class of nonlinear schr\"odinger equations}, J. Math. Pures Appl. (9), vol. 64, no. 4, (1985), 363--401. \bibitem{jc} L. Jeanjean, S. Lecoz; \emph{Instability for standing waves of nonlinear Klein-Gordon equations via mountain-pass arguments}, Trans. Amer. Math. Soc., vol. 361, no 10, (2009), 5401--5416. \bibitem{Lam} J. F. Lam, B. Lippman, F. Trappert; \emph{Self trapped laser beams in plasma}, Phys. Fluid, vol. 20, (1997), 1176--1179. \bibitem{OMTS} O. Mahouachi, T. Saanouni; \emph{Global well posedness and linearization of a semilinear wave equation with exponential growth}, Georgian Math. J, vol. 17, no. 3, (2010), 543--562. \bibitem{OMTS1} O. Mahouachi and T. Saanouni; \emph{{Well and ill-posedness issues for a class of 2D wave equation with exponential growth}}, J. P. D. E, vol. 24, no. 4, (2011), 361--384. \bibitem{Mo} J. Moser; \emph{A sharp form of an inequality of N. Trudinger}, Ind. Univ. Math. J., vol. 20, (1971), 1077--1092. \bibitem{Na} M. Nakamura, T. Ozawa; \emph{Nonlinear Schr\"odinger equations in the Sobolev Space of Critical Order}, J. Funct. Anal, vol. 155, (1998), 364--380. \bibitem{nb} K. Nozaki, N. Bekki; \emph{Low-dimensional chaos in a driven damped, nonlinear Schrödinger equation}, Physica D, vol. 21, (1986), 381--393. \bibitem{Ru} B. Ruf; \emph{A sharp Moser-Trudinger type inequality for unbounded domains in ${\mathbb{R}}^{2}$}, J. Funct. Anal, vol. 219, (2004), 340--367. \bibitem{T} T. Saanouni; \emph{Global well-posedness and scattering of a 2D schr\"odinger equation with exponential growth}, Bull. Belg. Math. Soc. Simon Stevin, vol. 17, (2010), 441--462. \bibitem{T2} T. Saanouni; \emph{Decay of solutions to a $2D$ Schr\"odinger equation with exponential growth}, J. Partial Differ. Equ., vol. 24 (2011), no. 1, 37--54. \bibitem{Tr} N. S. Trudinger; \emph{On imbedding into Orlicz spaces and some applications}, J. Math. Mech., vol. 17, (1967), 473--484. \end{thebibliography} \end{document}