\documentclass[reqno]{amsart}
\usepackage{hyperref}
\usepackage{amssymb}
\AtBeginDocument{{\noindent\small
\emph{Electronic Journal of Differential Equations},
Vol. 2015 (2015), No. 121, pp. 1--9.\newline
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
\newline ftp ejde.math.txstate.edu}
\thanks{\copyright 2015 Texas State University - San Marcos.}
\vspace{9mm}}
\begin{document}
\title[\hfilneg EJDE-2015/121\hfil Nonlinear damped Schr\"odinger equation]
{Nonlinear damped Schr\"odinger equation in two space dimensions}
\author[T. Saanouni \hfil EJDE-2015/121\hfilneg]
{Tarek Saanouni}
\address{Tarek Saanouni \newline
University Tunis El Manar,
Faculty of Sciences of Tunis,
LR03ES04 partial differential quations and applications,
2092 Tunis, Tunisia}
\email{Tarek.saanouni@ipeiem.rnu.tn}
\thanks{Submitted November 28, 2014. Published April 30, 2015.}
\subjclass[2010]{35Q55}
\keywords{Nonlinear damped Schr\"odinger equation;
existence; uniqueness; \hfill\break\indent Moser-Trudinger inequality, decay}
\begin{abstract}
In this article, we study the initial value problem for a
semi-linear damped Schr\"odinger equation with exponential growth
nonlinearity in two space dimensions. We show global well-posedness and
exponential decay.
\end{abstract}
\maketitle
\numberwithin{equation}{section}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{remark}[theorem]{Remark}
\allowdisplaybreaks
\section{Introduction}
Consider the initial value problem for a damped semilinear Schr\"odinger equation
\begin{equation}\label{eq1}
\begin{gathered}
i\dot u+\Delta u-\alpha u+\omega \Delta\dot u-\mu\dot u=\epsilon f(u),\\
u|_{t=0}= u_0,\\
u|_{\partial\Omega}=0.
\end{gathered}
\end{equation}
This equation arises for instance in plasma physics \cite{nb} or
in optical fibers models \cite{jj}. Here and hereafter
$(\alpha,\mu,\omega)\in\mathbb{R}_+^3$ and $\epsilon\in\{\pm 1\}$.
The set $\Omega\subset\mathbb{R}^2$ is a bounded smooth domain and
$u(t,x):\mathbb{R}_+\times\Omega\to\mathbb{C}$. The nonlinearity $f$ satisfies the
Hamiltonian form $f(z)=zF'(|z|^2)$, where $F\in C^1(\mathbb{R}_+)$ and vanishes on zero.
Moreover, we assume that for all $\alpha>0$, there exists $C_\alpha>0$ such that
\begin{equation}\label{f}
|f(z_1)-f(z_2)|^2\leq C_\alpha |z_1-z_2|^2
\big(e^{\alpha |z_1|^2}-1+e^{\alpha |z_2|^2}-1\big),\quad \forall z_1,z_2\in\mathbb{C}.
\end{equation}
We define the energy of a solution $u$ to \eqref{eq1} by
$$
E(t)=E_\alpha(u(t)):=\int_\Omega\Big(|\nabla u(t)|^2+\alpha | u(t)|^2
+\epsilon F(|u(t)|^2)\Big)\,dx.
$$
The decay of the energy formally satisfies
$$
\dot E(t)=-\omega \|\nabla \dot u\|_{L^2}^2-\mu\|\dot u\|_{L^2}^2.
$$
If $\epsilon=-1$, the energy is positive and \eqref{eq1} is said to be
defocusing, otherwise it is focusing.
In the monomial case $f(u)=u|u|^{p-1}$, local well-posedness in the energy
space holds for any $1
0$ and $X$ is an abstract space, we denote
$C_T(X):=C([0,T],X)$ and $L_T^p(X):=L^p([0,T],X)$.
\section{Results and background}
In this section, we give the main results of this paper and some technical
tools needed in the sequel. For $u\in H_0^1$, we define the quantities
\begin{gather*}
I_\alpha(u):=\int_\Omega\Big(|\nabla u|^2+\alpha |u|^2-\bar uf(u)\Big)\,dx;\\
m:=\inf_{0\neq u\in H_0^1}\{E(u),\,I(u)=0\},\quad
N:=\{0\neq u\in H_0^1: I(u)=0\};\\
N^+:=\{u\in H_0^1: I(u)>0\}\cup\{0\};\\
(u,v)_*:=\omega(\nabla u,\nabla v)_{L^2}+\mu (u,v)_{L^2},\quad
\|\cdot\|_*^2:=(u,u)_*.
\end{gather*}
$E_T:=C_T(H_0^1)$ endowed with the norm
$\|\cdot\|_T:=\|\cdot\|_{L_T^\infty(H_0^1)}$.
If $u=u(t)$, we denote for simplicity $I(t)=I_\alpha(u(t))$.
The first result is about the existence of a unique local solution to \eqref{eq1}.
\begin{theorem}\label{thm1}
Assume that $\mu>0$, the nonlinearity satisfies \eqref{f}, and $u_0\in H_0^1$.
Then there exists $T>0$ and a unique local solution to the Cauchy problem
\eqref{eq1}, in the energy space
$$
C([0,T],H_0^1).
$$
Moreover,
\begin{enumerate}
\item
the solution satisfies decay of the energy;
\item
the solution is global in the defocusing case.
\end{enumerate}
\end{theorem}
In the next result, we assume that the nonlinearity satisfies the supplementary
condition: There exist $r_0,a>0$ such that
\begin{equation}\label{as}
F(r_0)>0 \quad\text{and}\quad
rf(r)\geq (1+a) F(r)\quad\text{for all }\quad r\in\mathbb{R}_+.
\end{equation}
In the focusing case, we give a result of global existence and exponential decay.
\begin{theorem}\label{thm3}
Assume that $\epsilon=-1$, $\omega>0$ and the nonlinearity satisfies \eqref{f}
with \eqref{as}. Let $u_0\in N^+$ such that $E(0)0$ such that
\[
0<\|u(t)\|_{H_0^1}\lesssim e^{-\gamma t}, \quad\forall t\in\mathbb{R}_+.
\]
\end{enumerate}
\end{theorem}
\begin{remark} \rm
The following function satisfies conditions of Theorem \ref{thm3},
$$
f(u):=\frac12 u(1+{|u|}^2)^{\frac{-1}{2}}
\Big({\rm e}^{(1+{|u|}^2)^{\frac{1}{2}}}-e(1+|u|^2)^{\frac{1}{2}}\Big).
$$
\end{remark}
\begin{proof}
We have $F(r)=e^{(1+r)^{\frac12}}-\frac{e}2(r+2)=e^t-\frac{e}2(t^2+1)$,
where $t:=\sqrt{1+r}$. From direct computations, we have
\begin{gather*}
rF'(r)=\frac12(-1+t^2)(\frac{e^t}t-e);\\
\phi_a(t):=2(rF'(r)-(1+a)F(r))=(t-\frac1{t}-2(1+a))e^t+ea(1+t^2)+2e ;\\
\phi_a'(t)=(t-\frac1{t}-1-2a+\frac1{t^2})e^t+2eat,\quad
\phi_a(1)=0=\phi_a'(1); \\
\phi_a''(t)=(t-\frac1{t}+\frac2{t^2}-\frac2{t^3}-2a)e^t+2ea,\quad \phi_a''(1)=0;\\
\phi_a'''(t)=(t-\frac1{t}+\frac3{t^2}-\frac6{t^3}+\frac6{t^4}+1-2a)e^t,\quad
\phi_a'''(1)=2(2-a)e.
\end{gather*}
Now, taking $\phi_a'''(t)=(\psi(t)+1-2a)e^t$, where
$t^4\psi(t)=t^5-t^3+3t^2-6t+6\geq 0$ for $t\geq 1$. Which implies
that \eqref{as} is satisfied for any $a\in(0,1/2)$.
\end{proof}
In the two-dimensional space, we have the Sobolev injections \cite{AC1},
$$
H_0^1\hookrightarrow L^p,\quad\text{for any}\quad 2\leq p<\infty,
$$
and it is false for $p=\infty$.
The critical Sobolev embedding is described with the so called Orlicz space
\cite{HMN}, which is given by the following Moser-Trudinger inequality
\cite{Ad,Mo,Tr}.
\begin{proposition} \label{prop2.4}
Let $\alpha\in (0,4\pi)$. Then there exists a constant $\mathcal{C}_{\alpha}$
such that for all $u\in H^{1}_0$ satisfying $\|\nabla u\|_{L^{2}}\leq 1$, one has
$$
\int_{\Omega}\Big(e^{\alpha |u(x)|^2}-1\Big)\,dx\leq
\mathcal{C}_{\alpha}\|u\|^{2}_{L^{2}}.
$$
Moreover,
\begin{enumerate}
\item the above inequality is false when $\alpha\geq 4\pi$;
\item $\alpha=4\pi$ becomes admissible if we consider
$\|u\|_{H^{1}_0}\leq 1$ rather than $\|\nabla u\|_{L^{2}}\leq 1$.
In this case, one has
$$
\sup_{\|u\|_{H^{1}_0}\leq 1} \int_{\Omega}e^{4\pi|u(x)|^2}\,dx<\infty
$$
and this is false for $\alpha>4\pi$ \cite{Ad}.
\end{enumerate}
\end{proposition}
\section{Proof of Theorem \ref{thm1}}
We prove well-posedness of the Cauchy problem \eqref{eq1} in the energy space.
We take in this section $\epsilon=1$, in fact the sign of the nonlinearity
has no local effect.
\subsection{Local well-posedness}
\begin{lemma}\label{lem1}
Let $T>0$, $u_0\in H_0^1$ and $u\in C_T(H_0^1)$. Then there exists a unique
$v\in E_T$ such that
\begin{equation} \label{eq2}
\begin{gathered}
i\dot v+\Delta v-\alpha v+\omega \Delta\dot v-\mu\dot v=f(u) \quad\text{on }
[0,T]\times\Omega, \\
v|_{t=0}=u_0,\\
v|_{\partial\Omega}=0.
\end{gathered}
\end{equation}
\end{lemma}
\begin{proof}
Let $W_h:=\langle w_1,\dots,w_h\rangle$, where $\{w_j\}$ is a complete
system of eigenvectors of $-\Delta$ in $H_0^1$ such that $\|w_j\|_{L^2}=1$.
Then, $\{w_j\}$ is orthogonal and complete on $L^2$ and $H_0^1$.
Denote the associated eigenvalues $\{\lambda_j\}$. Let
$$
u_0^h:=\sum_1^h\Re\Big(\int_\Omega\overline{\nabla u_0}\nabla w_j\Big)w_j.
$$
Then, $u_0^h\in W_h$ and $u_0^h\rightarrow u_0$ in $H_0^1$.
For $h\geq 1$, we seek for $h$ functions $\gamma_1^h,\dots,\gamma_h^h$ in
$C^2[0,T]$ such that $v_h(t):=\sum_{j=1}^h\gamma_j^h(t)w_j$ solves, for any $\eta\in W_h$,
the problem
\begin{equation}\label{eq4}
\begin{gathered}
\int_\Omega\Big[i\dot v_h(t)+\Delta v_h(t)-\alpha v_h+\omega \Delta\dot v_h(t)
-\mu\dot v_h(t)-f(u)\Big]\eta=0, \\
v_h(0)=u_0^h.
\end{gathered}
\end{equation}
Taking $\eta=\bar w_j$ in \eqref{eq4}, we obtain
\begin{gather*}
(-i+\omega\lambda_j+\mu)\dot\gamma_j^h(t)+(\alpha+\lambda_j)\gamma_j^h(t)
=-\int_\Omega f(u(t))\bar w_j\,dx, \\
\gamma_j^h(0)=\lambda_j\Re\Big(\int_\Omega\bar u_0w_j\,dx\Big).
\end{gather*}
Since $\int_\Omega f(u(t))w_j\,dx\in C[0,T]$, we have a unique solution
$\gamma_j^h$ to the previous problem. This yields to a solution $v_h$
defined as above and satisfying \eqref{eq4}.
In particular, $v_h\in C^2([0,T],H_0^1)$. Taking $\eta=\overline{\dot v_h}$
in \eqref{eq4}, yields
\begin{align*}
&\|\nabla v_h(t)\|_{L^2}^2+\alpha\|v_h(t)\|_{L^2}^2+2\int_0^t\|\dot v_h(s)\|_*^2\,ds\\
&=\|\nabla u^h_0\|_{L^2}^2+\alpha\|u^h_0\|_{L^2}^2
-2\int_0^t\Re(\int_\Omega\overline{f(u(s))}{\dot{v}_h}(s)\,dx)\,ds.
\end{align*}
Now, by Moser-Trudinger inequality, via the identity
$2|ab|\leq \delta |a|^2+\frac1\delta |b|^2$, for $\delta>0$ near to zero, we have
\begin{align*}
2\int_0^t\Re\Big(\int_\Omega\overline{ f(u(s))}\dot v_h(s)\,dx\Big)\,ds
&\leq \frac1\delta\int_0^t\int_\Omega |f(u(s))|^2\,dx\,ds
+\delta\int_0^t\int_\Omega|\dot v_h(s)|^2\,dx\,ds\\
&\leq \frac1\delta C_T+\delta\int_0^t\int_\Omega|\dot v_h(s)|^2\,dx\,ds\\
&\leq C_T+\int_0^t\|\dot v_h(s)\|_*^2\,ds.
\end{align*}
In fact, with Moser-Trudinger inequality, for any $0<\alpha<\frac{4\pi}{\|u\|_T^2}$,
\begin{align*}
\int_\Omega |f(u(s))|^2\,dx
&\leq C_\alpha\int_\Omega\Big(e^{\alpha\|u\|_T^2
(\frac{|u(s)|}{\|u\|_{T}})^2}-1\Big)\,dx\\
&\leq C_\alpha\int_\Omega |u(s)|^2\,dx\leq C_\alpha\|u\|_T^2=C_T.
\end{align*}
Thus, $\| v_h\|_{T}^2+\int_0^T\|\dot v_h(t)\|_*^2\leq C_T$.
So, $\{v_h\}$ is bounded in $H_0^1((0,T)\times\Omega)$.
Then, taking the weak limit $v_h \rightharpoonup v$ in \eqref{eq4}, we obtain
a weak solution $v$ to \eqref{eq2}.
Since $v\in H_0^1((0,T)\times\Omega)$, we obtain $v\in C([0,T], H_0^1(\Omega))$.
The existence part of the Lemma is proved.
Now, for two solutions $v_1,v_2$ of \eqref{eq2} and $w:=v_1-v_2$,
subtracting the equations and testing with $\overline{\dot w}$, we obtain
$$
\|\nabla w(t)\|_{L^2}^2+\alpha\| w(t)\|_{L^2}^2+2\int_0^t\|w(s)\|_*^2\,ds=0.
$$
The proof of Lemma \ref{lem1} is complete.
\end{proof}
We are ready to prove local well-posedness of \eqref{eq1}.
We denote $R_0:=\|\nabla u_0\|_{L^2}$, and for $R>0$ define the
closed subset of the complete metric space $E_T$,
$$
X_T:=\{u\in E_T: \|u\|_T\leq R,\; u(0)=u_0\}.
$$
Take the function $\phi(u):=v$, the solution to \eqref{eq2}.
We shall prove that, for some $T,R>0$, $\phi$ is a contraction on $X_T$.
Recall the identity
\begin{align*}
&\|\nabla v(t)\|_{L^2}^2+\alpha\|v(t)\|_{L^2}^2+2\int_0^t\|\dot v(s)\|_*^2\,ds\\
&=\|\nabla u_0\|_{L^2}^2+\alpha\|u_0\|_{L^2}^2-2\int_0^t
\Re\Big(\int_\Omega \overline{f(u(s))}\dot v(s)\,dx\Big)\,ds.
\end{align*}
Moreover, for any $0<\delta <\min\{\mu,4\pi/R^2\}$, by
Moser-Trudinger inequality
\begin{align*}
&2\int_0^t\int_\Omega |f(u(s))||\dot v(s)|\,ds\\
&\leq \frac1\delta\int_0^t\int_\Omega |f(u(s))|^2\,ds
+\delta\int_0^t\int_\Omega\dot |v(s)|^2\,ds\\
&\leq \frac{C_\delta}\delta \int_0^t\int_\Omega \Big(e^{\delta |u|^2}-1\Big)\,ds
+\delta\int_0^t\int_\Omega|\dot v(s)|^2\,ds\\
&\leq \frac{C_\delta}\delta \int_0^t\int_\Omega |u(s)|^2\,ds
+\delta\int_0^t\int_\Omega|\dot v(s)|^2\,ds\\
&\leq \frac{C_\delta}\delta TR^2+\frac\delta\mu\int_0^t\|\dot v(s)\|_*^2\,ds
\leq\frac{C_\delta}\delta TR^2+\int_0^t\|\dot v_h(s)\|_*^2\,ds.
\end{align*}
This implies
$$
\|\nabla v(t)\|_{L^2}^2+\alpha\|v(t)\|_{L^2}^2\leq C\alpha R_0^2
+\frac{C_\delta}\delta TR^2.
$$
Taking $R^2>2C\alpha R_0^2$, yields
$$
\|v\|_T^2\leq \Big(\frac12+\frac{C_\delta}\delta T\Big)R^2.
$$
So $\phi(X_T)\subset X_T$ for small $T>0$. Let prove that $\phi$ is contractive.
Take $u_1,u_2\in X_T$, $v_i:=\phi(u_i)$, $v=v_1-v_2$ and $u=u_1-u_2$.
Then, for any $\eta\in H_0^1$ and almost every $t\in[0,T]$,
$$
\int_\Omega\Big(i\dot v\eta-\alpha v\eta-\nabla v\nabla\eta
-\omega\nabla\dot v\nabla\eta-\mu\dot v\eta\Big)\,dx
=\int_\Omega\Big( f(u_1)-f(u_2)\Big)\eta\,dx.
$$
Taking the real part in the previous identity for $\eta=\overline{\dot v}$,
via \eqref{f} yields, for any $\varepsilon>0$,
\begin{align*}
\|\nabla v(t)\|_{L^2}^2
&\leq \|\nabla v(t)\|_{L^2}^2+\alpha\|v(t)\|_{L^2}^2+2\int_0^t\|\dot v(s)\|_*^2\,ds\\
&= -2\int_0^t\Re\Big(\int_\Omega ( f(u_1)-f(u_2))\overline{\dot v}\,dx\Big)\,ds\\
&\leq \int_0^t\int_\Omega \Big[\frac1\varepsilon\Big| f(u_1)
-f(u_2)\Big|^2+\varepsilon|\dot v|^2\Big]\,dx\,ds\\
&\leq \varepsilon\int_0^t\|\dot v\|_{L^2}^2\,ds
+\frac1\varepsilon \int_0^t\int_\Omega \Big| f(u_1)-f(u_2)\Big|^2\,dx\,ds\\
&\leq \varepsilon\int_0^t\|\dot v\|_{L^2}^2\,ds
+\frac1\varepsilon\int_0^t\Big[\int_\Omega|u|^2\Big(e^{\varepsilon |u_1|^2}-1
+e^{\varepsilon |u_2|^2}-1\Big)\,dx\Big]\,ds.
\end{align*}
Now, for $0<\delta<\frac\pi{R^2}$, with Moser-Trudinger inequality via Sobolev
embedding, we have
\begin{align*}
\int_\Omega |u|^2\Big(e^{\delta |u_1|^2}-1+e^{\delta |u_2|^2}-1\Big)\,dx
&\leq \|u\|_{L^4}^2\Big(\|e^{\delta |u_1|^2}-1\|_{L^2}
+\|e^{\delta |u_2|^2}-1\|_{L^2}\Big)\\
&\leq \|u\|_{T}^2\Big(\|e^{2\delta |u_1|^2}-1\|_{L^1}^{\frac12}
+\|e^{2\delta |u_2|^2}-1\|_{L^1}^{\frac12}\Big)\\
&\leq C_\delta\|u\|_{T}^2\Big(\| u_1\|_{L^2}
+\| u_2\|_{L^2}\Big)\lesssim R\|u\|_{T}^2.
\end{align*}
Finally, taking $0<\varepsilon<\min\{2,\frac\pi{R^2}\}$, yields
$$
\|\phi(u_1)-\phi(u_2)\|_T\lesssim \sqrt{RT}\|u_1-u_2\|_T.
$$
Thus $\phi$ is a contraction of $X_T$ for $T>0$ small enough.
With Picard Theorem, there exists a unique fixed point $u$ which is a
solution to \eqref{eq1}.
Uniqueness follows arguing as previously and applying the precedent inequality
for two solutions to \eqref{eq1}, which belong to $X_T$ with a continuity
argument for some $T>0$ small enough.
\subsection{Global existence in the defocusing case}
We recall two important facts. First, the time of local existence depends only on
the quantity $\|\nabla u_0\|_{L^2}$. Second the energy dominates the
$H_0^1$ norm. Let $u$ be the maximal
solution of \eqref{eq1} in the space ${E}_T$ for any $00$ and a solution
$v$ to \eqref{ePs} on $[s,s+\tau]$.
According to the section of local existence and using decay of the energy,
$\tau$ does not depend on $s$. Thus, if we let $s$ be
close to $T^*$ such that $s+\tau>T^*$, we can extend $v$ for times
higher than $T^*$. This fact
contradicts the maximality of $T^*$. We obtain the result claimed
in Theorem \ref{thm1}.
\section{Proof of Theorem \ref{thm3}}
We are interested on the focusing case associated to the problem \eqref{eq1},
so here and hereafter, we fix $\epsilon=-1$. By \eqref{as} we have
\cite{jc}, $m=J(\varphi)>0$ where $\varphi$ is the ground state solution of
$$
-\Delta\varphi+\alpha\varphi=f(\varphi).
$$
If there exists $t_0>0$ such that $u(t_0)\notin N^+$, then
$I(t_0)\leq 0$. With a continuity argument, there exists a time $t_1\in(0,t_0)$
such that $I(t_1)=0$ and $E(t_1)0$. We denote, for some $0<\varepsilon<\min\{\alpha,\frac a{2+a}\}$
(so satisfying \eqref{e}), the real function
$$
L(t):=E(t)+\frac{\varepsilon\omega}2\int_\Omega|\nabla u(t)|^2\,dx.
$$
By \eqref{e}, we have $E\lesssim L\lesssim E$.
Taking account of \eqref{eq1}, we compute, for $0<\varepsilon<\frac\mu{1+\mu}$,
\begin{align*}
\dot L
&= \dot E-\varepsilon\Big(\alpha\|u\|_{L^2}^2+\|\nabla u\|_{L^2}^2
-\int_\Omega \bar uf(u)\,dx+\int_\Omega[\mu \Re(\bar u\dot u)
-\Im(\bar u\dot u)]\,dx\Big)\\
&\leq -\mu\|\dot u\|_{L^2}^2-\varepsilon\Big(E+\int_\Omega F(|u|^2)\,dx
-\int_\Omega \bar uf(u)\,dx+\int_\Omega[\mu \Re(\bar u\dot u)
-\Im(\bar u\dot u)]\,dx\Big)\\
&\leq -\mu\|\dot u\|_{L^2}^2-\varepsilon E+\varepsilon\int_\Omega|uf(u)|\,dx
+\frac\varepsilon2(1+\mu)(\|\dot u\|_{L^2}^2+\|u\|_{L^2}^2)\\
&\leq -\varepsilon E+\varepsilon\int_\Omega|uf(u)|\,dx
+\frac\varepsilon2(1+\mu)\|u\|_{L^2}^2.
\end{align*}
With \eqref{e}, we have $E\geq \varepsilon \|u\|_{H_0^1}^2$, thus,
using Moser-Trudinger inequality, for any $0<\delta<\frac{4\pi\varepsilon}{E(0)}$,
\begin{align*}
\int_\Omega |uf(u)|\,dx
&\leq {C_\varepsilon}\int_\Omega \Big(e^{\delta |u|^2}-1\Big)\,dx\\
&\leq {C_\varepsilon}\int_\Omega \Big(e^{\delta\|u\|_{H_0^1}^2 (\frac {|u|}{\|u\|_{H_0^1}})^2}-1\Big)\,dx\\
&\leq {C_\varepsilon}\|u\|_{L^2}^2.
\end{align*}
So,
\[
\dot L(t)
\leq -\varepsilon \Big(E-(C_\varepsilon+\frac{1+\mu}2)\|u\|_{L^2}^2\Big).
\]
Now, also with \eqref{e}, for
$\alpha>\frac2\varepsilon[\frac{1+\mu}2+C_\varepsilon]$,
we have
$$
E-\big(\frac{1+\mu}2+C_\varepsilon\big)\|u\|_{L^2}^2\geq \frac\varepsilon2 E.
$$
Finally, we conclude with a Gronwall argument via the inequalities
$$
\dot L(t)\lesssim -E(t)\lesssim -L(t).
$$
\begin{thebibliography}{99}
\bibitem{Ad} S. Adachi and K. Tanaka;
\emph{Trudinger type inequalities in ${\mathbb{R}}^{N}$ and their best exponent},
Proc. Amer. Math. Society, vol. 128 no. 7, (1999), 2051--2057.
\bibitem{AC1} D. R. Adams;
\emph{Sobolev Spaces}. Academic Press, (1975).
\bibitem{HMN} H. Bahouri, M. Majdoub, N. Masmoudi;
\emph{On the lack of compactness in the $2D$ critical Sobolev embedding},
Journal of Functional Analysis, vol 260, iss 1, (2011), 208--252.
\bibitem{jj} K. J. Blow, N. J. Doran;
\emph{Global and local chaos in the pumped nonlinear Schr\"odinger equation},
Phys. Rev. Lett., vol. 52, (1984), 526--529.
\bibitem{Cas} T. Cazenave;
\emph{An introduction to nonlinear Schr\"odinger equations},
Textos de Metodos Matematicos {26}, Instituto de Matematica UFRJ, (1996).
\bibitem{Cas.F} T. Cazenave, F. B. Weissler;
\emph{Critical nonlinear Schr\"odinger equation},
Non. Anal. TMA, {14}, (1990), 807--836.
\bibitem{Col.I} J. Colliander, S. Ibrahim, M. Majdoub, N. Masmoudi;
\emph{Energy critical NLS in two space dimensions},
J. Hyperbolic Differ. Equ., vol. 6 (2009), no. 3, 549--575.
\bibitem{G.V} J. Ginibre, G. Velo;
\emph{Scattering theory in the energy space for a class
of nonlinear schr\"odinger equations},
J. Math. Pures Appl. (9), vol. 64, no. 4, (1985), 363--401.
\bibitem{jc} L. Jeanjean, S. Lecoz;
\emph{Instability for standing waves of nonlinear Klein-Gordon equations
via mountain-pass arguments}, Trans. Amer. Math. Soc.,
vol. 361, no 10, (2009), 5401--5416.
\bibitem{Lam} J. F. Lam, B. Lippman, F. Trappert;
\emph{Self trapped laser beams in plasma}, Phys. Fluid, vol. 20, (1997),
1176--1179.
\bibitem{OMTS} O. Mahouachi, T. Saanouni;
\emph{Global well posedness and linearization of
a semilinear wave equation with exponential growth},
Georgian Math. J, vol. 17, no. 3, (2010), 543--562.
\bibitem{OMTS1} O. Mahouachi and T. Saanouni;
\emph{{Well and ill-posedness issues for a class of 2D wave equation
with exponential growth}}, J. P. D. E, vol. 24, no. 4, (2011), 361--384.
\bibitem{Mo} J. Moser;
\emph{A sharp form of an inequality of N. Trudinger}, Ind. Univ. Math.
J., vol. 20, (1971), 1077--1092.
\bibitem{Na} M. Nakamura, T. Ozawa;
\emph{Nonlinear Schr\"odinger equations in the Sobolev Space of Critical Order},
J. Funct. Anal, vol. 155, (1998), 364--380.
\bibitem{nb} K. Nozaki, N. Bekki;
\emph{Low-dimensional chaos in a driven damped, nonlinear Schrödinger equation},
Physica D, vol. 21, (1986), 381--393.
\bibitem{Ru} B. Ruf;
\emph{A sharp Moser-Trudinger type inequality for unbounded domains
in ${\mathbb{R}}^{2}$}, J. Funct. Anal, vol. 219, (2004), 340--367.
\bibitem{T} T. Saanouni;
\emph{Global well-posedness and scattering of a 2D schr\"odinger equation
with exponential growth}, Bull. Belg. Math. Soc. Simon Stevin, vol. 17, (2010),
441--462.
\bibitem{T2} T. Saanouni;
\emph{Decay of solutions to a $2D$ Schr\"odinger equation with exponential
growth}, J. Partial Differ. Equ., vol. 24 (2011), no. 1, 37--54.
\bibitem{Tr} N. S. Trudinger;
\emph{On imbedding into Orlicz spaces and some applications},
J. Math. Mech., vol. 17, (1967), 473--484.
\end{thebibliography}
\end{document}