\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 123, pp. 1--17.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/123\hfil Existence of infinitely many symmetric solutions] {Existence of infinitely many symmetric solutions to perturbed elliptic equations with discontinuous nonlinearities in $\mathbb{R}^N$} \author[S. Heidarkhani, F. Gharehgazlouei, A. Solimaninia \hfil EJDE-2015/123\hfilneg] {Shapour Heidarkhani, Fariba Gharehgazlouei, Arezoo Solimaninia} \address{Shapour Heidarkhani \newline Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran} \email{s.heidarkhani@razi.ac.ir} \address{Fariba Gharehgazlouei \newline Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran} \email{f.gharehgazloo@yahoo.com} \address{Arezoo Solimaninia \newline Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran} \email{a.solimaninia@yahoo.com} \thanks{Submitted November 10, 2014. Published May 5, 2015.} \subjclass[2010]{34A16, 35J20} \keywords{Radially symmetric solutions; perturbed elliptic equation; \hfill\break\indent discontinuous nonlinearities; critical point theory; variational method} \begin{abstract} In this article we study the existence of infinitely many radially symmetric solutions for a class of perturbed elliptic equations with discontinuous nonlinearities in $\mathbb{R}^N$. We determine open intervals of positive parameters for which the problem admits infinitely many symmetric solutions. Our proofs are based on variational methods. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} We consider the perturbed elliptic problem \begin{equation} \label{1} -\Delta_{p}u+| u |^{p-2}u=\lambda f(| x|, u) +\mu g(| x|, u), \quad x\in \mathbb{R}^{N},\quad u \in W_{r}^{1,p}(\mathbb{R}^{N}) \end{equation} where $\Delta_{p}u:=\operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the $p$-Laplacian operator, $\lambda >0$, $\mu\geq 0$, $2\leq N
0 $ there is a constant $M_{\delta}$ such that $$ \sup_{| z|\leq \delta}| f(\rho, z )|\leq M_{\delta}, $$ where $\rho=| x|$, and that for all $z\in D(f)$ the condition $f^{-}(\rho, z)\leq 0\leq f^{+}(\rho, z)$ implies $f(\rho, z)=0$, where \begin{equation}\label{neweqf} \begin{gathered} f^{-}(\rho, z)={\lim_{\delta\to 0^{+}}} \operatorname{ess\,inf}_{| z-\zeta | <\delta}f(\rho, \zeta),\\ f^{+}(\rho, z)={\lim_{\delta\to 0^{+}}} \operatorname{ess\,sup}_{| z-\zeta | <\delta}f(\rho, \zeta). \end{gathered} \end{equation} Put $$ F(\rho,t)=\int^{t}_{0}f(\rho,s)ds,\quad \rho\in \mathbb{R}^{+} \cup{\{0\}},\quad t \in\mathbb{R}. $$ Assume that \begin{gather*} \liminf _{\xi\to+\infty} \frac{\int_{0}^{+\infty}\sup _{| t|\leq\xi} F(\rho,t) \rho^{N-1}d\rho}{\xi^{p}} =0,\\ \limsup_{\xi\to+\infty}\frac{\int_{0}^{\frac{D}{2}} F(\rho,\xi)\rho^{N-1}d\rho}{\xi^p}=+\infty \quad \text{for some } D>0. \end{gather*} Then, the problem \[ -\Delta_{p}u+| u |^{p-2}u=f(|x|, u), \quad x\in \mathbb{R}^{N},\quad u \in W_{r}^{1,p}(\mathbb{R}^{N}) \] admits a sequence of symmetric solutions. \end{theorem} \section{Basic definitions and preliminary results} For basic notation and definitions on the subject, we refer the reader to \cite{BM1,CLM,Molica,MR}. Let $(X,\|\cdot\|_X)$ be a real Banach space. We denote by $X^\ast$ the dual space of $X$, while $\langle\cdot,\cdot\rangle$ stands for the duality pairing between $X^\ast$ and $X$. A function $\varphi:X\to\mathbb{R}$ is called locally Lipschitz if, for all $u\in X$, there exist a neighborhood $U$ of $u$ and a real number $L>0$ such that $$ |\varphi(v)-\varphi(w)|\leq L\|v-w\|_X\quad\text{for all } v,w\in U. $$ If $\varphi$ is locally Lipschitz and $u\in X$, the generalized directional derivative of $\varphi$ at $u$ along the direction $v\in X$ is $$ \varphi^\circ(u;v):=\limsup_{w\to u,\,\tau\to 0^+} \frac{\varphi(w+\tau v)-\varphi(w)}{\tau}. $$ The generalized gradient of $\varphi$ at $u$ is the set $$ \partial\varphi(u):=\{u^\ast\in X^\ast : \langle u^\ast,v\rangle\leq\varphi^\circ(u;v)\text{ for all } v\in X\}. $$ So $\partial\varphi:X\to 2^{X^\ast}$ is a multifunction. We say that $\varphi$ has compact gradient if $\partial\varphi$ maps bounded subsets of $X$ into relatively compact subsets of $X^\ast$. \begin{lemma}[{\cite[Proposition 1.1]{MotPan}}] \label{lem2.1} Let $\varphi$ be a functional in $C^1(X)$. Then $\varphi$ is locally Lipschitz and \begin{gather*} \varphi^\circ(u;v)=\langle\varphi'(u),v\rangle\quad\text{for all }u,v\in X;\\ \partial\varphi(u)=\{\varphi'(u)\}\quad\text{for all }u\in X. \end{gather*} \end{lemma} \begin{lemma}[{\cite[Proposition 1.3]{MotPan}}] \label{lem2.2} Let $\varphi:X\to\mathbb{R}$ be a locally Lipschitz functional. Then $\varphi^\circ(u;\cdot)$ is subadditive and positively homogeneous for all $u\in X$, and $$ \varphi^\circ(u;v)\leq L\|v\|\quad \text{for all }u,v\in X, $$ with $L>0$ being a Lipschitz constant for $\varphi$ with respect to $u$. \end{lemma} \begin{lemma}[\cite{Clarke}] \label{lem2.3} Let $\varphi:X\to\mathbb{R}$ be a locally Lipschitz functional. Then $\varphi^\circ:X\times X\to\mathbb{R}$ is upper semicontinuous and for all $\lambda\geq 0$, $u,v\in X$, $$ (\lambda\varphi)^\circ(u;v)=\lambda\varphi^\circ(u;v). $$ Moreover, if $\varphi,\psi:X\to\mathbb{R}$ are locally Lipschitz functionals, then $$ (\varphi+\psi)^\circ(u;v)\leq\varphi^\circ(u;v)+\psi^\circ(u;v)\quad \text{for all } u,v\in X. $$ \end{lemma} \begin{lemma}[{\cite[Proposition 1.6]{MotPan}}] \label{lem2.4} Let $\varphi,\psi:X\to\mathbb{R}$ be locally Lipschitz functionals. Then $$ \partial(\lambda\varphi)(u)=\lambda\partial\varphi(u)\;\text{for all}\;u\in X,\,\lambda\in\mathbb{R}, and $$ $$ \partial(\varphi+\psi)(u)\subseteq\partial\varphi(u)+\partial\psi(u)\;\text{for all}\;u\in X. $$ \end{lemma} We say that $u\in X$ is a (generalized) critical point of a locally Lipschitz functional $\varphi$ if $0\in\partial\varphi(u)$, i.e., $$ \varphi^\circ(u;v)\geq 0\quad\text{for all}\;v\in X. $$ When a non-smooth functional, $g:X\to(-\infty,+\infty)$, is expressed as a sum of a locally Lipschitz function, $\varphi:X\to\mathbb{R}$, and a convex, proper, and lower semicontinuous function, $j:X\to(-\infty,+\infty)$, that is, $g:=\varphi+j$, a (generalized) critical point of $g$ is every $u\in X$ such that $$ \varphi^\circ(u;v-u)+j(v)-j(u)\geq 0 $$ for all $v\in X$ (see \cite[Chapter 3]{MotPan}). Let the space $$ W^{1,p}(\mathbb{R}^{N})=\{ u\in L^{p}(\mathbb{R}^{N}) : \nabla u \in L^{p}(\mathbb{R}^{N})\}, $$ be equipped with the norm $$ \| u\|_{W^{1,p}(\mathbb{R}^{N})} =\Big( \int_{\mathbb{R}^{N}} (| \nabla u(x)|^{p}+| u(x)|^{p})dx\Big)^{1/p}. $$ The action of the orthogonal group $O(N)$ on $W^{1,p}(\mathbb{R}^{N})$ can be defined by $gu(x)=u(g^{-1}x)$ for every $g\in O(N)$, $u\in W^{1,p}(\mathbb{R}^{N})$ and $x \in \mathbb{R}^{N}$ (see \cite{W}), and we can define the subspace of radially symmetric functions of $W^{1,p}(\mathbb{R}^{N})$ by $$ W_{r}^{1,p}(\mathbb{R}^{N}) =\{ u \in W^{1,p}(\mathbb{R}^{N}): gu=u, \forall g \in O(N)\} $$ equipped with the norm $$ \| u\|_{W_{r}^{1,p}(\mathbb{R}^{N})} =\Big(\int_{0}^{+\infty}(|u'(\rho)|^{p}+| u(\rho) |^p)\rho^{N-1}d\rho \Big)^{1/p}. $$ As pointed out in \cite[Theorem 3.1]{K1}, since $2\leq N
0$ such that \begin{equation}\label{2} \sup_{\rho\in[0,+\infty]}|u(\rho)|\leq k\| u\|_{W_{r}^{1,p}(\mathbb{R}^{N})} \end{equation} for each $u\in W_{r}^{1,p}(\mathbb{R}^{N})$. Hereafter, we assume that $X$ is a reflexive real Banach space, $\Phi:X\to\mathbb{R}$ is a sequentially weakly lower semicontinuous functional, $\Upsilon:X\to\mathbb{R}$ is a sequentially weakly upper semicontinuous functional, $\lambda$ is a positive parameter, $j:X\to(-\infty,+\infty)$ is a convex, proper, and lower semicontinuous functional, and $D(j)$ is the effective domain of $j$. Write $$ \Psi:=\Upsilon-j,\qquad\qquad I_\lambda:=\Phi-\lambda\Psi =(\Phi-\lambda\Upsilon)+\lambda j. $$ We also assume that $\Phi$ is coercive and \begin{equation}\label{3} D(j)\cap\Phi^{-1}(-\infty,r)\neq\emptyset \end{equation} for all $r>\inf_X\Phi$. Moreover, owing to \eqref{3} and provided $r>\inf_X\Phi$, we can define \begin{gather*} \varphi(r):=\inf_{u\in\Phi^{-1}(-\infty,r)} \frac{\big(\sup_{v\in\Phi^{-1}(-\infty,r)}\Psi(v)\big)-\Psi(u)}{r-\Phi(u)}, \\ \gamma:=\liminf_{r\to +\infty}\varphi(r),\quad \delta:=\liminf_{r\to(\inf_X\Phi)^+}\varphi(r). \end{gather*} When $\Phi$ and $\Upsilon$ are locally Lipschitz functionals the following result is proved in \cite[Theorem 2.1]{BM2}; it is a more precise version of \cite[Theorem 1.1]{MM} (see also \cite{R}), which is the main tool to prove our results. \begin{theorem}\label{thm1} Under the above assumptions on $X,\Phi$ and $\Psi$, one has {\rm (a)} For every $r>\inf_X\Phi$ and every $\lambda\in (0,1/\varphi(r))$, the restriction of the functional $I_\lambda=\Phi-\lambda\Psi$ to $\Phi^{-1}(-\infty,r)$ admits a global minimum, which is a critical point (local minimum) of $I_\lambda$ in $X$. {\rm (b)} If $\gamma<+\infty$, then for each $\lambda\in (0,1/\gamma)$, the following alternative holds: either \begin{itemize} \item[(b1)] $I_\lambda$ possesses a global minimum, or \item[(b2)] there is a sequence $\{u_n\}$ of critical points (local minima) of $I_\lambda$ such that $\lim_{n\to+\infty}\Phi(u_n)=+\infty$. \end{itemize} {\rm (c)} If $\delta<+\infty$, then for each $\lambda\in (0,1/\delta)$, the following alternative holds: either \begin{itemize} \item[(c1)] there is a global minimum of $\Phi$ which is a local minimum of $I_\lambda$, or \item[(c2)] there is a sequence $\{u_n\}$ of pairwise distinct critical points (local minima) of $I_\lambda$, with $\lim_{n\to+\infty}\Phi(u_n)=\inf_X\Phi$, which weakly converges to a global minimum of $\Phi$. \end{itemize} \end{theorem} \section{Main results} Let $f:\mathbb{R}^{N}\times\mathbb{R}\to \mathbb{R}$ be continuous almost everywhere and assume that for each $\delta_1>0 $ there is a constant $ M_{\delta_1}$ such that \begin{equation}\label{4}\sup_{| z|\leq \delta_1}| f(| x|, z )|\leq M_{\delta_1}. \end{equation} Since $x$ is away from the origin, we set $\rho = |x |$ and treat \eqref{1} as an ordinary differential equation. Thus we write $u(\rho)$ instead of $u(x )$, and the problem \eqref{1} corresponds exactly to \begin{equation}\label{5} -(\rho^{N-1}\phi(u'))'+\rho^{N-1}\phi(u)=\lambda \rho^{N-1}f(\rho,u)+\mu \rho^{N-1}g(\rho,u) \end{equation} where $'$ denotes $ \frac{d}{d\rho}$ and $\phi(s)=| s|^{p-2}s$. Put $$ F(\rho,t)=\int^{t}_{0}f(\rho,s)ds,\ \rho\in \mathbb{R}^{+} \cup{\{0\}}, \quad t \in\mathbb{R}. $$ Pick $D>0$ such that $S(0,D)\subseteq \mathbb{R}^{N}$ where $S(0, D)$ denotes the ball with center at $0$ and radius of $D$, and let $\omega_N$ be the volume of the $N$-dimensional unit ball. Our main result is stated using the following assumptions: \begin{itemize} \item[(A1)] $F(\rho,t)\geq 0$ for all $(\rho,t) \in[\frac{D}{2},+\infty)\times(\mathbb{R}^+\cup\{0\})$; \item[(A2)] \begin{align*} &\liminf _{\xi\to+\infty} \frac{\int_{0}^{+\infty} (\sup _{| t|\leq\xi} F(\rho,t)) \rho^{N-1}d\rho}{\xi^{p}} \\ &< \frac{1}{k^p\omega_{N} D^{N}(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1)} \limsup_{\xi\to+\infty}\frac{\int_{0}^{\frac{D}{2}}F(\rho,\xi)\rho^{N-1}d\rho }{\xi^p}\,; \end{align*} \item[(A3)] for all $z\in D(f)$ the condition $f^{-}(\rho, z)\leq 0\leq f^{+}(\rho, z)$ implies $f(\rho, z)=0$, where $f^{-}(\rho, z)$ and $f^{+}(\rho, z)$ are given as in \eqref{neweqf}. Put \begin{gather*} \lambda_1 : =\frac{\omega_{N} D^{N}(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1)}{ p\limsup_{\xi\to+\infty}\frac{\int_{0}^{\frac{D}{2}}F(\rho,\xi)\rho^{N-1}d\rho }{\xi^p}} \\ \lambda_2:=\Big(pk^p\liminf _{\xi\to+\infty} \frac{\int_{0}^{+\infty}(\sup _{| t|\leq\xi} F(\rho,t)) \rho^{N-1}d\rho}{\xi^{p}} \Big)^{-1}. \end{gather*} Suppose that $g:\mathbb{R}^{N}\times\mathbb{R}\to \mathbb{R}$ is continuous almost everywhere, and for $\delta_2 >0 $ there is a constant $M_{\delta_2}$ such that \begin{equation}\label{6} \sup_{| z|\leq \delta_{2}}| g(| x|, z )|\leq M_{\delta_{2}}, \end{equation} \item[(A4)] for all $z\in D(g)$ the condition $g^{-}(\rho, z)\leq 0\leq g^{+}(\rho, z)$ implies $g(\rho, z)=0$, where \[ g^{-}(\rho, z)=\lim_{\delta\to 0^{+}} \operatorname{ess\,inf}_{| z-\zeta | <\delta}g(\rho, \zeta),\quad g^{+}(\rho, z)=\lim_{\delta\to 0^{+}} \operatorname{ess\,sup}_{| z-\zeta | <\delta}g(\rho, \zeta), \] whose potential $G(\rho,t)=\int^{t}_{0}g(\rho,s)ds$, $\rho\in \mathbb{R}^{+} \cup{\{0\}}$, $t \in\mathbb{R}$, is a non-negative function satisfying the condition \begin{equation}\label{7} g_\infty:=\lim_{\xi\to+\infty}\frac{\int_{0}^{+\infty}(\sup_{| t|\leq\xi}G(\rho,t)) \rho^{N-1}d\rho}{\xi^p}<+\infty\,. \end{equation} Set $$ \mu_{g,\lambda}:=\frac{1}{pk^{p} g_{\infty}} \Big(1-\lambda p{k}^p \liminf_{\xi\to +\infty}\frac{\int_{0}^{+\infty}(\sup_{| t|\leq\xi}F(\rho,t))\rho^{N-1}d\rho}{\xi^{p}}\Big). $$ \end{itemize} \begin{theorem}\label{thm2} Under assumptions {\rm (A1)--(A4)}, for each $\lambda\in]\lambda_1,\lambda_2[$ and for every $\mu\in[0,\mu_{g,\lambda}[$, problem \eqref{1} has an unbounded sequence of symmetric solutions. \end{theorem} \begin{proof} To apply Theorem \ref{thm1} to our problem, we take $X=W_{r}^{1,p}(\mathbb{R}^{N})$. Fix $\overline{\lambda}\in]\lambda_1,\lambda_2[$ and let $g$ be an almost everywhere continuous function satisfying the condition \eqref{7}. Arguing as in \cite{BM1}, we follow the proof in the case $\mu>0$. Since, $\overline{\lambda}<\lambda_2$, one has $$ \mu_{g,\overline {\lambda}}:=\frac{1}{pk^p g_\infty} \Big(1-\overline{\lambda}\ p{k}^p \liminf_{\xi\to+\infty} \frac{\int_{0}^{+\infty} (\sup_{| t|\leq\xi} F(\rho,t))\rho^{N-1}d\rho}{\xi^{p}}\Big)>0. $$ Fix $\overline{\mu}\in]0,\mu_{g,\overline{\lambda}}[$ and set $\nu_1:=\lambda_1$ and $\nu_2:=\frac{\lambda_2}{1+p{k}^p \frac{\overline{\mu}}{\overline{\lambda}}\lambda_2g_\infty}$. If $g_\infty=0$, clearly, $\nu_1=\lambda_1$, $\nu_2=\lambda_2$ and $\lambda\in]\nu_1,\nu_2[$. If $g_\infty\neq0$, since $\overline{\mu}<\mu_{g,\overline{\lambda}}$, we obtain $$ \frac{\overline{\lambda}}{\lambda_2}+p{k}^p \overline{\mu}g_\infty<1, $$ and so $$ \frac{\lambda_2}{1+pk^p \frac{\overline{\mu}}{\overline{\lambda}} \lambda_2g_\infty}>\overline{\lambda}, $$ namely, $\overline{\lambda}<\nu_2$. Hence, since $\overline{\lambda}>\lambda_1=\nu_1$, one has $\overline{\lambda}\in]\nu_1,\nu_2[$. We now set \begin{gather*} \Phi(u)=\frac{1}{p}\|u\|^{p}_{ W_{r}^{1,p}(\mathbb{R}^{N})},\quad \Upsilon(u)=\int_{0}^{+\infty}[F(\rho,u)+\frac{\overline{\mu}} {\overline{\lambda}}G(\rho,u)]\rho^{N-1}d\rho,\\ j(u)=0, \quad \Psi(u)=\Upsilon(u)-j(u)=\Upsilon(u) \end{gather*} for each $u\in X$. Clearly, the functional $\Phi$ is locally Lipschitz and weakly sequentially lower semi-continuous. Put $I_{\overline{\lambda}}:=\Phi-\overline{\lambda}\Psi$. Since $f$ and $g$ satisfy \eqref{4} and \eqref{6}, respectively, and $W_{r}^{1,p}(\mathbb{R}^{N})$ is compactly embedded in $L^{\infty} (\mathbb{R}^{N})$, the assertion remains true regarding $\Psi $ too (see \cite{K2,KV}). By a simple computation, we obtain $$ \frac{d\Phi(u)}{du}=\int_{0}^{+\infty}[-(| u'|^{p-2}u')'+| u|^{p-2}u]\rho^{N-1}d\rho. $$ From Chang \cite[Theorem 2.1]{Ch}, we have $$ \partial\Psi(u)=[(f^{-}(\rho,u)+\frac{\overline{\mu}}{\overline{\lambda}}g^{-} (\rho,u))\rho^{N-1}, (f^{+}(\rho,u)+\frac{\overline{\mu}}{\overline{\lambda}}g^{+}(\rho,u))\rho^{N-1}]. $$ So the critical point of the functional $I_{\overline{\lambda}}$ is precisely the solution of the differential inclusion \begin{equation} \label{8} \begin{aligned} &-(\rho^{N-1}\phi(u'))'+\rho^{N-1}\phi(u) \\ &\in \overline{\lambda} [(f^{-}(\rho,u) +\frac{\overline{\mu}}{\overline{\lambda}}g^{-} (\rho,u))\rho^{N-1}, (f^{+}(\rho,u) +\frac{\overline{\mu}}{\overline{\lambda}}g^{+}(\rho,u))\rho^{N-1}] \end{aligned} \end{equation} for $\rho \in [0,+\infty]\backslash (u^{-1} (D_{f})\bigcup u^{-1} (D_{g}))$. Since $m(D_{f})=m(D_{g})=0$, we can obtain $-(\rho^{N-1}\phi(u'))'+\rho^{N-1}\phi(u))=0$ for almost all $\rho \in u^{-1} (D_{f})\cap u^{-1} (D_{g})$. On the other hand, in view of Assumptions (A3) and (A4), we obtain $f(\rho,u(\rho))=0$ for almost all $ \rho \in u^{-1}(D_{f})$ and $g(\rho, u(\rho))=0$ for almost all $ \rho \in u^{-1}(D_{g})$, respectively, i.e. \begin{equation} \label{9} -(\rho^{N-1}\phi(u'))'+\rho^{N-1}\phi(u)=\overline{\lambda}\rho^{N-1}f(\rho,u) +\overline{\mu}\rho^{N-1}g(\rho,u) \end{equation} for almost all $\rho \in u^{-1}(D_{f})\cap u^{-1} (D_{g})$. Combining \eqref{8} and \eqref{9}, we can obtain that the solutions of the problem \eqref{5} are exactly the critical points of the functional $I_{\overline{\lambda}}$. Now, we claim that $\gamma<+\infty$. Let $\{\xi_n\}$ be a sequence of positive numbers such that $\xi_n\to+\infty$ as $n\to\infty$ and \begin{align*} &\lim_{n\to \infty}\frac{\int_{0}^{+\infty} (\sup_{| t|\leq\xi_{n}}[F(\rho,t) +\frac{\overline{\mu}}{\overline{\lambda}}G(\rho,t)])\rho^{N-1}d\rho}{\xi_n^{p}}\\ &=\liminf_{\xi\to +\infty}\frac{\int_{0}^{+\infty} (\sup_{| t|\leq\xi} [F(\rho,t)+\frac{\overline{\mu}}{\overline{\lambda}}G(\rho,t)]) \rho^{N-1}d\rho}{\xi^{p}}. \end{align*} Put $r_n=\frac{1}{p}(\frac{ \xi_n}{k})^{p}$ for all $n\in \mathbb{N}$. Bearing in mind \eqref{2}, we have \begin{align*} \Phi^{-1}(-\infty,r_{n}) &= \{ u\in X; \Phi(u)< r_{n}\}\\ &= \{ u\in X; \|u\|^p_{W_{r}^{1,p}(\mathbb{R}^{N})}< pr_{n}\}\\ & \subseteq \{ u\in X; |u(\rho)|\leq \xi_n\ \text{for all}\ \rho\in [0,+\infty]\}. \end{align*} Hence, taking into account that $ \inf_{X}\Phi(0)=0$ and $\Psi(0)=0$ for every $n$ large enough, one has \begin{align*} \varphi(r_n) &= \inf_{u\in\Phi^{-1}(-\infty,r_n)}\frac{(\sup_{v\in\Phi^{-1}(-\infty,r_n)} \Psi(v))-\Psi(u)}{r_n-\Phi(u)}\\ &\leq \frac{\sup_{v\in\Phi^{-1}(-\infty,r_n)}\Psi(v)}{r_n}\\ &\leq \frac{\int_{0}^{+\infty} (\sup_{| t|\leq\xi_{n}}\Big{[}F(\rho,t)+\frac{\overline{\mu}}{\overline{\lambda}}G(\rho,t) \Big{]})\rho^{N-1}d\rho}{\frac{1}{p}({\frac{ \xi_n}{k}})^{p}}\\ &\leq \frac{\int_{0}^{+\infty}(\sup_{| t|\leq\xi_{n}}F(\rho,t))\rho^{N-1}d\rho}{\frac{1}{p} ({\frac{ \xi_n}{k}})^{p}} +\frac{\overline{\mu}}{\overline{\lambda}} \frac{\int_{0}^{+\infty}(\sup_{| t|\leq\xi_{n}}G(\rho,t))\rho^{N-1}d\rho}{\frac{1}{p} ({\frac{ \xi_n}{k}})^{p}}. \end{align*} From Assumption (A2) and the condition \eqref{7} one has \begin{align*} &\lim_{n\to \infty}\frac{\int_{0}^{+\infty}(\sup_{| t|\leq\xi_{n}} F(\rho,t))\rho^{N-1}d\rho}{\frac{1}{p}({\frac{ \xi_n}{k}})^{p}} +\lim_{n\to \infty}\frac{\overline{\mu}}{\overline{\lambda}} \frac{\int_{0}^{+\infty}(\sup_{| t|\leq\xi_{n}}G(\rho,t))\rho^{N-1}d\rho}{\frac{1}{p}({\frac{ \xi_n}{k}})^{p}}\\ &<+\infty, \end{align*} from which it follows that $$ \lim_{n\to\infty}\frac{\int_{0}^{+\infty} (\sup_{| t|\leq\xi_{n}} [F(\rho,t)+\frac{\overline{\mu}}{\overline{\lambda}}G(\rho,t)]) \rho^{N-1}d\rho}{\frac{1}{p}({\frac{ \xi_n}{k}})^{p}} <+\infty. $$ Therefore, \begin{equation}\label{10} \gamma\leq \liminf_{n\to+\infty}\varphi(r_n)\leq\lim_{n\to \infty}\frac{\int_{0}^{+\infty} (\sup_{| t|\leq\xi_{n}}[F(\rho,t) +\frac{\overline{\mu}}{\overline{\lambda}}G(\rho,t)])\rho^{N-1}d\rho} {\frac{1}{p}(\frac{\xi_n}{k})^{p}}<+\infty. \end{equation} Since \begin{align*} &\frac{\int_{0}^{+\infty}(\sup_{| t|\leq\xi} [F(\rho,t)+\frac{\overline{\mu}}{\overline{\lambda}}G(\rho,t)])\rho^{N-1}d\rho} {\frac{1}{p}(\frac{\xi}{k})^{p}}\\ &\leq\frac{\int_{0}^{+\infty}(\sup_{| t|\leq\xi}F(\rho,t))\rho^{N-1}d\rho} {\frac{1}{p}({\frac{ \xi}{k}})^{p}} +\frac{\overline{\mu}}{\overline{\lambda}} \frac{\int_{0}^{+\infty}(\sup_{| t|\leq\xi} G(\rho,t)) \rho^{N-1}d\rho}{\frac{1}{p}({\frac{\xi}{k}})^{p}}, \end{align*} taking into account \eqref{7}, one has \begin{equation}\label{11} \begin{aligned} &\liminf_{\xi\to +\infty}\frac{\int_{0}^{+\infty}(\sup_{| t|\leq\xi}[F(\rho,t) +\frac{\overline{\mu}}{\overline{\lambda}}G(\rho,t)])\rho^{N-1}d\rho}{\xi^{p}}\\ &\leq\liminf_{\xi\to +\infty}\frac{\int_{0}^{+\infty}(\sup_{| t|\leq\xi}F(\rho,t))\rho^{N-1}d\rho}{\xi^{p}} +\frac{\overline{\mu}}{\overline{\lambda}}g_\infty. \end{aligned} \end{equation} Since $G$ is nonnegative, we obtain \begin{equation} \label{12} \limsup_{\xi\to+\infty}\frac{\int_{0}^{\frac{D}{2}}[F(\rho,\xi) +\frac{\overline{\mu}}{\overline{\lambda}}G(\rho,\xi)]\rho^{N-1}d\rho }{\xi^p}\geq \limsup_{\xi\to+\infty}\frac{\int_{0}^{\frac{D}{2}}F(\rho,\xi)\rho^{N-1}d\rho }{\xi^p}. \end{equation} Therefore, in view of \eqref{11} and \eqref{12}, we have \begin{align*} \overline {\lambda} &\in]\nu_1,\nu_2[\\ &\subseteq \Big]\frac{\omega_{N} D^{N}(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1)}{ p\limsup_{\xi\to+\infty}\frac{\int_{0}^{\frac{D}{2}}[F(\rho,\xi) +\frac{\overline{\mu}}{\overline{\lambda}}G(\rho,\xi)]\rho^{N-1}d\rho }{\xi^p}} , \\ &\quad \frac{1}{pk^p\liminf _{\xi\to+\infty} \frac{\int_{0}^{+\infty}(\sup _{| t|\leq\xi} [F(\rho,t) +\frac{\overline{\mu}}{\overline{\lambda}}G(\rho,t)]) \rho^{N-1}d\rho}{\xi^{p}} }\Big[\\ &\subseteq ]0,\frac{1}{\gamma}[, \end{align*} where we used (A2) and \eqref{10}. For a fixed $\overline{\lambda}$, inequality \eqref{10} implies that the condition (b) of Theorem \ref{thm1} can be applied and either $I_{\overline{\lambda}}$ has a global minimum or there exists a sequence $\{u_n\}$ of solutions of the problem \eqref{5} such that $\lim_{n\to\infty}\| u_{n} \|=+\infty$. The other step is to show that for the fixed $\overline{\lambda}$ the functional $I_{\overline{\lambda}}$ has no global minimum. Let us verify that the functional $I_{\overline{\lambda}}$ is unbounded from below. Since \begin{align*} \frac{1}{{\overline{\lambda}}} &< \frac{p}{\omega_{N}D^{N}(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1)} \limsup_{\xi\to+\infty} \frac{\int_{0}^{\frac{D}{2}}F(\rho,\xi)\rho^{N-1}d\rho }{\xi^p}\\ &\leq \frac{p}{\omega_{N}D^{N}(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1)} \limsup_{\xi\to +\infty} \frac{\int_{0}^{\frac{D}{2}}[F(\rho,\xi) +\frac{\overline{\mu}}{\overline{\lambda}}G(\rho,\xi)]\rho^{N-1}d\rho}{\xi^{p}}, \end{align*} we can consider a real sequence $\{d_n\}$ and a positive constant $\tau$ such that $d_n\to +\infty$ as $n\to \infty$ and \begin{equation}\label{13} \frac{1}{{\overline{\lambda}}}<\tau < \frac{p}{\omega_{N}D^{N}(\frac{2^p} {D^p}(1-\frac{1}{2^N})+1)}\frac{\int_{0}^{\frac{D}{2}}[F(\rho,d_n) +\frac{\overline{\mu}}{\overline{\lambda}}G(\rho,d_n)] \rho^{N-1}d\rho}{d_{n}} \end{equation} for each $n\in\mathbb{N}$ large enough. Let $\{w_n\}$ be a sequence in $X$ defined by \begin{equation}\label{14} w_{n}(x)= \begin{cases} 0 &\text{if } x\in\mathbb{R}^{N} \setminus S(0,D), \\ \frac{2d_{n}}{D}(D-| x |) &\text{if } x\in S(0,D) \setminus S(0,\frac{D}{2}),\\ {d_{n}} &\text{if } x\in S(0,\frac{D}{2}). \end{cases} \end{equation} For any fixed $n\in \mathbb{N}$, it is easy to see that $w_{n}\in X$ and, in particular, one has \begin{equation}\label{15} \|w_{n} \|_{ W_{r}^{1,p}(\mathbb{R}^{N})}^{p} \leq d_{n}^p \omega_{N} D^N\big(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1\big). \end{equation} On the other hand, since $0\leq w_n(x)\leq d_n$ for every $x\in\mathbb{R}^N$, from (A1) and since $G$ is nonnegative, from the definition of $\Psi$, we infer \begin{equation}\label{16} \Psi(w_n)\geq\int_{0}^{\frac{D}{2}}[F(\rho,d_n) +\frac{\overline{\mu}}{\overline{\lambda}}G(\rho,d_n)]\rho^{N-1}d\rho. \end{equation} So, according to \eqref{13}, \eqref{15} and \eqref{16}, we obtain \begin{align*} I_{\overline{\lambda}}(w_{n}) &\leq\frac{1}{p} d_{n}^p \omega_{N}D^N\big(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1\big) -{\overline{\lambda}}\int_{0}^{\frac{D}{2}}[F(\rho,d_n) +\frac{\overline{\mu}}{\overline{\lambda}}G(\rho,d_n)] \rho^{N-1}d\rho\\ &<\frac{1}{p}d_{n}^p \omega_{N}D^N\big(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1\big) (1-{\overline{\lambda}}\tau) \end{align*} for every $n\in \mathbb{N}$ large enough. Since $ {\overline{\lambda}}\tau >1 $ and $\lim_{n\to+\infty} d_n =+\infty$ we have $$ \lim_{n\to+\infty}I_{\overline{\lambda}}(w_{n})=-\infty\,. $$ Hence, the functional $I_{\overline{\lambda}}$ is unbounded from below, and it follows that $I_{\overline{\lambda}}$ has no global minimum. Therefore, applying Theorem \ref{thm1} we deduce that there is a sequence $\{u_n\}\subset X$ of critical points of $I_{\overline{\lambda}}$ such that $\lim_{n\to\infty}\| u_{n}\|_{ W_{r}^{1,p}(\mathbb{R}^{N})}=+\infty$. Hence, since the critical points of the functional $I_{\overline{\lambda}}$ are exactly the solutions of the problem \eqref{5}, and then they are the solutions of the problem \eqref{1}, the conclusion is achieved. \end{proof} \begin{remark}\label{rmk1} \rm We notice that instead of Assumption (A2) in Theorem \ref{thm2} we are allowed to assume the more general condition \begin{itemize} \item[(A5)] there exist two sequence $\{\alpha_n\}$ and $\{\beta_n\}$ with \[ \Big(\omega_{N}D^N(\frac{2^p}{D^p} (1-\frac{1}{2^N})+1)\Big)^{1/p}\alpha_n <\frac{\beta_n}{k} \] for every $n\in \mathbb{N}$ and $\lim_{n\to+\infty}\beta_n=+\infty$ such that \begin{align*} &\lim_{n\to +\infty}\frac{\int_{0}^{+\infty} (\sup_{| t|\leq\beta_n}F(\rho,t)) \rho^{N-1} d\rho- \int_{0}^{\frac{D}{2}}F(\rho,\alpha_{n})\rho^{N-1}d\rho}{({{\frac{ \beta_n}{k}})^{p} -\omega_{N}D^N(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1)} \alpha_{n}^p}\\ &<\frac{1}{\omega_{N} D^N (\frac{2^p}{D^p} (1-\frac{1}{2^N})+1)}\limsup_{\xi\to +\infty}\frac{\int_{0}^{\frac{D}{2}}F(\rho,\xi)\rho^{N-1}d\rho}{ \xi^p}. \end{align*} \end{itemize} Obviously, Assumption (A2) follows from Assumption (A5), by choosing $\alpha_n=0$ for all $n\in\mathbb{N}$. Moreover, if we assume (A5) instead of (A2) and set $r_n=\frac{1}{p}(\frac{ \beta_n}{k})^{p}$ for all $n\in \mathbb{N}$, by the same reasoning as in Theorem \ref{thm2}, we obtain \begin{align*} \varphi(r_n) &= \inf_{u\in\Phi^{-1}(-\infty,r_n)}\frac{(\sup_{v\in\Phi^{-1}(-\infty,r_n)}\Psi(v)) -\Psi(u)}{r_n-\Phi(u)}\\ &\leq \frac{\sup_{v\in\Phi^{-1}(-\infty,r_n)}\Psi(v)-\int_{0}^{+\infty} F(\rho,w_{n}(x))\rho^{N-1}d\rho}{r_n-\frac{1}{p}\| w_{n}\|_{ W_{r}^{1,p}(\mathbb{R}^{N})}^p }\\ &\leq \frac{\int_{0}^{+\infty}(\sup_{| t | \leq\in\xi}F(\rho,t))\rho^{N-1}d\rho-\int_{0}^{\frac{D}{2}} F(\rho,\alpha_n)\rho^{N-1}d\rho}{\frac{1}{p}({{\frac{ \beta_n}{k}})^{p}-\frac{1}{p}\omega_{N} D^N(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1)\alpha_n^p}}, \end{align*} where $w_n(x)$ is defined as given in \eqref{14}, for $x\in\mathbb{R}^N$ with $\alpha_n$ instead of $d_n$. We then have the same conclusion as in Theorem \ref{thm2} with $\lambda_2$ replaced by $$ \lambda'_{2}:=\Big(p\lim_{n\to +\infty}\frac{\int_{0}^{+\infty}(\sup_{| t|\leq\xi}F(\rho,t))\rho^{N-1} d\rho- \int_{0}^{\frac{D}{2}}F(\rho,\alpha_{n})\rho^{N-1}d\rho}{({{\frac{\beta_n}{k}})^{p} -\omega_{N}D^N(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1)} \alpha_{n}^p}\Big)^{-1} $$ \end{remark} The following result is a special case of Theorem \ref{thm2} with $\mu=0$. \begin{theorem}\label{thm3} Assume that {\rm (A1)--(A3)} hold. Then, for each \begin{align*} \lambda\in\Lambda_1 &:=\Big]\frac{\omega_{N} D^{N}(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1)}{ p\limsup_{\xi\to+\infty}\frac{\int_{0}^{\frac{D}{2}}F(\rho,\xi)\rho^{N-1}d\rho }{\xi^p}},\\ &\quad \frac{1}{pk^p\liminf _{\xi\to+\infty} \frac{\int_{0}^{+\infty}(\sup _{| t|\leq\xi} F(\rho,t)) \rho^{N-1}d\rho}{\xi^{p}} }\Big[ \end{align*} the problem \begin{equation} \label{17} -\Delta_{p}u+| u |^{p-2}u=\lambda f(| x|, u), \quad x\in \mathbb{R}^{N}, \quad u\in W_{r}^{1,p}( \mathbb{R}^{N}) \end{equation} has an unbounded sequence of symmetric solutions. \end{theorem} Here we point out the following consequence of Theorem \ref{thm3}. \begin{corollary}\label{c1} Assume that {\rm (A1)} and {\rm(A3)} hold. Also assume that: \begin{itemize} \item[(A6)] \[ \liminf_{\xi\to +\infty}\frac{\int_{0}^{+\infty}(\sup_{| t|\leq\xi} F(\rho,t))\rho^{N-1}d\rho}{\xi^{p}}<\frac{1}{pk^p}; \] \item[(A7)] \[ \limsup_{\xi\to +\infty}\frac{\int_{0}^{D/2}F(\rho,\xi)\rho^{N-1}d\rho} {\xi^p}>\frac{1}{p}\omega_{N} D^N(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1) \,. \] \end{itemize} Then the problem \[ -\Delta_{p}u+| u |^{p-2}u= f(| x|, u), \quad x\in \mathbb{R}^{N},\quad u\in W_{r}^{1,p}( \mathbb{R}^{N}) \] has an unbounded sequence of symmetric solutions. \end{corollary} \begin{remark}\label{rmk2}\rm Theorem \ref{thm1.1} is an immediately consequence of Corollary \ref{c1}. \end{remark} Now, we point out a special situation of Theorem \ref{thm3} when the nonlinear term has separable variables. To be precise, let $\alpha$ be a continuous function such that $\alpha(|x|)\geq 0$ a.e. $x\in \mathbb{R}^{N}$, $\alpha\not\equiv 0$, and let $h:\mathbb{R}\to\mathbb{R}$ be non-negative and continuous almost everywhere; namely, $m(D_{h})=0$ where $D_{h}= \{ z\in \mathbb{R}, h(z) \text{ is discontinuous at } z\}$. We also assume that for each $ \iota>0 $ there is a constant $M_{\iota}$ such that $$ \sup_{| z|\leq \iota}| h( z )|\leq M_{\iota}. $$ Put $H(t)=\int^{t}_{0}h(s)ds$, $t \in\mathbb{R}$. Then, we have the following consequence of Theorem \ref{thm2}. \begin{theorem}\label{thm4} Assume that \begin{itemize} \item[(A8)] \[ \liminf _{\xi\to+\infty} \frac{ H(\xi) }{\xi^{p}} < \frac{\int_{0}^{\frac{D}{2}}\alpha(\rho)\rho^{N-1}d\rho}{k^p\omega_{N} D^{N}(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1)( \int_{0}^{+\infty}\alpha(\rho)\rho^{N-1}d\rho)} \limsup_{\xi\to+\infty}\frac{H(\xi)}{\xi^p}; \] \item[(A9)] for all $z\in D(h)$ the condition $h^{-}( z)\leq 0\leq h^{+}( z)$ implies $h(z)=0$, where \[ h^{-}(z)={\lim_{\delta\to 0^{+}}}\operatorname{ess\,inf}_{| z-\zeta | <\delta}h(\zeta),\quad h^{+}(z)={\lim_{\delta\to 0^{+}}}\operatorname{ess\,sup}_{| z-\zeta | <\delta}h(\zeta). \] \end{itemize} Put \begin{align*} \Lambda_2&:=\Big{]}\frac{\omega_{N} D^{N}(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1)}{ p(\int_{0}^{\frac{D}{2}}\alpha(\rho)\rho^{N-1}d\rho) \limsup_{\xi\to+\infty}\frac{H(\xi) }{\xi^p}}, \\ &\quad \frac{1}{pk^p(\int_{0}^{+\infty}\alpha(\rho)\rho^{N-1}d\rho) \liminf_{\xi\to+\infty} \frac{ H(\xi)}{\xi^{p}} }\Big{[}. \end{align*} Suppose that $g:\mathbb{R}^{N}\times\mathbb{R}\to \mathbb{R}$ is an almost everywhere continuous function such that for $\delta_2 >0 $ there is a constant $M_{\delta_2}$ such that \eqref{6} holds, and satisfies (A4), whose potential $G(\rho,t)=\int^{t}_{0}g(\rho,s)ds, \ \rho\in \mathbb{R}^{+} \cup{\{0\}}, \ t \in\mathbb{R}$, is a non-negative function satisfying the condition \eqref{7}. Set $$ \mu'_{g,\lambda}:=\frac{1}{pk^{p} g_{\infty}}\Big(1-\lambda p{k}^p ( \int_{0}^{+\infty}\alpha(\rho)\rho^{N-1}d\rho)\liminf _{\xi\to+\infty} \frac{ H(\xi) }{\xi^{p}}\Big). $$ Then, for each $\lambda\in\Lambda_2$ and for every $\mu\in[0,\mu'_{g,\lambda}[$ the problem \begin{equation}\label{18} -\Delta_{p}u+| u |^{p-2}u=\lambda \alpha(| x|)h(u)+\mu g(| x|,u), \quad x\in \mathbb{R}^{N}, \quad u\in W_{r}^{1,p}( \mathbb{R}^{N}) \end{equation} has an unbounded sequence of symmetric solutions. \end{theorem} Next we give an example where the hypotheses of Theorem \ref{thm4} are satisfied. \begin{example}\label{examp1} \rm Let $2\leq N
2. \end{cases} $$ The function $h$ has only one discontinuity point at $z_{0}=2$ where $h(z_{0})=0$. Hence, the condition (A9) is satisfied. A direct calculation shows that $$ H(z)=\begin{cases} e^z-1, & z<2,\\ 0,& z=2,\\ z^{3}/3, & z>2. \end{cases} $$ Therefore, $$ \liminf_{\xi\to +\infty}\frac{\sup_{|t|\leq \xi}H(t)}{\xi^{p}}=0, \quad \limsup_{\xi\to+\infty}\frac{H(\xi)}{\xi^p}=+\infty, $$ and we observe that (A8) is fulfilled. Hence, using Theorem \ref{thm4}, the problem $$ -\Delta_{p}u+| u |^{p-2}u =\lambda \frac{h(u)}{(1+|x|^2)^2}+\mu\frac{ g_1(u)}{1+|x|^2}, \quad x\in \mathbb{R}^{N}, $$ where $$ g_1(z)=\begin{cases} e^z, & z<2,\\ 0,& z\geq2. \end{cases} $$ for every $(\lambda,\mu)\in]0,+\infty[\times[0,+\infty[$ admits an unbounded sequence of radially symmetric solutions in $W_{r}^{1,p}(\mathbb{R}^N)$. \end{example} Arguing as in the proof of Theorem \ref{thm2}, but using conclusion (c) of Theorem \ref{thm1} instead of (b), the following result holds. \begin{theorem}\label{thm5} Assume that {\rm (A1)} and {\rm(A3)} hold and \begin{itemize} \item[(B1)] \begin{align*} &\liminf_{\xi\to 0^+}\frac{\int_{0}^{+\infty}(\sup _{| t|\leq\xi} F(\rho,t))\rho^{N-1}d\rho}{\xi^{p}}\\ &< \frac{1}{k^p\omega_{N} D^{N}(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1)}\limsup_{\xi\to 0^+} \frac{\int_{0}^{\frac{D}{2}}F(\rho,\xi)\rho^{N-1}d\rho }{\xi^p} . \end{align*} \end{itemize} Put \begin{gather*} \lambda_3:=\frac{\omega_{N} D^{N}(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1)}{p\limsup_{\xi\to 0^+}\frac{\int_{0}^{\frac{D}{2}}F(\rho,\xi)\rho^{N-1}d\rho }{\xi^p}},\\ \lambda_4:=\frac{1}{pk^p\liminf_{\xi\to 0^+}\frac{\int_{0}^{+\infty}(\sup_{| t|\leq\xi} F(\rho,t))\rho^{N-1}d\rho}{\xi^{p}}}. \end{gather*} Suppose that $g:\mathbb{R}^{N}\times\mathbb{R}\to \mathbb{R}$ is continuous almost everywhere, and that for $\delta_2 >0 $ there is a constant $M_{\delta_2}$ such that \eqref{6} holds, and satisfies (A4), whose potential $G(\rho,t)=\int^{t}_{0}g(\rho,s)ds$, $\rho\in \mathbb{R}^{+} \cup{\{0\}}$, $t \in\mathbb{R}$ is a non-negative function satisfying the condition \begin{equation}\label{19} g_0:=\lim_{\xi\to 0^+}\frac{\int_{0}^{+\infty}(\sup_{| t|\leq\xi}G(\rho,t)) \rho^{N-1}d\rho}{\xi^p}<+\infty \end{equation} and set $$ \bar{\mu}_{g,\lambda}:=\frac{1}{pk^{p} g_{0}} \Big(1-\lambda p{k}^p\liminf_{\xi\to 0^+}\frac{\int_{0}^{+\infty}(\sup_{| t|\leq\xi}F(\rho,t))\rho^{N-1}d\rho}{\xi^{p}}\Big). $$ Then for each $\lambda\in]\lambda_3, \lambda_4[$ and for every $\mu\in[0,\bar{\mu}_{g,\lambda}[$, problem \eqref{1} has a sequence of symmetric solutions, which strongly converges to $0$ in $W_{r}^{1,p}(\mathbb{R}^{N})$. \end{theorem} \begin{proof} We take $X$, $\Phi$, $\Upsilon$, $j$, $\Psi$ and $I_\lambda$ as in the proof of Theorem \ref{thm2}. By a similar way as in the proof of Theorem \ref{thm2} we show that $\delta<+\infty$. For this, let $\{\xi_n\}$ be a sequence of positive numbers such that $\xi_n\to0^{+}$ as $n\to+\infty$ and $$ \lim_{n\to+\infty}\frac{\int_{0}^{+\infty} (\sup_{|t|\leq\xi_{n}}[F(\rho,t) +\frac{\mu}{\lambda}G(\rho,t)])\rho^{N-1}d\rho}{\xi_n^{p}} <+\infty. $$ Setting $r_n=\frac{1}{p}(\frac{ \xi_n}{k})^{p}$ for all $n\in \mathbb{N}$, arguing as in the proof of Theorem \ref{thm2}, it follows that $\delta<+\infty$. Fix $\lambda\in ]\lambda_3, \lambda_4[$. The functional $I_\lambda$ does not have a local minimum at zero. Indeed, let $\{d_n\}$ be a sequence of positive numbers and $\tau>0$ such that $d_n\to 0^{+}$ as $n\to \infty$ and \begin{equation}\label{20} \frac{1}{\lambda}<\tau<\frac{p}{\omega_{N}D^{N}(\frac{2^p} {D^p}(1-\frac{1}{2^N})+1)} \frac{\int_{0}^{\frac{D}{2}}[F(\rho,d_n) +\frac{\overline{\mu}}{\overline{\lambda}}G(\rho,d_n)] \rho^{N-1}d\rho}{d_{n}} \end{equation} for each $n\in\mathbb{N}$ large enough. Let $\{w_n\}$ be a sequence in $W_{r}^{1,p}(\mathbb{R}^{N})$ defined as given in \eqref{14}. According to \eqref{15}, \eqref{16} and \eqref{20}, we obtain \begin{align*} I_{\lambda}(w_n) &\leq \frac{1}{p} d_{n}^p \omega_{N} D^N\big(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1\big) -\lambda \int_{0}^{\frac{D}{2}}[F(\rho,d_n)+\frac{\mu}{\lambda}G(\rho,d_n)] \rho^{N-1}d\rho\\ &<\frac{1}{p}d_{n}^p \omega_{N} D^N\big(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1\big) (1-{\lambda}\tau)<0 \end{align*} for every $n\in \mathbb{N}$ large enough. Since $I_\lambda(0)=0$, this means the functional $I_\lambda$ does not have a local minimum at zero. Hence, the part (c) of Theorem \ref{thm1} concludes that there exists a sequence $\{u_n\}$ in $X$ of critical points of $I_\lambda$ such that $\|u_n\|_{ W_{r}^{1,p}(\mathbb{R}^{N})}\to 0$ as $n\to \infty$, and the proof is complete. \end{proof} \begin{remark}\label{rmk3}\rm Note that Assumption (B1) in Theorem \ref{thm5} could be replaced by the more general condition \begin{itemize} \item[(B2)] there exist two sequences $\{\alpha_n\}$ and $\{\beta_n\}$ with \[ \Big(\omega_{N}D^N(\frac{2^p}{D^p} (1-\frac{1}{2^N})+1)\Big)^{1/p}\alpha_n <\frac{\beta_n}{k} \] for every $n\in \mathbb{N}$ and $\lim_{n\to+\infty}\beta_n=0$ such that \begin{align*} &\lim_{n\to +\infty}\frac{\int_{0}^{+\infty}(\sup_{| t|\leq\beta_n} F(\rho,t))\rho^{N-1} d\rho- \int_{0}^{\frac{D}{2}}F(\rho,\alpha_{n})\rho^{N-1}d\rho}{({{\frac{ \beta_n}{k}})^{p} -\omega_{N}D^N(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1)} \alpha_{n}^p}\\ &<\frac{1}{\omega_{N} D^N (\frac{2^p}{D^p} (1-\frac{1}{2^N})+1)}\limsup_{\xi\to 0^+}\frac{\int_{0}^{\frac{D}{2}}F(\rho,\xi)\rho^{N-1}d\rho}{ \xi^p}. \end{align*} \end{itemize} \end{remark} \begin{remark}\label{rmk4}\rm We observe that in Theorem \ref{thm3}, Corollary \ref{c1} and Theorem \ref{thm4} by Theorem \ref{thm5} and replacing $\xi\to+\infty$ with $\xi\to 0^+$, by the same reasoning, we have the conclusions, $\xi\to+\infty$ replaced by $\xi\to 0^+$, but the sequences of symmetric solutions strongly converge to $0$ in $W_{r}^{1,p}(\mathbb{R}^{N})$, instead. \end{remark} We here give the following example to illustrate our results. \begin{example}\label{examp2} Put $N=2$ and $p=3$. Let $f:\mathbb{R}\to\mathbb{R}$ be defined by $$ f(z)=\begin{cases} 1, & (z-1)\in[0,1]\setminus C,\\ 0, & \text{otherwise} \end{cases} $$ where $C$ is the ``middle third set'' of Cantor. Clearly, $m(D_f) = m(1+C) = 0$ and for each $z\in D_f$ one has $f(z)=0$. A direct calculation shows $$ F(z)=\begin{cases} z, & (z-1)\in[0,1]\setminus C,\\ 0,& \text{otherwise}. \end{cases} $$ Therefore, \[ \liminf_{\xi\to0^+}\frac{\sup_{|t|\leq \xi}F(t)}{\xi^{3}}=0, \quad \limsup_{\xi\to0^+}\frac{F(\xi)}{\xi^3}=+\infty. \] Hence, taking Remark \ref{rmk4} into account, by the similar result to Theorem \ref{thm5}, for a fixed continuous almost everywhere function $g:\mathbb{R}^N\times\mathbb{R}\to \mathbb{R}$ satisfying the required assumptions in Theorem \ref{thm5}, the problem \[ -\Delta_{3}u+| u | u=\lambda f(u)+\mu g(|x|,u), \quad x\in \mathbb{R}^{2}, \quad u\in W_{r}^{1,3}(\mathbb{R}^{2}), \] for every $ \lambda\in]0,+\infty[$ and $\mu$ lying in a convenient interval, admits a sequence of symmetric solutions, which converges strongly to $0$ in $W_{r}^{1,3}(\mathbb{R}^{2})$. \end{example} We now consider the problem \begin{equation}\label{21} -\Delta_{p}u+| u |^{p-2}u=\lambda \alpha(x)f(u)+\mu \beta(x)g(u), \quad x\in \mathbb{R}^{N},\quad u \in W^{1,p}(\mathbb{R}^{N}) \end{equation} where $\lambda >0$ and $\mu\geq0$ are two parameters, $\alpha,\beta\in L^1(\mathbb{R}^{N})\cap L^\infty(\mathbb{R}^{N})$ are radially symmetric, $\alpha,\beta\geq 0$, $\alpha,\beta\not\equiv 0$, $f, g:\mathbb{R}\to \mathbb{R}$ are non-negative continuous almost everywhere, namely, $m(D_{f})=0$ where $D_{f}= \{z\in \mathbb{R}: f(z) \text{ is discontinuous at } z\}$, and $m(D_{g})=0$ where $D_{g}= \{ z\in \mathbb{R}, g(z) \text{ is discontinuous at } z\}$. We also assume that for each $ \iota_1>0 $ there is a constant $M_{\iota_1}$ such that \begin{equation}\label{22} \sup_{|z|\leq \iota_1}| f( z )|\leq M_{\iota_1}. \end{equation} Let $k_{\infty}$ be the embedding constant of $W^{1,p}(\mathbb{R}^{N}) \subset L^{\infty}(\mathbb{R}^{N}) $; we obtain $$ \sup_{x\in\mathbb{R}^N}|u(x)|\leq k_{\infty}\|u\|_{W^{1,p}(\mathbb{R}^{N})}, $$ and $k_{\infty}\leq 2p(p-N)^{-1}$ (see \cite{K1}). Put $$ F(t)=\int^{t}_{0}f(s)ds,\quad t \in\mathbb{R}. $$ Next we have an existence result under the following assumptions: \begin{itemize} \item[(A10)] \[ \liminf _{\xi\to+\infty} \frac{\|\alpha\|_{L^1(\mathbb{R}^N)}F(\xi)}{\xi^{p}} < \frac{\|\alpha\|_{L^1(S(0,\frac{D}{2}))}}{k_{\infty}^p \omega_{N} D^{N}(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1)} \limsup_{\xi\to+\infty}\frac{F(\xi)}{\xi^p}; \] \item[(A11)] for all $ z\in D(f) $ the condition $ f^{-} (z) \leq 0 \leq f^{+}(z) $ implies $ f(z)=0 $, where \[ f^{-}(z)={\lim_{\delta\to 0^{+}}}\operatorname{ess\,inf}_{| z-\zeta | <\delta}f(\zeta), f^{+}(z)={\lim_{\delta\to 0^{+}}}\operatorname{ess\,sup}_{| z-\zeta | <\delta}f(\zeta). \] \end{itemize} Put \begin{gather*} \lambda_5 : =\frac{\omega_{N} D^{N}(\frac{2^p}{D^p} (1-\frac{1}{2^N})+1)}{p\|\alpha\|_{L^1(S(0,\frac{D}{2}))} \limsup_{\xi\to+\infty}\frac{F(\xi)}{\xi^p}}, \\ \lambda_6:=\frac{1}{pk_\infty\|\alpha\|_{L^1(\mathbb{R}^N)} \liminf _{\xi\to+\infty} \frac{F(\xi) }{\xi^{p}}}. \end{gather*} Suppose that $g:\mathbb{R}\to \mathbb{R}$ is a non-negative continuous almost everywhere function such that for each $\iota_{2} >0 $ there is a constant $M_{\iota_{2}}$ such that \begin{equation}\label{23} \sup_{| z|\leq \iota_{2}}g( z)\leq M_{\iota_{2}}, \end{equation} \begin{itemize} \item[(A12)] for all $ z\in D(g) $ the condition $g^{-} (z) \leq 0 \leq g^{+}(z) $ implies $g(z)=0 $, where $g^{-}(z)=\lim_{\delta\to 0^{+}} \operatorname{ess\,inf}_{| z-\zeta | <\delta}g(\zeta), g^{+}(z)=\lim_{\delta\to 0^{+}} \operatorname{ess\,sup}_{| z-\zeta | <\delta}g(\zeta)$, whose potential $G(t)=\int^{t}_{0}g(s)ds, \ t \in\mathbb{R}$, is a non-negative function satisfying the condition \begin{equation}\label{24} g'_\infty:=\|\beta\|_{L^1(\mathbb{R}^N)}\lim_{\xi\to+\infty} \frac{G(\xi)}{\xi^p}<+\infty \end{equation} and set $$ \bar{\mu}'_{g,\lambda}:=\frac{1}{pk_{\infty}^{p} g'_{\infty}} \Big(1-\lambda pk_{\infty}^p \|\beta\|_{L^1(\mathbb{R}^N)} \liminf_{\xi\to +\infty}\frac{F(\xi)}{\xi^{p}}\Big). $$ \end{itemize} \begin{theorem}\label{thm6} Under assumptions {\rm (A10)--(A12)}, for each $\lambda\in]\lambda_5, \lambda_6[$ and for every $\mu\in[0,\bar{\mu}'_{g,\lambda}[$, problem \eqref{21} has an unbounded sequence of symmetric solutions in $W_{r}^{1,p}(\mathbb{R}^{N})$. \end{theorem} We remark that no symmetry requirements on the nonlinear terms $f$ and $g$ are needed. \begin{proof}[Proof of Theorem \ref{thm6}] Fix $\lambda$ and $\mu$ as in the conclusion. Take $X=W^{1,p}(\mathbb{R}^{N})$ and define the functionals \begin{gather*} \Phi(u)=\frac{1}{p}\| u \|^{p}_{W^{1,p}(\mathbb{R}^{N})},\quad \Upsilon(u)=\int_{\mathbb{R}^{N}}[\alpha(x)F(u(x)) +\frac{\mu}{\lambda}\beta(x)G(u(x))]dx,\\ j(u)=0, \quad \Psi(u)=\Upsilon(u)-j(u)=\Upsilon(u) \end{gather*} for each $u\in X$. Put $I_\lambda=\Phi-\lambda\Psi$. Clearly, the functional $\Phi$ is locally Lipschitz and weakly sequentially lower semi-continuous. Since $f$ and $g$ satisfy \eqref{22} and \eqref{23}, respectively, and $W^{1,p}_r(\mathbb{R}^N )$ is compactly embedded in $L^\infty(\mathbb{R}^N)$, the assertion remains true regarding $I_{\lambda}$ too. Moreover, like for Theorem \ref{thm2}, we obtain that any critical point $u \in W^{1,p}(\mathbb{R}^N )$ of the functional $I_{\lambda}$ is a solution of the problem \eqref{21}. Thanks to a non-smooth version of the principle of symmetric criticality introduced by Krawcewicz and Marzantowicz \cite{KM}, we can obtain any critical point of $I_\lambda^r = I_\lambda|_{W^{1,p}_ r(\mathbb{R}^N )}$ will be also a critical point of $I_\lambda$. Consider a real sequence $\{d_n\}$ such that $d_n\to +\infty$ as $n\to \infty$. Let $\{w_n\}$ be a sequence in $W^{1,p}(\mathbb{R}^N )$ defined as in \eqref{14}. It is easy to verify that $w_n \in W^{1,p}(\mathbb{R}^N )$ and it is radially symmetric. Since $0\leq w_n(x)\leq d_n$ for every $x\in\mathbb{R}^N$, and $f$ and $\alpha$ are non-negative, one has $$ \int_{S(0,D)\setminus S(0,\frac{D}{2})}\alpha(x)F(w_n(x))dx\geq 0. $$ Hence, one has \begin{align*} \int_{\mathbb{R}^N }\alpha(x)F(w_n(x))dx &=\int_{ S(0,\frac{D}{2})}\alpha(x)F(w_n(x))dx +\int_{S(0,D)\setminus S(0,\frac{D}{2})}\alpha(x)F(w_n(x))dx\\ &\geq \int_{ S(0,\frac{D}{2})}\alpha(x)F(w_n(x))dx\\ &=\omega_N(\frac{D}{2})^{N}\|\alpha\|_{L^1(S(0,\frac{D}{2}))}F(d_n). \end{align*} Then, from (A10) we have \begin{align*} \liminf _{\xi\to+\infty} \frac{\|\alpha\|_{L^1(\mathbb{R}^N)}F(\xi)}{\xi^{p}} &< \frac{\|\alpha\|_{L^1(S(0,\frac{D}{2}))}}{k_{\infty}^p \omega_{N} D^{N}(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1)} \limsup_{\xi\to+\infty}\frac{F(\xi)}{\xi^p}\\ &\leq \frac{\int_{\mathbb{R}^N }\alpha(x)dx}{k_{\infty}^p \omega_{N} D^{N}(\frac{2^p}{D^p}(1-\frac{1}{2^N})+1)} \limsup_{\xi\to+\infty}\frac{F(\xi)}{\xi^p}. \end{align*} As in Theorem \ref{thm2}, we can prove that the functional $I_{\overline{\lambda}}$ is unbounded from below, and it follows that $I_{\overline{\lambda}}$ has no global minimum. Therefore, applying Theorem \ref{thm1} we deduce that there is a sequence $\{u_n\}\subset W_{r}^{1,p}(\mathbb{R}^N )$ of critical points of $I_{\overline{\lambda}}$ such that $\lim_{n\to\infty}\| u_{n}\|_{ W_{r}^{1,p}(\mathbb{R}^{N})}=+\infty$. Hence, we have the conclusion. \end{proof} \begin{remark}\label{rmk5} \rm We also observe that in Theorem \ref{thm6} by Theorem \ref{thm5} and replacing $\xi\to+\infty$ with $\xi\to 0^+$, by the same reasoning, we have the conclusions, $\xi\to+\infty$ replaced by $\xi\to 0^+$, but the sequences of symmetric solutions strongly converge to $0$ in $W_{r}^{1,p}(\mathbb{R}^{N})$, instead. \end{remark} \begin{thebibliography}{99} \bibitem{BM1} G. Bonanno, G. Molica Bisci; \emph{A remark on perturbed elliptic Neumann problems,} Studia Univ. ``Babe\c{s}-Bolyai'', Mathematica, Volume {\bf LV}, Number 4, December 2010. \bibitem{BM2} G. Bonanno, G. Molica Bisci;; \emph{Infinitely many solutions for a boundary value problem with discontinuous nonlinearities,} Bound. Value Probl. 2009 (2009) 1-20. \bibitem{CLM} S. Carl, V. K. Le, D. Motreanu; \emph{Nonsmooth variational problems and their inequalities,} Springer Monographs in Mathematics, Springer, New York, New York, 2007. \bibitem{Ch} K. C. Chang; \emph{Variational methods for non-differential functionals and their applications to PDE,} J. Math. Anal. Appl. 80 (1981) 102-129. \bibitem{Clarke} F. H. Clarke; \emph{Optimization and Nonsmooth Analysis}, Wiley, New York, 1983. \bibitem{HKP} S. Hu, N. C. Kourogenis, N. S. Papageorgiou; \emph{Nonlinear elliptic eigenvalue problems with discontinuities,} J. Math. Anal. Appl. 233 (1999) 406-424. \bibitem{K1} A. Krist\'{a}ly; \emph{Infinitely many solutions for a differential inclusion problem in $\mathbb{R}^N$,} J. Differ. Eqs. 220 (2006) 511-530. \bibitem{K2} A. Krist\'{a}ly; \emph{Infinitely many radial and non-radial solutions for a class of hemivariational inequalities,} Rocky Mountain J. Math. 35 (2005) 1173-1190. \bibitem{KV} A. Krist\'{a}ly, Cs. Varge; \emph{On a class of quasilinear eigenvalue problems in $\mathbb{R}^N$,} Math. Nachr. 278 (2005) 1756-1765. \bibitem{KM} W. Krawcewicz, W. Marzantowicz; \emph{Some remarks on the Ljusternik–Schnirelman method for non-differentiable functionals invariant with respect to a finite group action,} Rocky Mountain J. Math. 20 (1990) 1041-1049. \bibitem{MM} S. Marano, D. Motreanu; \emph{Infinitely many critical points of non-differentiable functions and applications to the Neumann-type problem involving the $p$-Laplacian,} J. Differ. Eqs. 182 (2002) 108-120. \bibitem{Molica} G. Molica Bisci; \emph{Variational problems on the Sphere,} Recent Trends in Nonlinear Partial Differential Equations, Contemporary Math. 595 (2013) 273-291. \bibitem{MotPan} D. Motreanu, P. D. Panagiotopoulos; \emph{Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities}, Kluwer Academic Publishers, Dordrecht, 1999. \bibitem{MR} D. Motreanu, V. R\u{a}dulescu; \emph{Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems}, Nonconvex Optimization and Applications, Kluwer Academic Publishers, 2003. \bibitem{R} B. Ricceri; \emph{A general variational principle and some of its applications,} J. Comput. Appl. Math. 113 (2000) 401-410. \bibitem{W} M. Willem, \emph{Minimax Thorems,} Birkh\"{a}user, Boston, 1996. \bibitem{ZL} G. Zhang, S. Liu; \emph{Three symmetric solutions for a class of elliptic equations involving the $p$-Laplacian with discontinuous nonlinearities in $\mathbb{R}^N$,} Nonlinear Anal. TMA 67 (2007) 2232-2239. \end{thebibliography} \end{document}