\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage[compress]{cite} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 124, pp. 1--13.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/124\hfil Multiple solutions] {Multiple solutions to fourth-order elliptic problems with steep potential well} \author[L. Yang, L. Luo, Z. Luo \hfil EJDE-2015/124\hfilneg] {Liu Yang, Liping Luo, Zhenguo Luo} \address{Liu Yang \newline Department of Mathematics and Computing Sciences, Hengyang Normal University, Hengyang, 421008 Hunan, China. \newline Department of Mathematics, Hunan University, Changsha, 410075 Hunan, China} \email{yangliuyanzi@163.com} \address{Liping Luo \newline Department of Mathematics and Computing Sciences, Hengyang Normal University, Hengyang, 421008 Hunan, China} \email{luolp3456034@163.com} \address{Zhenguo Luo (corresponding author)\newline Department of Mathematics and Computing Sciences, Hengyang Normal University, Hengyang, 421008 Hunan, China} \email{robert186@163.com} \thanks{Submitted January 9, 2015. Published May 6, 2015.} \subjclass[2010]{35J50, 35J60} \keywords{Fourth-order elliptic equations; variational methods; critical point; \hfill\break\indent concentration} \begin{abstract} In this article, we are concerned with a class of fourth-order elliptic equations with sublinear perturbation and steep potential well. By using variational methods, we obtain that such equations admit at least two nontrivial solutions. We also explore the phenomenon of concentration of solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction} We consider the fourth-order elliptic problem $(P_{\lambda})$, \begin{equation} \begin{gathered} \Delta^{2}u-\Delta u +\lambda V(x)u =f(x,u)+\alpha(x)|u|^{\nu-2}u, \quad \text{in }\mathbb{R}^{N},\\ u\in H^{2}(\mathbb{R}^{N}), \end{gathered} \label{ePlambda} \end{equation} where $N\geq 5$, $\lambda>0$ a parameter, $\Delta^{2}=\Delta(\Delta)$ is the biharmonic operator, $f\in C(\mathbb{R}^{N}\times \mathbb{R},\mathbb{R})$, $\alpha(x)$ is a weight function, $1<\nu<2$, and the potential $V$ satisfies the following conditions: \begin{itemize} \item [(V1)] $V\in C(\mathbb{R}^{N})$ and $V\geq 0$ on $\mathbb{R}^{N}$; \item [(V2)] there exists $c>0$ such that the set $\{V0$ and for each $M>0$, $\operatorname{meas}\{x\in\mathbb{R}^{N}: V(x)\leq M\}<+\infty$, where $a$ is a constant and $\operatorname{meas}$ denote the Lebesgue measure in $\mathbb{R}^{N}$; \item [(V0')] $\inf_{x\in \mathbb{R}^{N}}V(x)\geq a>0$ and $V(x)\to +\infty$ as $|x|\to\infty$. \end{itemize} Under condition (V0), Yin and Wu \cite{YW} proved that \eqref{ePlambda} with $\lambda=1$ and $\alpha=0$ has infinitely many high energy solutions by using the symmetric mountain pass theorem. When $N=1$, under condition (V0'), Sun and Wu \cite{SW1} studied multiple homoclinic solutions for a class of fourth-order differential equations with a sublinear perturbation. It is worth to emphasize that the hypothesis (V0) or (V0') is used to guarantee the compact embedding of Sobolev space. However, if (V0) or (V0') is replaced by (V1)-(V2), then the compactness of the embedding fails, which will become more delicate. More recently, Liu et al. \cite{LCW} studied this case. Ye and Tang \cite{YT} improved the results of \cite{LCW} under the conditions that the nonlinearity $f$ is either superlinear or sublinear at infinity. On the other hand, conditions (V1)--(V3) imply that $\lambda V$ represents a deep potential well whose depth is controlled by $\lambda$, which are first introduced by Bartsch and Wang \cite{BW} in the study of solutions for Schr\"{o}dinger equations. From then on, these conditions have extensively been applied in the study of the existence of solutions for several types of nonlinear equations; see \cite{JZ,SW2,ZLZ}. Motivated by the above facts, in this article we study the multiplicity of nontrivial solutions for problem \eqref{ePlambda} with steep potential well. We consider the case that the nonlinearity is a combination of superlinear or asymptotically linear terms and a sublinear perturbation. As far as we know, this case seems to be rarely concerned in the literature. Our aim is to generalize the result of \cite{SW1} to fourth-order elliptic problem. In addition, the results in \cite{LCW,YT} is also improved by considering the different nonlinearity. \subsection*{Notation} Throughout this article, we denote by $|\cdot|_{r}$ the $L^{r}$-norm, $1\leq r\leq\infty$, and we use the symbols $p^{\pm}=\sup\{\pm p,0\}$ and $2^{\ast\ast}=\frac{2N}{N-4}$. Also if we take a subsequence $\{u_{n}\}$, we shall denote it again by $\{u_{n}\}$. We use $o(1)$ to denote any quantity which tends to zero when $n\to\infty$. We need the following minimization problem for each positive $k\in[1,2^{\ast\ast}-1)$, \begin{equation} \lambda_{1}^{(k)} =\inf\Big\{\Big(\int_{\Omega}(|\Delta u|^{2}+|\nabla u|^{2})dx\Big)^{\frac{k+1}{2}} :u\in H^{2}(\Omega)\cap H_{0}^{1}(\Omega), \int_{\Omega}q|u|^{k+1}dx=1\Big\},\label{e1.4} \end{equation} where $q$ is a bounded function on $\bar{\Omega}$ with $q^{+}\neq 0$. Then $\lambda_{1}^{(k)}>0$, which is achieved by some $\phi_{k}\in H^{2}(\Omega)\cap H_{0}^{1}(\Omega)$ with $\int_{\Omega}q|u|^{k+1}dx=1$ and $\phi_{k}>0$ a.e. in $\Omega$, by Fatou's Lemma and the compactness of Sobolev embedding from $H^{2}(\Omega)\cap H_{0}^{1}(\Omega)$ into $L^{k+1}(\Omega)$. Now, we give our main result. \begin{theorem} \label{thm1} Suppose that {\rm (V1)-(V3)} hold. In addition, for each $k\in[1,2^{\ast\ast}-1)$, we assume that the function $f$ and $\alpha$ satisfy the following conditions: \begin{itemize} \item [(A1)] $\alpha\in L^{\frac{\nu}{2-\nu}}(\mathbb{R}^{N})$ and $\alpha>0$ on $\Omega$; \item [(F1)] $f\in C(\mathbb{R}^{N}\times \mathbb{R})$, $f(x,s)\equiv 0$ for all $s<0$ and $x\in\mathbb{R}^{N}$. Moreover, there exists $p\in L^{\infty}(\mathbb{R}^{N})$ with $$ |p^{+}|_{\infty}<\Theta:=\frac{(S^{\ast\ast})^{2}}{|\{V0$ and $x\in \bar{\Omega}$, where $S^{\ast\ast}$ is the best constant for the embedding of $D^{2,2}(\mathbb{R}^{N})$ in $L^{2^{\ast\ast}}(\mathbb{R}^{N})$, $D^{2,2}(\mathbb{R}^{N})$ will be defined in Section 2, and $|\cdot|$ is the Lebesgue measure; \item [(F2)] there exists $q\in L^{\infty}(\mathbb{R}^{N})$ with $q^{+}\neq 0$ on $\bar{\Omega}$ such that \begin{equation*} \lim_{s\to \infty}\frac{f(x,s)}{s^{k}}=q(x) \end{equation*} uniformly in $x\in\mathbb{R}^{N}$; \item [(F3)] there exist constants $\theta>2$ and $d_{0}$ satisfying $0\leq d_{0}<\frac{(\theta-2)}{2\theta}\Theta$ such that \begin{equation*} F(x,s)-\frac{1}{\theta}f(x,s)s\leq d_{0}s^{2} \end{equation*} for all $s>0$ and $x\in\mathbb{R}^{N}$. \end{itemize} Then we have the following results: \begin{itemize} \item [(i)] If $k=1$ and $\lambda_{1}^{(1)}<1$, then there exist $M>0$ and $\Lambda>0$ such that for every $|\alpha^{+}|_{\frac{2}{2-\nu}}\in (0,M)$, problem \eqref{ePlambda} has at least two nontrivial solutions for all $\lambda>\Lambda$. \item [(ii)] If $k\in (1,2^{\ast\ast}-1)$, then there exist $M>0$ and $\Lambda>0$ such that for every $|\alpha^{+}|_{\frac{2}{2-\nu}}\in (0,M)$, problem \eqref{ePlambda} has at least two nontrivial solutions for all $\lambda>\Lambda$. \end{itemize} \end{theorem} On the concentration of solutions we have the following results. \begin{theorem} \label{thm2} Let $u^{(1)}_{\lambda}$, $u^{(2)}_{\lambda}$ be two solutions obtained by Theorem \ref{thm1}. Then for every $r\in [2,2^{\ast\ast})$, $u^{(1)}_{\lambda}\to u^{1}_{0}$ and $u^{(2)}_{\lambda}\to u^{2}_{0}$ strongly in $L^{r}(\mathbb{R}^{N})$ as $\lambda\to\infty$, where $u^{1}_{0},u^{2}_{0}\in H^{2}(\Omega)\cap H_{0}^{1}(\Omega)$ are two nontrivial solutions of the problem \begin{equation} \begin{gathered} \Delta^{2}u-\Delta u =f(x,u)+\alpha(x)|u|^{\nu-2}u, \quad \text{in } \Omega,\\ u=0\in \partial\Omega. \end{gathered} \label{ePinfty} \end{equation} \end{theorem} The article is organized as follows. In Section 2, we present some preliminaries. In Section 3 and 4, we give the proof of our main results. \section{Preliminaries} Let $D^{2,2}(\mathbb{R}^{N})$ be the completion of $C_{0}^{\infty}(\mathbb{R}^{N})$ with respect to \begin{equation*} \|u\|_{D^{2,2}}=\Big(\int_{\mathbb{R}^{N}}|\Delta u|^{2}dx\Big)^{1/2}. \end{equation*} From \cite[(1.7)]{BM}, the embedding $D^{2,2}(\mathbb{R}^{N})\hookrightarrow L^{2^{\ast\ast}}(\mathbb{R}^{N})$ is continuous, one has \begin{equation} \|u\|_{2^{\ast\ast}}\leq (S^{\ast\ast})^{-1} \Big(\int_{\mathbb{R}^{N}}|\Delta u|^{2}dx\Big)^{1/2}, \quad \forall u\in D^{2,2}(\mathbb{R}^{N}).\label{e2.1} \end{equation} Let $$ X=\big\{ u\in H^{2}(\mathbb{R}^{N}): \int_{\mathbb{R}^{N}}V(x)u^{2}(x)dx<+\infty\big\}. $$ Then $X$ is a Hilbert space with the inner product $$ \langle u,v\rangle =\int_{\mathbb{R}^{N}}(\Delta u \Delta v +\nabla u\nabla v)dx +\int_{\mathbb{R}^{N}}V(x)u(x)v(x)dx $$ and the corresponding norm $\|u\|^{2}=\langle u,u\rangle$. Note that $X\subset H^{2}(\mathbb{R}^{N})$ and $X\subset L^{r}(\mathbb{R}^{N})$ for all $r\in[2,2^{\ast\ast}]$ with the embedding being continuous. For any $p\in[2,2^{\ast\ast})$, the embeddings $X\hookrightarrow L^{p}_{\rm loc}(\mathbb{R}^{N})$ are compact. For $\lambda>0$, we also need the inner product $$ \langle u,v\rangle_{\lambda}=\int_{\mathbb{R}^{N}}(\Delta u \Delta v +\nabla u\nabla v)dx+\int_{\mathbb{R}^{N}}\lambda V(x)u(x)v(x)dx $$ and the corresponding norm $\|u\|_{\lambda}^{2}=\langle u,u\rangle_{\lambda}$. It is clear that $\|u\|\leq \|u\|_{\lambda}$ for $\lambda\geq 1$. Set $X_{\lambda}=(X,\|u\|_{\lambda})$. From (V1)--(V2), H\"{o}lder and Sobolev inequalities \eqref{e2.1}, we have \begin{equation} \begin{aligned} &\int_{\mathbb{R}^{N}}(|\Delta u|^{2}+|\nabla u|^{2}+u^{2})dx \\ &= \int_{\mathbb{R}^{N}}(|\Delta u|^{2}+|\nabla u|^{2})dx +\int_{\{V0$ and $e\in E$ with $\|e\|>\rho$. Let $\hat{c}\geq\eta$ be characterized by $$ \hat{c}=\inf_{\gamma\in\Gamma}\max_{0\leq \tau\leq 1}I(\gamma(\tau)), $$ where $\Gamma=\{\gamma\in C([0,1],E):\gamma(0)=0,\gamma(1)=e\}$ is the set of continuous paths joining $0$ and $e$. Then there exists a sequence $\{u_{n}\}\subset E$ such that $$ I(u_{n})\to \hat{c}\geq\eta \quad \text{and} \quad (1+\|u_{n}\|)\|I'(u_{n})\|_{E^{\ast}}\to 0, \text{as}\quad n\to\infty. $$ \end{theorem} In what follows, we give a lemma which ensures that the functional $J_{\lambda}$ has mountain pass geometry. \begin{lemma}\label{lem2} Suppose that {\rm (V1)--(V2)} hold. In addition, for each $k\in[1,2^{\ast\ast}-1)$, we assume that the function $f$ satisfies {\rm (F1)--(F2)}. Then there exist $M>0$, $\rho>0$ and $\eta>0$ such that \begin{equation*} \inf\{J_{\lambda}(u):u\in X_{\lambda},\|u\|_{\lambda}=\rho\}>\eta \end{equation*} for all $\lambda\geq \frac{(S^{\ast\ast})^{2}}{c}|\{V0$, from (F1)--(F2) there exists $C_{\epsilon}>0$ such that \begin{equation} F(x,s)\leq \frac{|p^{+}|_{\infty}+\epsilon}{2}s^{2} +\frac{C_{\epsilon}}{r}|s|^{r},\quad \forall s\in \mathbb{R},\label{e2.9} \end{equation} where $\max\{2, k+1\}0,M>0$ such that, for $\|u\|_{\lambda}=t_{B}>0$, \[ J_{\lambda,a}(u)\geq \frac{1}{2}\Big(1-\frac{(|p^{+}|_{\infty}+\epsilon)|\{V0 \] provided that \begin{equation*} |\alpha^{+}|_{\frac{2}{2-\nu}}0$. It is easy to see that there is $\eta>0$ such that this lemma holds. \end{proof} \begin{lemma} \label{lem3} Suppose that {\rm (V1)--(V3)} hold. In addition, for each $k\in[1,2^{\ast\ast}-1)$, we assume that the function $f$ satisfies {\rm (F1)--(F2)}. Let $\rho>0$ be as in Lemma \ref{lem2}, then we have the following results: \begin{itemize} \item [(i)] If $k=1$ and $\lambda_{1}^{(1)}<1$, then there exists $e\in X$ with $\|e\|_{\lambda}>\rho$ such that $J_{\lambda,a}(e)<0$ for every $\lambda>0$. \item [(ii)] If $k\in(1,2^{\ast\ast}-1)$, then there exists $e\in X$ with $\|e\|_{\lambda}>\rho$ such that $J_{\lambda,a}(e)<0$ for every $\lambda>0$. \end{itemize} \end{lemma} \begin{proof} (i) Since $\lambda_{1}^{(1)}<1$ and $\nu<2$, from (V3), (F1)--(F2) and Fatou's Lemma it follows that \begin{align*} \lim_{t\to+\infty}\frac{J_{\lambda}(t\phi_{1})}{t^{2}} &= \frac{1}{2}\int_{\mathbb{R}^{N}}(|\Delta \phi_{1}|^{2} +|\nabla \phi_{1}|^{2}+\lambda V\phi_{1}^{2})dx -\lim_{t\to+\infty}\int_{\mathbb{R}^{N}}\frac{F(x,t\phi_{1})}{t^{2} \phi_{1}}\phi_{1}dx\\ &\leq \frac{1}{2}\int_{\Omega}(|\Delta \phi_{1}|^{2}+|\nabla \phi_{1}|^{2})dx -\frac{1}{2}\int_{\Omega}q|\phi_{1}|^{2}dx\\ &\leq \frac{1}{2}\Big(1-\frac{1}{\lambda_{1}^{(1)}}\Big)\int_{\Omega}(|\Delta \phi_{1}|^{2}+|\nabla \phi_{1}|^{2})dx<0, \end{align*} where $\phi_{1}$ is defined in the minimum problem \eqref{e1.4}. Thus, $J_{\lambda}(t\phi_{1})\to -\infty$ as $t\to+\infty$. Hence, there exists $e\in X$ with $\|e\|_{\lambda}>\rho$ such that $J_{\lambda}(e)<0$. (ii) By (F2), $k>1$, $\nu<2$ and Fatou's Lemma, we have \begin{align*} \lim_{t\to+\infty}\frac{J_{\lambda}(t\phi_{k})}{t^{k+1}} &= -\lim_{t\to+\infty}\int_{\mathbb{R}^{N}}\frac{F(x,t\phi_{k})}{t^{k+1} \phi_{k}}\phi_{k}dx\\ &\leq -\frac{1}{k+1}\int_{\Omega}q|\phi_{k}|^{k+1}dx\\ &=-\frac{1}{k+1}<0, \end{align*} where $\phi_{k}$ is defined in minimizing problem \eqref{e1.4}. Thus, $J_{\lambda}(t\phi_{k})\to -\infty$ as $t\to+\infty$. Hence, there exists $e\in X$ with $\|e\|_{\lambda}>\rho$ such that $J_{\lambda}(e)<0$. \end{proof} \section{Proof of Theorem \ref{thm1}} First we define \begin{gather*} \alpha_{\lambda}=\inf_{\gamma\in\Gamma_{\lambda}} \max_{0\leq t\leq 1}J_{\lambda}(\gamma(t)), \\ \alpha_{0}(\Omega)=\inf_{\gamma\in\bar{\Gamma}_{\lambda}(\Omega)} \max_{0\leq t\leq 1}J_{\lambda}|_{H^{2}(\Omega)\cap H_{0}^{1}(\Omega)}(\gamma(t)), \end{gather*} where $J_{\lambda}|_{H^{2}(\Omega)\cap H_{0}^{1}(\Omega)}$ is a restriction of $J_{\lambda}$ on $H^{2}(\Omega)\cap H_{0}^{1}(\Omega)$, \begin{gather*} \Gamma_{\lambda}=\{\gamma\in C([0,1],X_{\lambda}):\gamma(0)=0,\gamma(1)=e\},\\ \bar{\Gamma}_{\lambda}(\Omega)=\{\gamma\in C([0,1],H^{2}(\Omega) \cap H_{0}^{1}(\Omega)):\gamma(0)=0,\gamma(1)=e\}. \end{gather*} Note that $$ J_{\lambda}|_{H^{2}(\Omega)\cap H_{0}^{1}(\Omega)}(u) =\frac{1}{2}\int_{\Omega}(|\Delta u|^{2}+|\nabla u|^{2})dx -\int_{\Omega}F(x,u)dx-\frac{1}{\nu}\int_{\Omega}\alpha(x)|u|^{\nu}dx, $$ and $\alpha_{0}(\Omega)$ is independent of $\lambda$. Moreover, if (F1)--(F3) hold, similar to the proofs of Lemmas \ref{lem2} and \ref{lem3}, we can conclude that $J_{\lambda}|_{H^{2}(\Omega)\cap H_{0}^{1}(\Omega)}$ also satisfies the mountain pass hypothesis in Theorem \ref{thm3}. Note that $H^{2}(\Omega)\cap H_{0}^{1}(\Omega)\subset X_{\lambda}$ for all $\lambda>0$, then $0<\eta\leq\alpha_{\lambda}\leq\alpha_{0}$ for all $\lambda\geq \frac{(S^{\ast\ast})^{2}}{c}|\{V0 \quad \text{and} \quad (1+\|u_{n}\|)\|J'_{\lambda}(u_{n})\|_{X_{\lambda}^{-1}}\to 0, \quad \text{as } n\to\infty,\label{e3.1} \end{equation} where $0<\eta\leq\alpha_{\lambda}\leq\alpha_{0}0$ such that $J_{\lambda}$ satisfies the $(C)_{\alpha}-$condition in $X_{\lambda}$ for all $\alpha\bar{\Lambda}_{0}$. \end{proposition} \begin{proof} Let $\{u_{n}\}$ be a sequence with $\alpha< D$. Then, by Lemma \ref{lem4}, $\{u_{n}\}$ is bounded in $X_{\lambda}$. Therefore, there exist a subsequence $\{u_{n}\}$ and $u_{0}$ in $X_{\lambda}$ such that \begin{equation} \begin{gathered} u_{n}\rightharpoonup u_{0} \quad\text{weakly in } X_{\lambda};\\ u_{n}\to u_{0} \quad\text{strongly in } L_{\rm loc}^{r}(\mathbb{R}^{N}), \quad \text{for } 2\leq r<2^{\ast\ast}. \end{gathered}\label{e3.2} \end{equation} Moreover, $J'_{\lambda}(u_{0})=0$. Now we show that $u_{n}\to u_{0}$ strongly in $X_{\lambda}$. Let $v_{n}=u_{n}-u_{0}$. By $\alpha\in L^{\frac{2}{2-\nu}}(\mathbb{R}^{N})$ and $\eqref{e3.2}$, we have \begin{equation} \int_{\mathbb{R}^{N}}\alpha(x)|u|^{\nu}dx\to 0.\label{e3.3} \end{equation} From (V2) it follows that \begin{equation} \begin{aligned} \int_{\mathbb{R}^{N}}v_{n}^{2}dx &= \int_{\{V\geq c\}}v_{n}^{2}dx+\int_{\{V< c\}}v_{n}^{2}dx\\ &\leq \frac{1}{\lambda c}\int_{\{V\geq c\}}\lambda Vv_{n}^{2}dx +\int_{\{V< c\}}v_{n}^{2}dx\\ &\leq \frac{1}{\lambda c}\int_{\mathbb{R}^{N}}\lambda Vv_{n}^{2}dx+o(1)\\ &=\frac{1}{\lambda c}\|v_{n}\|_{\lambda}^{2}+o(1) \end{aligned}\label{e3.4} \end{equation} Then, by H\"{o}lder and Sobolev inequalities, we have \begin{equation} \begin{aligned} \int_{\mathbb{R}^{N}}|v_{n}|^{r}dx &\leq \Big(\int_{\mathbb{R}^{N}}v_{n}^{2}dx\Big) ^{\frac{2^{\ast\ast}-r}{2^{\ast\ast}-2}} \Big(\int_{\mathbb{R}^{N}}|v_{n}|^{2^{\ast\ast}}dx\Big)^{\frac{r-2}{2^{\ast\ast}-2}}\\ &\leq\Big(\int_{\mathbb{R}^{N}}v_{n}^{2}dx\Big) ^{\frac{2^{\ast\ast}-r}{2^{\ast\ast}-2}} \Big[(S^{\ast\ast})^{-2^{\ast\ast}}\Big(\int_{\mathbb{R}^{N}}| \Delta v_{n}|^{2}dx\Big)^{2^{\ast\ast}/2}\Big]^{\frac{r-2}{2^{\ast\ast}-2}} \\ &\leq\big(\frac{1}{\lambda c}\big)^{\frac{2^{\ast\ast}-r}{2^{\ast\ast}-2}} (S^{\ast\ast})^{-\frac{2^{\ast\ast}(r-2)}{2^{\ast\ast}-2}} \|v_{n}\|_{\lambda}^{r}+o(1). \end{aligned}\label{e3.5} \end{equation} Moreover, by (F1)-(F2) and Brezis-Lieb Lemma, we have $$ J_{\lambda}(v_{n})=J_{\lambda}(u_{n})-J_{\lambda}(u_{0})+o(1)\quad \text{and}\quad J'_{\lambda}(v_{n})=o(1). $$ Consequently, from this with (F3), \eqref{e3.2} and Lemma \ref{lem1}, we obtain \begin{align*} D-K&\geq \alpha-J_{\lambda}(u_{0})\\ &\geq J_{\lambda}(v_{n})-\frac{1}{\theta}\langle J'_{\lambda}(v_{n}),v_{n}\rangle+o(1)\\ &= \frac{(\theta-2)}{2\theta}\int_{\mathbb{R}^{N}}( |\Delta v_{n}|^{2}+|\nabla v_{n}|^{2}+\lambda Vv_{n}^{2})dx\\ &\quad +\int_{\mathbb{R}^{N}} \Big(\frac{1}{\theta}f(x,v_{n})v_{n}-F(x,v_{n})\Big)dx+o(1)\\ &\geq \frac{(\theta-2)}{2\theta}\|v_{n}\|_{\lambda}^{2} -d_{0}\int_{\mathbb{R}^{N}}v_{n}^{2}dx+o(1)\\ &\geq \big(\frac{\theta-2}{2\theta}-\frac{d_{0}}{\lambda c}\big)\|v_{n}\|_{\lambda}^{2}+o(1), \end{align*} which implies that for every $\lambda>\frac{2\theta d_{0}}{c(\theta-2)}$, one has \begin{equation} \|v_{n}\|_{\lambda}^{2}\leq \frac{2\theta\lambda c(D-K)}{(\theta-2)c \lambda-2\theta d_{0}}+o(1).\label{e3.6} \end{equation} By \eqref{e2.4}, we obtain \begin{equation} \begin{aligned} \int_{\mathbb{R}^{N}}|v_{n}|^{r}dx &\leq \frac{|\{V0$ such that $u_{n}\to u_{0}$ strongly in $X_{\lambda}$ for $\lambda>\bar{\Lambda}_{0}$. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1}] By Lemmas \ref{lem2} and \ref{lem3} and Theorem \ref{thm3}, we obtain that for each \begin{equation*} \lambda> \Lambda:=\max\big\{ \frac{(S^{\ast\ast})^{2}}{c}|\{V0$ and $u_{\lambda}^{(1)}$ is a nontrivial solution for \eqref{ePlambda}. The second solution for \eqref{ePlambda} will be constructed by the local minimization. We will first show that there exists $\varphi\in X_{\lambda}$ such that $J_{\lambda}(l\varphi)<0$ for all $l>0$ small enough. Indeed, we can take $\varphi\in H^{2}(\Omega)\cap H_{0}^{1}(\Omega)$ with $\int_{\Omega}\alpha(x)|u|^{\nu}dx>0$. Using (F1), we have, for all $l>0$ small enough, \begin{equation} \begin{aligned} J_{\lambda}(l\varphi) &= \frac{l^{2}}{2}\int_{\Omega} |\Delta \varphi|^{2}+|\nabla \varphi|^{2}dx -\int_{\Omega}F(x,l\varphi)dx-\frac{1}{\nu} \int_{\Omega}\alpha(x)|l\varphi|^{\nu}dx \\ &\leq\frac{l^{2}}{2}\int_{\Omega} |\Delta \varphi|^{2} +|\nabla \varphi|^{2}dx-l^{k}\int_{\Omega}p(x)|\varphi(x)|^{k}dx -\frac{l^{\nu}}{\nu}\int_{\Omega}\alpha(x)|\varphi|^{\nu}dx\\ &<0. \end{aligned}\label{e3.10} \end{equation} It follows from that the minimum of the functional $J_{\lambda}$ on any closed ball in $X_{\lambda}$ with center $0$ and radius $R<\rho$ satisfying $J_{\lambda}(u)\geq 0$ for all $u\in X_{\lambda}$ with $\|u\|_{\lambda}=R$ is achieved in the corresponding open ball and thus yields a nontrivial solution $u_{\lambda}^{(2)}$ of problem \eqref{ePlambda} satisfying $J_{\lambda}(u_{\lambda}^{(2)})<0$ and $\|u_{\lambda}^{(2)}\|0$ and $\kappa<0$ being independent of $\lambda$ such that $J_{\lambda}(l_{0}\varphi)=\kappa$ and $\|l_{0}\varphi\|0,R_{0}>0$ and $x_{n}\in \mathbb{R}^{N}$ such that $$ \int_{B^{N}(x_{n},R_{0})}(u_{n}^{(i)}-u_{0}^{(i)})^{2}dx\geq \delta. $$ Since $|B^{N}(x_{n},R_{0})|\cap \{V< c\}\to 0$ as $x_{n}\to\infty$, by H\"{o}lder inequality, we have $$ \int_{B^{N}(x_{n},R_{0})\cap\{V< c\}}(u_{n}^{(i)}-u_{0}^{(i)})^{2}dx\to 0. $$ Consequently, \begin{equation} \begin{aligned} 0&=\|u_{n}^{(i)}\|_{\lambda_{n}}^{2}\\ &\geq\lambda_{n}c\int_{B(x_{n},R_{0})\cap \{V\geq c\}}(u_{n}^{(i)})^{2}dx\\ &=\lambda_{n}c\int_{B(x_{n},R_{0})\cap \{V\geq c\}}(u_{n}^{(i)}-u_{0}^{(i)})^{2}dx\\ &= \lambda_{n}c\Big[\int_{B(x_{n},R_{0})}(u_{n}^{(i)}-u_{0}^{(i)})^{2}dx -\int_{B(x_{n},R_{0})\cap \{V< c\}}(u_{n}^{(i)}-u_{0}^{(i)})^{2}dx\Big]\\ &\to \infty, \end{aligned}\label{e4.4} \end{equation} which contradicts \eqref{e4.3}. Therefore, $u_{n}^{(i)}\to u_{0}^{(i)}$ in $L^{r}(\mathbb{R}^{N})$ for $2\leq r< 2^{\ast\ast}$. Moreover, using (A1), H\"{o}lder inequality and $u_{n}^{(i)}\to u_{0}^{(i)}$ in $L^{2}(\mathbb{R}^{N})$, we have $$ \int_{\mathbb{R}^{N}}\alpha(x)|u_{n}^{(i)}|^{\nu}dx \to\int_{\mathbb{R}^{N}}\alpha(x)|u_{n}^{(i)}|^{\nu-2}u_{n}^{(i)}u_{0}^{(i)}dx. $$ By (F1)--(F2), we have $$ \int_{\mathbb{R}^{N}}f(x,u_{n}^{(i)})u_{n}^{(i)}dx\to \int_{\mathbb{R}^{N}}f(x,u_{n}^{(i)})u_{0}^{(i)}dx. $$ Since $\langle J'_{\lambda_{n}}(u_{n}^{(i)}),u_{n}^{(i)}\rangle =\langle J'_{\lambda_{n}}(u_{n}^{(i)}),u_{0}^{(i)}\rangle=0$, we have \begin{gather*} \|u_{n}^{(i)}\|_{\lambda_{n}}^{2} =\int_{\mathbb{R}^{N}}f(x,u_{n}^{(i)})u_{n}^{(i)}dx +\int_{\mathbb{R}^{N}}\alpha(x)|u_{n}^{(i)}|^{\nu}dx, \\ \langle u_{n}^{(i)},u_{0}^{(i)}\rangle =\int_{\mathbb{R}^{N}}f(x,u_{n}^{(i)})u_{0}^{(i)}dx +\int_{\mathbb{R}^{N}}\alpha(x)|u_{n}^{(i)}|^{\nu-2}u_{n}^{(i)}u_{0}^{(i)}dx. \end{gather*} Then by (V3) and $u_{0}^{(i)}\in H^{2}(\Omega)\cap H^{1}_{0}(\Omega)$, we have $$ \lim_{n\to\infty}\|u_{n}^{(i)}\|_{\lambda_{n}}^{2} =\lim_{n\to\infty}\langle u_{n}^{(i)},u_{0}^{(i)}\rangle_{\lambda_{n}} =\|u_{0}^{(i)}\|^{2}. $$ On the other hand, by the weakly lower semi-continuity of norm, one has $$ \|u_{0}^{(i)}\|^{2} \leq\liminf_{n\to\infty}\|u_{n}^{(i)}\|^{2} \leq\liminf_{n\to\infty}\|u_{n}^{(i)}\|_{\lambda_{n}}^{2}. $$ Hence, $u_{n}^{(i)}\to u_{0}^{(i)}$ in $X$. Using \eqref{e4.1} and the constants $\kappa,\eta$ are independent of $\lambda$, we have \begin{gather*} \frac{1}{2}\int_{\Omega}|\Delta u_{0}^{(1)}|^{2}+|\nabla u_{0}^{(1)}|^{2} -\int_{\Omega}F(x,u_{0}^{(1)})dx -\int_{\Omega}\alpha(x)|u_{0}^{(1)}|^{\nu}dx\geq\eta>0, \\ \frac{1}{2}\int_{\Omega}|\Delta u_{0}^{(2)}|^{2}+|\nabla u_{0}^{(2)}|^{2} -\int_{\Omega}F(x,u_{0}^{(2)})dx -\int_{\Omega}\alpha(x)|u_{0}^{(2)}|^{\nu}dx\leq\kappa<0, \end{gather*} which imply that $u_{0}^{(i)}\neq 0,i=1,2$ and $u_{0}^{(1)}\neq u_{0}^{(2)}$. This completes the proof. \end{proof} \subsection*{Acknowledgments} This work was supported by the Natural Science Foundation of Hunan Province (12JJ9001), by the Hunan Provincial Science and Technology Department of Science and Technology Project (2012SK3117), and by the Construct program of the key discipline in Hunan Province. \begin{thebibliography}{99} \bibitem{AL} Y. An, R. Liu; \emph{Existence of nontrivial solutions of an asymptotically linear fourth-order elliptic equation}, Nonlinear Anal. 68 (2008) 3325--3331. \bibitem{BW} T. Bartsch, Z.-Q. Wang; \emph{Existence and multiplicity results for superlinear elliptic problems on $\mathbb{R}^{N}$}, Comm. Partial Differential Equations, 20 (1995) 1725--1741. \bibitem{BM} M. Bhakta, R. Musina; \emph{Entire solutions for a class of variational problems involving the biharmonic operator and Rellich potentials}, Nonlinear Anal. 75 (2012) 3836-3848. \bibitem{CM} Y. Chen, P. McKenna; \emph{Travelling waves in a nonlinearly suspended beam:theoretical results and numerical observations}, J. Differential Equations, 136 (1997) 325--355. \bibitem{CER} P. Coullet, C. Elphick, D. Repaux; \emph{Nature of spatial chaos}, Phys. Rev. Lett. 58 (1987) 431--434. \bibitem{E} I. Ekeland; \emph{Convexity Methods in Hamiltonian Mechanics}, Springer, 1990. \bibitem{HW} S. Hu, L. Wang; \emph{Existence of nontrivial solutions for fourth-order asmptotically linear elliptic equations}, Nonlinear Anal. 94 (2014) 120--132. \bibitem{JZ} Y. Jiang, H. Zhou; \emph{Schr\"{o}dinger-Poisson system with steep potential well}, J. Differential Equations, 251 (2011) 582--608. \bibitem{LMN} J. Lega, J. Moloney, A. Newell; \emph{Swift-Hohenberg for lasers}, Phys. Rev. Lett. 73 (1994) 2978--2981. \bibitem{LCW} J. Liu, S. Chen, X. Wu; \emph{Existence and multiplicity of solutions for a class of fourth-order elliptic equations in $\mathbb{R}^{N}$}, J. Math. Anal. Appl. 395 (2012) 608--615. \bibitem{LW} Y. Liu, Z. P. Wang; \emph{Biharmonic equations with asymptotically linear nonlinearities}, Acta Math. Sci. 27B (2007) 549--560. \bibitem{SW} S. Santra, J. Wei; \emph{Homoclinic solutions for fourth order travelling wave equations}, SIAM J. Math. Anal. 41 (2009) 2038-2056. \bibitem{SB} D. Smets, J. C. van den Berg; \emph{Homoclinic solutions for Swift-Hohenberg and suspension bridge type equations}, J. Differential Equations, 184 (2002) 78--96. \bibitem{SW1} J. Sun, T. F. Wu; \emph{Two homoclinic solutions for a nonperiodic fourth order differential equation with a perturbation}, J. Math. Anal. Appl. 413 (2014) 622--632. \bibitem{SW2} J. Sun, T. F. Wu; \emph{Ground state solutions for an indefinite Krichhoff type problem with steep potential well}, J. Differential Equations, 256 (2014) 1771--1792. \bibitem{SW3} J. Sun, T. F. Wu; \emph{Multiplicity and concentration of homoclinic solutions for some second order Hamiltonian systems}, Nonlinear Anal. 114 (2015) 105--115. \bibitem{YT} Y. Ye, C. L. Tang; \emph{Existence and multiplicity of solutions for fourth-order elliptic equations in $\mathbb{R}^{N}$}, J. Math. Anal. Appl. 406 (2013) 335--351. \bibitem{YW} Y. Yin, X. Wu; \emph{High energy solutions and nontrivial solutions for fourth-order elliptic equations}, J. Math. Anal. Appl. 375 (2011) 699-705. \bibitem{ZW} J. Zhang, Z. Wei; \emph{Infinitely many nontrivial solutions for a class of biharmonic equations via variant fountain theorems}, Nonlinear Anal. 74 (2011) 7474--7485. \bibitem{ZLZ} L. Zhao, H. Liu, F. Zhao; \emph{Existence and concentration of solutions for the Schr\"{o}dinger-Poisson equations with steep potential well}, J. Differential Equations, 255 (2013) 1--23. \end{thebibliography} \end{document}