\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage[compress]{cite} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 125, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/125\hfil Existence and multiplicity of solutions] {Existence and multiplicity of solutions for sublinear ordinary differential equations at resonance} \author[C. Li, F. Chen \hfil EJDE-2015/125\hfilneg] {Chengyue Li, Fenfen Chen} \address{Chengyue Li \newline Department of Mathematics, Minzu University of China, Beijing 100081, China} \email{cunlcy@163.com} \address{Fenfen Chen \newline Department of Mathematics, Minzu University of China, Beijing 100081, China} \email{chenfenfen359@163.com} \thanks{Submitted February 5, 2015. Published May 6, 2015.} \subjclass[2010]{58E05, 34C37, 70H05} \keywords{Sublinear potential; $Z_2$ type index theorem; critical point; resonance; \hfill\break\indent Hamiltonian system} \begin{abstract} Using a $Z_2$ type index theorem, we show the existence and multiplicity of solutions for the sublinear ordinary differential equation $$ \mathcal{L} u(t)=\mu u(t)+W_u(t,u(t)),\quad 0\leq t\leq L $$ with suitable periodic or boundary conditions. Here $\mathcal{L}$ is a linear positive selfadjoint operator, $\mu$ is a parameter between two egienvalues of this operator, and $W_u$ is the gradient of a potential function. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} In the study of physical, chemical and biological systems, many ordinary differential equation models can be set in the form \begin{equation} \mathcal{L} u(t)=\mu u(t)+W_u(t,u(t)),\quad 0\leq t\leq L, \label{eP} \end{equation} (cf. \cite{c3,c4,g1,l1,l2,m1,r1,r2,s1,t1,t2} and their references) where $\mathcal{L}$ is a linear positive selfadjoint operator on $L^2([0,L],\mathbb{R}^{n})$, $\mu$ is a real parameter, the potential $W(t,u): \mathbb{R}\times \mathbb{R}^{n} \to R $ is a $C^{1}$-function, and $W_u(t,u)=\partial W / \partial u$ denotes the gradient of $W(t,u)$ with respect to the variable $u$. We say that \eqref{eP} is sublinear if $W$ satisfies $\lim_{| u | \to \infty}W(t,u)/| u |^2=0$. Throughout this article, $\| \cdot \| _{L^{q}}$ denotes the norm of the usual space $L^{q} := L^{q}([0,L],\mathbb{R}^{n})$ with $1\leq q \leq\infty $, and we always assume that, for an appropriate Hilbert space $(X,\| \cdot \|)\subset L^2$ with the corresponding inner product $\langle \cdot ,\cdot \rangle$, solutions of \eqref{eP} are exactly the critical points of the corresponding functional \begin{equation} \label{e1.1} \Phi (u)=I(u)-J(u), \quad u \in X \end{equation} where \begin{equation} \label{e1.2} I(u)=\frac{1}{2}(\| u \| ^2-\mu \| u \| ^2_{L^2}), \quad J(u)=\int_{0}^{L} W(t,u(t))dt, \end{equation} the problem \begin{equation} \label{e1.3} \mathcal{L} u(t)=\lambda u(t), \end{equation} has eigenvalues $0<\lambda _{1} < \lambda _2 < \lambda _{3} < \dots \to \infty$, the corresponding eigenspaces $ \mathcal{N} _j=\{ v_j \}$ $(j \geq 1)$ have finite dimensions. For simplicity, we first consider the case of dim $\mathcal{N} _j=1$ for all $j \geq 1$, and more general case shall be discussed later. Further, we assume that there exists some $k \in N$ such that $\mu \in [\lambda_{k},\lambda_{k+1})$. One says \eqref{eP} is at resonance if $\mu = \lambda _{k}$, and \eqref{eP} is sublinear. Now we can state our main result as follows. \begin{theorem} \label{thm1} Suppose that $(X,\| \cdot \|)\subset L^2$ is a Hilbert space, continuously embedded into $L^{q}$ for all $q \in [1,\infty ]$, and $\{ v_j (t) \}$ is an orthogonal basis in $X$ and $L^2$ such that \begin{equation} \label{e1.4} \| v_j(t) \| ^2 =1=\lambda _j \| v_j(t) \| ^2 _{L^2}, \quad \forall j \geq 1. \end{equation} Furthermore, assume that the functional $J(u)\in C^{1}(X,R)$ satisfies $J(0)=0$, $J'(u)$ is a compact operator, and \begin{itemize} \item[(J1)] $J(u)=J(-u)$ for all $u \in X$, \item[(J2)] there exists $K>0$ such that $| J'(u)w | \leq K \| w \| _{L^{1}}$ for all $u,w \in X$, \item[(J3)] there exist $p \in N,M>0,\rho >0$ such that $M>\lambda_{k+p} -\lambda_{k}$ , and \[ J(u)\geq \frac{1}{2} M \| u \| ^2_{L^2} \quad \text{for } \| u \| _{L^{\infty}} \leq \rho, \] \item[(J4)] $J(u) \to \pm \infty$ if $u \in \mathcal{N} _j$ for all $j \geq 1$, and $\| u \| \to \infty$. \end{itemize} Then, there exist at least $p$ distinct pairs $(u,-u)$ of critical points of $\Phi(u)$. If $\mu \in (\lambda _{k},\lambda_{k+1})$, then {\rm (J4)} can be ommitted. \end{theorem} The above theorem will be proved using the following $Z_2$ type index theorem. \begin{theorem}[\cite{c1}] \label{thm2}. Let $Y$ be a Banach space, and $f \in C^{1}(Y,R)$ be even satisfying the Palais-Smale condition. Suppose that: (i) there exist a subspace $V$ of $Y$ with $\operatorname{dim}V=r$ and $\delta >0$ such that $\sup_{w \in V,\| w \| =\delta} f(w)- \infty $. Then $f$ possesses at least $r-s$ distinct pairs $(u,-u)$ of critical points. \end{theorem} For the convenience of the reader, let us recall that the functional $f$ is said to satisfy the Palais-Smale condition: if any sequence $\{ u_j \} $ in $Y$ be such that $f(u_j)$ is bounded and $f'(u_j)\to 0$, possesses a convergent subsequence. This article is organized as follows. In Section 2, we prove some lemmas for the functional $\Phi (u)$ defined by \eqref{e1.1}. In section 3, the proof of Theorem \ref{thm1} and its some extensions shall be given. Section 4 is devoted to apply Theorem \ref{thm1} to sublinear Hamiltonian systems as well as Extended Fisher-Kolmogorov type equations, and the existence and multiplicity results of their solutions shall be obtained. \section{Preliminaries} In this section, we shall study the properties of the functionals $\Phi (u), I(u), J(u)$ defined in \eqref{e1.1}-\eqref{e1.2}. With the hypotheses of Theorem \ref{thm1}, for all $u \in X$,we can write $u=\sum_{j=1}^{\infty} \alpha_j v_j$, thus $\| u \|^2=\sum_{j=1}^{\infty} \alpha_j^2$, and \begin{equation} \label{e2.1} I(u)=\frac{1}{2}\sum_{j=1}^{\infty} \alpha_j^2[1-\mu \int_{0}^{L}| v_j |^2dt] =\frac{1}{2}\sum_{j=1}^{\infty}(1-\frac{\mu}{\lambda_j})\alpha_j^2. \end{equation} \smallskip \noindent\textbf{Case (i).} If $\mu =\lambda _{k}$, then we set \begin{gather} \label{e2.2} u^{+}=\sum_{j=k+1}^{\infty}\alpha_j v_j,\quad u^{0}=\alpha_{k} v_{k},\quad u^{-}=\sum_{j=1}^{k-1} \alpha_j v_j,\\ \label{e2.3} \begin{gathered} X^{+}=\operatorname{span}\{v_j: j\geq k+1 \},\quad X^{-}=\operatorname{span}\{v_j: 1 \leq j \leq k-1 \},\\ X^{0}=\mathcal{N} _{k}=\operatorname{span}\{v_{k}\}. \end{gathered} \end{gather} Thus, we have $u= u^{+}+u^{0}+u^{-},X= X^{-} \oplus X^{0} \oplus X^{+}$. \smallskip \noindent\textbf{Case (ii).} If $\lambda _{k} < \mu < \lambda_{k+1}$, then we let \begin{gather} \label{e2.4} u^{+}=\sum_{j=k+1}^{\infty}\alpha_j v_j,\quad u^{-}=\sum_{j=1}^{k} \alpha_j v_j, \\ \label{e2.5} X^{+}=\operatorname{span}\{v_j: j\geq k+1 \},\quad X^{-} =\operatorname{span}\{v_j: 1 \leq j \leq k \}, \end{gather} so we have $u= u^{+}+u^{-}$, $X= X^{+} \oplus X^{-}$. \begin{lemma} \label{lem1} Under the assumptions of Theorem \ref{thm1}, there exists a norm $\| \cdot \|_{*}$ of $X$, equivalent with $\| \cdot \|$, such that \[ I(u)=\frac{1}{2}(\| u^{+} \| ^2_{*}-\| u^{-} \| ^2_{*}). \] \end{lemma} \begin{proof} Without loss of generality, we only consider the case $\mu= \lambda _{k}$ in the following. Thus \begin{gather} \begin{aligned} \Big(1-\frac{\lambda_{k}}{\lambda_{k+1}}\Big)\| u^{+}\|^2 &=\Big(1-\frac{\lambda_{k}}{\lambda_{k+1}}\Big) \sum_{j=k+1}^{\infty}\alpha_j^2\\ &\leq \sum_{j=k+1}^{\infty}\Big(1-\frac{\lambda_{k}}{\lambda_j}\Big) \alpha_j^2\\ &\leq \sum_{j=k+1}^{\infty} \alpha_j^2=\| u^{+} \|^2, \end{aligned} \label{e2.6}\\ \begin{aligned} \Big(\frac{\lambda_{k}}{\lambda_{k-1}}-1\Big)\| u^{-}\|^2 &=\Big(\frac{\lambda_{k}}{\lambda_{k-1}}-1\Big)\sum_{j=1}^{k-1}\alpha_j^2\\ &\leq \sum_{j=1}^{k-1}\Big(\frac{\lambda_{k}}{\lambda_j}-1\Big)\alpha_j^2\\ &\leq \frac{\lambda_{k}}{\lambda_{1}}\sum_{j=1}^{k-1} \alpha_j^2=\frac{\lambda_{k}}{\lambda_{1}}\| u^{-}\|^2. \end{aligned} \label{e2.7} \end{gather} Let \begin{equation} \label{e2.8} \| u\|_{*}^2=\sum_{j=1}^{k-1}\Big(\frac{\lambda_{k}}{\lambda_j}-1\Big) \alpha_j^2+\sum_{j=k+1}^{\infty}\Big(1-\frac{\lambda_{k}}{\lambda_j}\Big)\alpha_j^2+ \alpha_{k}^2 \,. \end{equation} Clearly, $\| \cdot \| _{*}$ is a norm on $X$, and is equivalent with the norm $\| \cdot \|$. The corresponding inner product is \begin{equation} \label{e2.9} \langle u,w\rangle_{*}=\sum_{j=1}^{k-1} \Big(\frac{\lambda_{k}}{\lambda_j}-1\Big)\alpha_j \beta_j + \sum_{j=k+1}^{\infty}\Big(1-\frac{\lambda_{k}}{\lambda_j}\Big)\alpha_j \beta_j +\alpha_{k} \beta_{k}, \end{equation} where $u=\sum_{j=1}^{\infty} \alpha_j v_j$, $w=\sum_{j=1}^{\infty} \beta_j v_j \in X$. Consequently, according to \eqref{e2.1} and \eqref{e2.8}, one obtains \begin{equation} \label{e2.10} I(u)=\frac{1}{2}(\| u^{+} \| ^2_{*}-\| u^{-} \| ^2_{*})\,. \end{equation} Then \begin{equation} \label{e2.11} \Phi'(u)w=\langle u^{+},w\rangle_{*}-\langle u^{-},w\rangle_{*}-\int_{0}^{L} W_u(t,u)w\,\mathrm{d}t,\quad \forall u,w \in X. \end{equation} Finally, we point out that, in the nonresonant case of $\lambda _{k} < \mu < \lambda _{k+1}$, \eqref{e2.8} and \eqref{e2.9} should be replaced by \begin{gather} \| u\|_{*}^2=\sum_{j=1}^{k}\Big(\frac{\mu}{\lambda_j}-1\Big) \alpha_j^2+\sum_{j=k+1}^{\infty}\Big(1-\frac{\mu}{\lambda_j}\Big)\alpha_j^2 , \label{e2.8'}\\ \langle u,w\rangle_{*}=\sum_{j=1}^{k}\Big(\frac{\mu}{\lambda_j}-1\Big)\alpha_j \beta_j + \sum_{j=k+1}^{\infty}\Big(1-\frac{\mu}{\lambda_j}\Big)\alpha_j \beta_j , \label{e2.9'} \end{gather} respectively. The proof is complete. \end{proof} \begin{lemma} \label{lem2} Under the assumptions of Theorem \ref{thm1}, the functional $\Phi (u)$ satisfies the Palais-Smale condition on $X$. \end{lemma} \begin{proof} We shall use the idea given by Rabinowitz \cite[Theorem 4.12]{r3} and Costa \cite[Proposition 3.2]{c2} for a PDE existence problem. Let $\{ u_j \} \subset X$ be such that $\Phi (u_j)$ is bounded, and $\Phi'(u_j)\to 0$. We shall prove $\{ u_j \}$ has a convergent subsequence. Setting $u_j= u^{+}_j+u^{0}_j+u^{-}_j$ with $ u^{+}_j \in X^{+}$, $u^{0}_j \in X^{0}$, $u^{-}_j \in X^{-}$ for all $j\geq 1$. For $j$ sufficiently large, we have \begin{equation} \| u^{\pm}_j \|_{*} \geq \Phi'(u_j)u^{\pm}_j =\langle u^{+}_j,u^{\pm}_j\rangle_{*}-0$ coming from the continuous embedding $L^{1}\to (X,\| \cdot \|)\to (X,\| \cdot \|_{*})$. Combining \eqref{e2.12pm} with $+$ in the exponents, and \eqref{e2.13pm} with $+$ in the exponents, we obtain \begin{equation} \label{e2.14} \| u^{+}_j \|_{*} \geq \| u^{+}_j \|_{*}^2-K_{1}\| u^{+}_j \|_{*} , \end{equation} thus, $\{ u_j^{+} \}$ is bounded on $X$. Similarly, we also deduce that $\{ u_j^{-} \}$ is bounded. Therefore, there exists $d>0$ such that \begin{gather} \label{e2.15} \| u_j-u_j^{0} \|_{*} = \| u_j^{+}+u_j^{-} \|_{*} \leq d, \\ \begin{aligned} \Big| J(u_j)-J(u^{0}_j) \Big| &= \Big| \int_{0}^{1} \frac{d}{dt}J((1-t)u^{0}_j+tu_j)dt \Big|\\ &= \Big| \int_{0}^{1} J'((1-t)u^{0}_j+tu_j)(u_j-u^{0}_j)dt \Big| \\ &\leq K\| u_j-u^{0}_j \| _{L^{1}} \leq K_{1}\| u_j-u^{0}_j \| _{*} \\ &\leq K_{1}d, \end{aligned} \label{e2.16} \end{gather} which together with \[ J(u^{0}_j)=\frac{1}{2}(\| u^{+}_j \| ^2_{*}-\| u^{-}_j \| ^2_{*}) -\Phi(u_j)-[J(u_j)-J(u_{0})] \] yields $J(u^{0}_j)$ is bounded. By (J4), we get $\{ u^{0}_j \}$ is bounded. Thus $\{ u_j \}$ is bounded on $X$. It should be noted that the gradient of $\Phi(u)$, $\nabla \Phi(u): X \to X$ satisifes \begin{equation} \label{e2.17} \nabla \Phi(u)=u- G(u) \end{equation} with $G(u):X \to X$ being a compact operator defined by \[ \langle G(u),z\rangle =\mu \int_{0}^{L}u(t)z(t)dt+J'(u)z, \quad u,z \in X. \] From the boundedness of $\{ u_j \} $ and \eqref{e2.17}, we infer that $\{ u_j \}$ has at least one convergent subsequence on $X$. So the Palais-Smale condition holds. \end{proof} \begin{lemma} \label{lem3} Under the hypotheses of Theorem \ref{thm1}, the functional $\Phi(u)$ is bounded from below on $X^{+}$. \end{lemma} \begin{proof} From (J2), we have the estimate \begin{equation} \label{e2.18} J(u)=\int_{0}^{1}\frac{d}{dt}J(tu)dt =\int_{0}^{1}J'(tu)u\,dt \leq K \| u \| _{L^{1}} \leq K_{1} \| u \| _{*}, \quad \forall u \in X. \end{equation} Then for $u\in X^{+}$, we infer that \begin{equation} \label{e2.19} \Phi (u)=\frac{1}{2} \| u \| ^2_{*}-J(u) \geq \frac{1}{2} \| u \| ^2_{*} - K_{1} \| u \|_{*} \to \infty \quad (\| u \|_{*} \to \infty). \end{equation} Namely, $\Phi (u)$ is coercive and bounded from below on $X^{+}$. \end{proof} \begin{lemma} \label{lem4} Under the assumptions of Theorem \ref{thm1}, there exists a subspace $V$ of $X$ with $\dim V=k+p$ and $\widetilde{\rho} >0$ such that $\sup_{u \in V,\| u \| =\widetilde{\rho}} \Phi(u) <0$. \end{lemma} \begin{proof} Put \begin{gather} V = \Big\{ u=\sum _{j=1}^{k+p} \alpha_j v_j: \alpha_j \in \mathbb{R} \; (1 \leq j \leq k+p) \Big\}, \label{e2.20} \\ Z = \Big\{ u \in V: \sum _{j=1}^{k+p} \alpha_j^2=\widetilde{\rho}^2 \Big\}, \label{e2.21} \end{gather} where $\widetilde{\rho}=\rho/ (c_{\infty} \sqrt{k+p})$, $c_{\infty}$ satisfies $\| z \| _{L^{\infty}} \leq c_{\infty} \| z \|$ for all $ z \in X$. For each $u(t)=\sum _{j=1}^{k+p} \alpha_j v_j(t)\in Z$, we have by Cauchy-Schwarz inequality \begin{equation} \label{e2.22} | u(t) |^2 \leq \Big(\sum_{j=1}^{k+p} | v_j(t) |^2\Big) \Big(\sum _{j=1}^{k+p} \alpha_j^2\Big) \leq (k+p)c^2_{\infty} \widetilde{\rho}^2=\rho^2, \end{equation} using $\| v_j \| _{L^{\infty}} \leq c_{\infty}\| v_j \|=c_{\infty}$ for all $j \geq 1$. Hence \begin{align*} \Phi(u)&= \frac{1}{2} \| u \| ^2 -\frac{\mu}{2}\| u \| ^2_{L^2}-J(u) \\ &\leq \frac{1}{2} \| u \| ^2 -\frac{\mu +M}{2}\| u \| ^2_{L^2} \\ &= \frac{1}{2}\sum _{j=1}^{k+p} \alpha_j^2-\frac{\mu +M}{2}\sum _{j=1}^{k+p} \frac{1}{\lambda_j}\alpha_j^2\\ &=\frac{1}{2}\sum _{j=1}^{k+p}\frac{\lambda_j-\mu -M}{\lambda_j}\alpha_j^2 \\ & \leq \frac{1}{2}(\lambda_{k+p}-\lambda_{k} -M) \sum _{j=1}^{k+p}\frac{\alpha _j^2}{\lambda_j}<0, \end{align*} which implies $\sup \{ \Phi(u): u \in Z \} <0$. \end{proof} \section{Proof and extension of Theorem \ref{thm1}} \subsection*{Proof of Theorem \ref{thm1}} With the aid of Lemmas \ref{lem2}-\ref{lem4} , by Theorem \ref{thm2}, we conclude that $\Phi(u)$ \eqref{e1.1} possesses at least $p$ distinct pairs $(u_{i},-u_{i})$ of critical points. \begin{corollary} \label{coro1} Under the assumptions of Theorem \ref{thm1}, if condition {\rm (J3)} is replaced by \begin{itemize} \item[(J3')] $ \lim_{| u | \to 0} \frac{W(t,u)}{| u | ^2} = \infty$ uniformly in $t \in [0,L]$, \end{itemize} then the functional $\Phi(u)$ defined in \eqref{e1.1} has infinitely many distinct pairs $(u,-u)$ of critical points. \end{corollary} \begin{proof} For any fixed $p \in N$, we may take $M$ large enough such that $M>\lambda_{k+p} -\lambda_{k}$. By (J3'), there exists $\rho$ sufficiently small satisfying \begin{equation} \label{e3.1} W(t,w)\geq \frac{1}{2} M | w |^2,\quad \forall w \in \mathbb{R}^{n},\; | w | \leq \rho \end{equation} uniformly in $t\in [0,L]$. Thus, if $u=u(t) \in X $ with $ \| u \|_{L^{\infty}} \leq \rho $, then \begin{equation} \label{e3.2} W(t,u(t))\geq \frac{1}{2} M | u(t) |^2 \end{equation} uniformly in $t\in [0,L]$, and one obtains \begin{equation} \label{e3.3} J(u)\geq \frac{1}{2} M \| u \|^2_{L^2}. \end{equation} Therefore, in view of Theorem \ref{thm1}, the functional $\Phi(u)$ has at least $p$ distinct pairs $(u_{i},-u_{i})$ of critical points $(1\leq i \leq p)$. Since $p$ is arbitrary, there exist infinitely many distinct pairs $(u_{i},-u_{i})$ of critical points of $\Phi(u)$ $(i=1,2,3,\dots)$. \end{proof} \begin{remark} \label{rmk1} \rm For all $\beta \in (0,1/2)$, $\gamma \in (0,1)$, we can take a function $H(s) \in C^{1}([0,\infty),R)$ such that \begin{gather} s^{1+2\beta} \leq H(s) \leq s^{1+\beta},\quad \forall s\in [0,1], \label{e3.4}\\ -\frac{1}{8} s^{\gamma -1} \leq H'(s) \leq \frac{1}{8} s^{\gamma -1} \ quad \forall s\in [2,\infty), \label{e3.5}\\ H(s)\to \pm \infty \quad \text{as }s\to \infty. \label{e3.6} \end{gather} Define $W(t,u)=H(| u |)((\sin t)^{2m}+2),m \geq 1$. A straightforward computation shows that \eqref{e3.4} and \eqref{e3.5} imply (J1)--(J3). In addition, (J4) can be easily deduced by \eqref{e3.6}, see \cite[Lemma 4.21]{r3}. \end{remark} From a carefully analyzing the constructions of $V$ and $Z$ in \eqref{e2.20}-\eqref{e2.21}, we have the following result which is more general than Theorem \ref{thm1}. \begin{theorem} \label{thm3} Suppose that $(X,\| \cdot \|)\subset L^2$ is a Hilbert space, continuously embedded in $L^{q}, \forall q \in [1,\infty]$. Let $n_j=$ dim $\mathcal{N} _j$ and ${\{ v_{j1},v_{j2},\dots,v_{jn_j} \}}$ be an orthogonal basis of $\mathcal{N} _j(\forall j \geq 1)$ such that ${\{ v_{ji}(t):j\geq 1,1\leq i\leq n_j \}}$ is an orthogonal basis in $X$ and $L^2$ with \[ \| v_{ji}(x) \| ^2=1=\lambda _j \| v_{ji}(x) \| ^2_{L^2}, \quad \forall j \geq 1,1\leq i \leq n_j. \] Furthermore, assume that the functional $J(u) \in C^{1}(X,R)$ satisfies $J(0)=0$, $J'(u)$ is a compact operator, and {\rm (J1)-(J4)} hold. Then, there exist at least $\sum_{j=k+1}^{k+p}n_j$ distinct pairs $(u,-u)$ of critical points of $\Phi (u)$ (If $\mu \in (\lambda_{k},\lambda_{k+1})$, then {\rm (J4)} can be omitted). \end{theorem} To prove this theorem, we need only changes in Lemmas \ref{lem1} and \ref{lem4}. Especially, $V,Z$ in \eqref{e2.20}-\eqref{e2.21} shall be replaced by \begin{gather} \widetilde V = \big\{ u=\sum_{j=1}^{k+p}\sum_{i=1}^{n_j}\alpha_{ji}v_{ji}: \alpha_{ji} \in \mathbb{R}\; (1 \leq j \leq k+p,1 \leq i \leq n_j) \big\}, \\ \widetilde Z = \big\{ u \in \widetilde V : \sum_{j=1}^{k+p}\sum_{i=1}^{n_j}\alpha_{ji}^2 = \widetilde \rho^2 \big\}, \end{gather} respectively. \section{Applications} \noindent\textbf{Application i.} Given $T>0$, we discuss the existence of $T$-periodic solutions to the second-order Hamiltonian system \begin{equation} \ddot u(t) + \mu u(t)+ W_u(t,u(t)) =0, \quad t \in \mathbb{R}, \label{HS} \end{equation} where $W(t,u) \in C^{1}(R \times \mathbb{R}^{n},R)$ is a $T$-periodic function in the variable $t$ and $W(t,0)\equiv 0$. Since 1973, many authors studied periodic solutions for Hamiltonian systems via critical point theory. Clarke and Ekeland \cite{c3} studied a family of convex sublinear Hamiltonian systems where $W(t,u)=W(u)$ satisfies $\lim_{| u | \to 0} \frac{W(t,u)}{| u | ^2}=\infty$, and they used the dual variational method to obtain the first variational result on periodic solutions having a prescribed minimal period. Later, Mawhin and Willem \cite{m1} made a good improvement. Rabinowitz \cite{r1,r2}, Tang \cite{t1} and others proved the existence under the sublinear condition $uW_u(t,u) \leq \alpha W(t,u) (0<\alpha <2)$, which plays an important role. Schechter \cite{s1} assumed that $W(t,u)$ is sublinear, and $2W(t,u)-uW_u(t,u) \to - \infty (| u | \to \infty )$ or $2W(t,u)-uW_u(t,u) \leq W_{0}(t)$, then he proved that \eqref{HS} has one non-constant periodic solution. Long \cite{l2} also studied this problem for bi-even sublinear potentials, and got the existence of one odd periodic solution. Li-Wang-Xiao \cite{l1} considered the existence and multiplicity of odd periodic solution for bi-even sublinear \eqref{HS} in the case of $\mu < \lambda_{1}$. Motivated by the above papers, using Theorem \ref{thm3}, we shall give a multiplicity result for \eqref{HS} with sublinear potentials in the case of $\lambda_{k} \leq \mu < \lambda_{k+1}$. \begin{theorem} \label{thm4} Assume that $L=T/2$, and there exists some $k \in N$ such that $(\frac{k \pi }{L})^2 \leq \mu <(\frac{(k+1) \pi }{L})^2$. Let $W(t,u)\in C^{1}(R \times \mathbb{R}^{n},R)$ be $T$-periodic in $t$, and bi-even, namely \[ W_u(t,u)=-W_u(-t,-u),\quad \forall t \in \mathbb{R},\; u \in \mathbb{R}^{n}. \] Suppose that \begin{itemize} \item[(W11)] $W(t,u)=W(t,-u)$ for all $t \in \mathbb{R}$, $u \in \mathbb{R}^{n}$; \item[(W12)] there exists $K>0$ such that $| W_u(t,u) | \leq K$ for all $t \in \mathbb{R}$, $u \in \mathbb{R}^{n}$; \item[(W13)] there exist $p \in N$, $M>0$, $\rho >0$ such that if $M>\frac{p(p+2k)}{L^2} \pi^2$ then \[ W(t,u)\geq \frac{1}{2} M | u | ^2 \quad \forall t \in \mathbb{R}, | u | \leq \rho ; \] \item[(W14)] for $u=c\sin\frac{j \pi t}{L} \theta_{i}$ with $\theta_{i}=(0,0,\dots,0,1,0,\dots,0)\in \mathbb{R}^{n}$ (the $i-$th element is 1, $1 \leq i \leq n)$, for all $j \geq 1$, $\int_{0}^{L}W(t,u(t))dt \to \pm \infty $ as $| c | \to \infty $. \end{itemize} Then, \eqref{HS} has $np-$ distinct pairs $(u(t),-u(t))$ of odd $T$-periodic solutions. If $(\frac{k \pi }{L})^2 < \mu <(\frac{(k+1) \pi }{L})^2$, then {\rm (W14)} can be omitted. \end{theorem} \begin{remark} \label{rmk3} \rm If $W(t,u)$ satisfies \[ W(t,u)=W(t,-u)=W(-t,-u), \] then $W(t,u)$ is bi-even, and $(W_{11})$ holds. For this, a typical example is, $W(t,u)=b(t)\widetilde W (u)$, where $b(t)$ and $\widetilde W (u)$ are even in the variable $t,u$, respectively. \end{remark} \begin{proof}[Proof of Theorem \ref{thm4}] Firstly, consider the boundary value problem \begin{equation} \label{e4.1} \begin{gathered} -\ddot{u}(t)=\mu u(t)+W_u(t,u(t)), \quad 00$ such that $| W_u(t,u) | \leq K$ for all $t \in [0,L], u \in \mathbb{R}$; \item[(W23)] there exist $p \in N, M>0, \rho >0$ such that if $M>\frac{(p+k)^{4}-k^{4}}{L^{4}} \pi^{4}$ then \[ W(t,u)\geq \frac{1}{2} M | u | ^2 \quad \forall t \in [0,L], | u | \leq \rho ; \] \item[(W24)] for $u=c\sin\frac{j \pi t}{L} $ , for all $j \geq 1$, $ c \in \mathbb{R}$, $\int_{0}^{L}W(t,u(t))dt \to \pm \infty $ as $| c | \to \infty $. \end{itemize} Then, \eqref{EFK} has $p$ distinct pairs $(u(t),-u(t))$ of classical solutions. If $(\frac{k \pi }{L})^{4} < \mu <(\frac{(k+1) \pi }{L})^{4}$, then {\rm (W24)} can be omitted. \end{theorem} \begin{proof} Similarly to the proof of Theorem \ref{thm4}, we sketch it. Set \begin{equation} \label{e4.6} X=H^2(0,L) \cap H^{1}_{0}(0,L), \end{equation} by \cite[Lemma 2.1]{g1}, $\| u \|=(\int_{0}^{T}| \ddot{u}(t) |^2dt)^{1/2}$ is a norm of $X$, and \begin{equation} \label{e4.7} v_j(t)=\sin \frac{j \pi t}{L} \big( \sqrt{\frac{L}{2}} (\frac{j \pi }{L})^2\Big)^{-1} \end{equation} is an orthogonal basis on $X$ and $L^2$ such that \begin{equation} \label{e4.8} \| v_j(t) \| ^2 = 1 = (\frac{j \pi }{L})^{4} \| v_j(t) \| ^2_{L^2},\quad j \geq 1. \end{equation} In addition, the problem \[ u^{(4)}(t)=\lambda u(t) \] has eigenvalues $\lambda_j=(\frac{j \pi }{L})^{4}$, $j \geq 1$, and the corresponding eigenfunctions are exactly $v_j(t)$ in \eqref{e4.7}. Define the functional \begin{equation} \label{e4.9} \Phi(u)=\frac{1}{2} \int_{0}^{L}| \ddot{u}(t) |^2dt-\frac{1}{2} \mu \int_{0}^{L} | u(t) |^2\,\mathrm{d}t -\int_{0}^{L} W(t,u(t))\,\mathrm{d}t, \quad u \in X, \end{equation} then the critical points of $\Phi(u)$ in \eqref{e4.9} are the classical solutions of the problem \eqref{EFK}. Therefore, by Theorem \ref{thm1}, we have the statement in Theorem \ref{thm5}. \end{proof} \subsection*{Acknowledgments} The authors would like to thank the anonymous referees for their valuable suggestions. \begin{thebibliography}{00} \bibitem{c1} D. C. Clark; \emph{A variant of the Lusternik-Schnirelman theory}, Ind. Univ. Math. J. 22 (1972), 65-74. \bibitem{c2} D. G. Costa; \emph{An invitation to variational methods in differential equations}, Birkhuser, 2007. \bibitem{c3} F. Clarke, I. Ekeland; \emph{Hamiltonian trajectories having prescribed minimal period}, Comm. Pure Appl. Math. 33, 1980, 103-116. \bibitem{c4} J. Chaparova, L. Peletier, S. Tersian; \emph{Existence and nonexistence of nontrivial solutions of semilinear fourth and sixth-order differential equations}, Adv. Differential Equations 8 (2003), 1237-1258. \bibitem{g1} T. Gyulov, S. Tersian; \emph{Existence of trivial and nontrivial solutions of a fourth-order differential equation}, Electronic Journal of Differential Equations, Vol.2004(2004), No. 41, 1-14. \bibitem{l1} Chengyue Li, Mengmeng Wang, Zhiwei Xiao; \emph{Existence and multiplicity of solutions for semilinear differential equations with subquadratic potentials}, Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 166, pp. 1-7. \bibitem{l2} Y. M. Long; \emph{Nonlinear oscillations for classical Hamiltonian systems wit bi-even subquadritic potentials}. Nonlinear Anal., 1995, 24: 1665-1671. \bibitem{m1} J. Mawhin, M. Willem; \emph{Critical Point Theory and Hamiltonian Systems}, Springer-Verlag, NewYork, 1989. \bibitem{r1} P. H. Rabinowitz; \emph{Periodic solutions of Hamiltonian systems}, Comm. Pure Appl. Math. 31, 1978, 157-184. \bibitem{r2} P. H. Rabinowitz; \emph{On subharmonic solutions of Hamiltonian Systems}. J. Comm. Pure. Appl. Math., 1980, 33: 609-633. \bibitem{r3} P. H. Rabinowitz; \emph{Minimax methods in critical point theory with applications to differential equations}, CBMS, Regional Conf. Ser. in Math., Vol.65. AMS, Providence, Rhode Island (1986). \bibitem{s1} M. Schechter; \emph{Periodic non-autonomous second order dynamical systems}, J. Diff. Equations 223 (2006), 290-302. \bibitem{t1} C. L. Tang; \emph{Periodic solutions of nonautonomous second order systems with sublinear nonlinearity}. Proc. Amer. Math. Soc., 1998, 126: 3263-3270. \bibitem{t2} S. A. Tersian, J. V. Chaparova; \emph{Periodic and homoclinic solutions of extended Fisher-Kolmogorov equation}, J. Math. Anal. Appl., 2001, 266: 490-506. \end{thebibliography} \end{document}