\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage[compress]{cite} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 129, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/129\hfil Stabilization of laminated beams] {Stabilization of laminated beams with \\ interfacial slip} \author[A. Lo, N.-e. Tatar \hfil EJDE-2015/129\hfilneg] {Assane Lo, Nasser-eddine Tatar} \address{Assane Lo \newline King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics, Dhahran 31261, Saudi Arabia} \email{assane@kfupm.edu.sa} \address{Nasser-eddine Tatar \newline King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics, Dhahran 31261, Saudi Arabia} \email{tatarn@kfupm.edu.sa} \thanks{Submitted February 24, 2015. Published May 7, 2015.} \subjclass[2010]{34B05, 34D05, 34H05} \keywords{Exponential stabilization; vibration reduction; Timoshenko system; \hfill\break\indent slip; boundary control; multiplier technique} \begin{abstract} We study a laminated beam consisting of two identical beams of uniform thickness, which is modeled as Timoshenko beams. An adhesive of small thickness is bonding the two layers and creating a restoring force producing a damping. It has been shown that the interfacial slip between the layers alone is not enough to stabilize the system exponentially to its equilibrium state. Some boundary control has been used in the literature for that purpose. In this paper, we show that for viscoelastic material there is no need for any kind of internal or boundary control. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} Many structures in mechanical engineering, electrical engineering, civil engineering and aerospace engineering are formed by a single beam or a number of beams. We can cite for instance, robot arms, rotor turbine and helicopter blades, turbo-machineries, electronic equipment, antennas, missiles, panels, pipelines, buildings, bridges, etc.\ There are mainly three important theories. The first one is named after Euler and Bernoulli and the second one after Rayleigh. To alleviate the shortcomings in these two theories, Timoshenko came up with a new theory which is better suited for engineering practice and is nowadays widely used for moderately thick beams. Both, rotatory inertia and the effect of shear forces are taken into account. In his theory, Timoshenko also assumed that the plane cross-sections perpendicular to the beam centerline remain plane but could become oblique after deformation. An additional kinematics variable is added in the displacement assumptions. Internal and external forces like the weight of the beam, heavy loads, wind, earthquakes and interaction with other bodies or materials are examples of some sources causing high stresses accompanying unwanted vibration. These stresses not only bring some discomfort, reduce the fatigue-life of the material and produce annoying noise but also are harmful to the structure as they may cause significant damage or complete destruction of the machine or equipment. Therefore, some ways and devices capable of enhancing dynamic stability must accompany these structures. To this end various devices and energy dissipation mechanisms have been designed either in the material itself such as smart materials (piezoelectric, pietzoceramic, viscoelastic), on its surface (viscoelastic layers, sandwich plates,\ldots ) or at the boundary (or part of the boundary). Some well-known dampers are: friction dampers, sensors and actuators, special loads, viscoelastic dampers, tuned mass dampers, tuned liquid dampers and tuned mass liquid dampers. Sometimes they are classified into active, semi-active and passive control methods. In this paper, we would like to investigate the case of two identical beams with an adhesive layer in the interface creating a restoring force. It has been already shown that when this restoring force is proportional to the amount of slip the created frictional damping is unable by itself to stabilize the system exponentially. The first investigators have been forced to control the system by an additional boundary feedback. We intend to seek other ways and means, preferably less costly, less demanding and easy to implement, to stabilize the system exponentially. \subsection*{Statement of the problem} The original structure consists of a two-layered beam with an adhesive layer bonding the two adjoining surfaces. The adhesive layer creates a restoring force which is assumed proportional to the amount of slip. Therefore, we are in the presence of a structural damping due to interfacial slip. Moreover, we assume that the adhesive layer is of negligible thickness and mass so that the contribution of its mass to the kinetic energy of the structure can be ignored. The equations of motion modeling the system are derived using Timoshenko theory and a third equation is coupled with the first two describing the dynamic of the slip and containing the internal frictional (Kelvin-Voigt) damping. Namely, we have the system \begin{gather*} \rho w_{tt}+G(\psi -w_x)_x=0, \\ I_{\rho }(3s_{tt}-\psi _{tt})-G(\psi -w_x) -D(3s_{xx}-\psi _{xx})=0, \\ 3I_{\rho }s_{tt}+3G(\psi -w_x)+4\gamma s+4\beta s_t-3Ds_{xx}=0, \end{gather*} supplemented by the initial data \[ (w,\psi ,s)(x,0)=(w_0,\psi _0,s_0),\quad (w_t,\psi _t,s_t)(x,0)=(w_1,\psi _1,s_1) \] and cantilever boundary conditions. Here $w,\psi ,\rho , G,\ I_{\rho }, D, \gamma , \beta $ are transverse displacement, rotation angle, density, shear stiffness, mass moment of inertia, flexural rigidity, adhesive stiffness, adhesive damping parameter and $s$ is proportional to the amount of slip along the interface. The expression $\xi :=3s-\psi $ is the effective rotation angle. It has been shown in \cite{w1} that the frictional damping created by the interfacial slip alone is not enough to stabilize the system exponentially to its equilibrium state. Therefore, a natural question that can be asked is: what are the possible additional damping that can ensure the exponential stability and other kinds of stability of the system? We suggest investigating the case of an additional viscoelastic damping that acts on the effective rotation angle without resorting to any boundary control. Viscoelastic material is very efficient in case there is no considerable change of frequency or temperature in the structure \cite{b1}. The viscoelastic damping is (according to the Boltzmann Principle) represented by a memory term in the form of a convolution which arises in the constitutive equation between the stress and the strain \begin{equation*} \int_0^{t}h(t-r)(3s-\psi )_{xx}(r)dr. \end{equation*} There are basically three main papers in this subject \cite{c1,h2,w1}. In \cite{h2}, the problem has been derived in details. The authors assumed that the adhesive layer is of negligible thickness and mass and that the restoring force created by this layer is proportional to the amount of slip at the interface. In \cite{w1}, the system is studied assuming that $\sqrt{G/\rho }$ and $\sqrt{ D/I_{\rho }}$ are two different wave speeds. Putting $\xi =3s-\psi $, they transformed the original system into \begin{gather*} \rho w_{tt}+G(3s-\xi -w_x)_x=0, \\ I_{\rho }\xi _{tt}-G(3s-\xi -w_x)-D\xi _{xx}=0, \\ 3I_{\rho }s_{tt}+3G(3s-\xi -w_x)+4\gamma s+4\beta s_t-3Ds_{xx}=0 \end{gather*} where $00$. In addition to the well-posedness, the authors pointed out that the frictional damping is enough to asymptotically stabilize the system. However, it is not possible to have exponential stability. They justified their claim by the fact that the eigenvalues of two branches are very close to the imaginary axis as their moduli go to infinity. To achieve exponential decay of solutions they implemented an additional boundary control \begin{gather*} w(0,t)=\xi (0,t)=s(0,t)=0, \\ \xi _x(1,t)=u_1(t):=-k_1\xi _t(1,t),\quad s_x(1,t)=0, \\ 3s(1,t)-\xi (1,t)-w_x(1,t)=u_2(t):=k_2w_t(1,t) \end{gather*} where $t>0$. The same system but with the boundary control \begin{gather*} \psi (0,t)-w_x(0,t)=u_1(t):=-k_1w_t(0,t)-w(0,t), \\ 3s_x(1,t)-\psi _x(1,t)=u_2(t):=-k_2\xi _t(1,t)-\xi (1,t), \end{gather*} has been studied in \cite{c1}. The authors proved an exponential stabilization result in case $k_1\neq \sqrt{\rho /G}$, $k_2\neq \sqrt{I_{\rho }/D}$ and the dominant part of the system is itself exponentially stable. For the case of a single viscoelastic Timoshenko beam (therefore without interfacial slip) there exist many papers in the literature. We can cite a few of them \cite{a1,d1,l1,m4,m5,r1,r2,r3,s1,s2,s3,t4,t5,t6,x1,y1}. Here, we shall consider the system \begin{equation} \begin{gathered} \rho w_{tt}+G(\psi -w_x)_x=0, \\ I_{\rho }(3s_{tt}-\psi _{tt})-G(\psi -w_x) -(3s-\psi )_{xx}+\int_0^{t}h(t-r)(3s-\psi ) _{xx}(r)dr=0, \\ I_{\rho }s_{tt}+G(\psi -w_x)+\frac{4}{3}\gamma s+\frac{4}{3} \alpha s_t-s_{xx}=0, \end{gathered} \label{e1} \end{equation} where $00$, with the boundary conditions \begin{equation} \begin{gathered} \psi (0,t)=s(0,t)=0, \\ s_x(1,t)=\psi _x(1,t)=0, \\ w_x(0,t)=0,\quad w(1,t)=0. \end{gathered} \label{e2} \end{equation} The well-posedness of the system has been addressed in \cite{c1,w1} (see \cite{c2,c3,c5,h1,m6} for the viscoelastic term). We have weak solutions in $(V_{\ast }^1\times L^2)^{3}$ and strong solutions in $(V_{\ast }^2\times H^1)^{3}$ where \begin{equation*} V_{\ast }^{k}=\big\{ v:v\in H^{k}(0,1):v(0)=0\big\} ,\quad k=1,2. \end{equation*} We shall discuss the case where the relaxation function $h:\mathbb{R} _{+}\to \mathbb{R}_{+}$ is a bounded differentiable function satisfying the standard conditions (as we shall not be concerned about finding the largest class of admissible kernels, see \cite{c4,m1,m2,m3,p1,t1,t2,t3,t4,t5,t6} for this matter) \begin{equation} -\beta _0h\leq h'\leq -\beta _1h, \label{e3} \end{equation} for some positive constants $\beta _0$ and $\beta _1$. Moreover we assume that \begin{equation} \varsigma :=1-\int_0^{\infty }h(r)dr>0. \label{e4} \end{equation} For $G$ we shall use the following assumption \begin{itemize} \item[(H1)] If $\varsigma \rho <\frac{\gamma }{12}$, then $G<\min \{\varsigma \rho ,\frac{3\varsigma }{2},\frac{2\gamma -2\sqrt{\gamma ^2-9\gamma \varsigma \rho }}{9}\} $, and if $\frac{\gamma }{12} <\varsigma \rho <\frac{\gamma }{9}$ then assume $G<\min \big\{ \varsigma \rho ,\frac{3\varsigma }{2}\big\} $. \end{itemize} \section{Uniform stabilization} The `modified' energy of the system \eqref{e1}--\eqref{e2} is given by \begin{equation} \begin{aligned} E(t)&=\frac{1}{2}\Big[ \rho \| w_t\| ^2 +I_{\rho}\| 3s_t-\psi _t\| ^2+3I_{\rho }\|s_t\| ^2+G\| \psi -w_x\| ^2 \\ &\quad +(1-\int_0^{t}h(r)dr)\| 3s_x-\psi _x\| ^2+3\| s_x\| ^2+4\gamma \| s\| ^2\\ &\quad +\int_0^1(h \square (3s-\psi )_x)dx\Big] , \end{aligned} \label{e5} \end{equation} for $t\geq 0$, where $\| \cdot \| $ denotes the norm in $ L^2(0,1)$ and \begin{equation*} (g\square h)(t):=\int_0^{t}g(t-s)| h(s)-h(t)| ^2ds,\quad t\geq 0. \end{equation*} Our result reads as follows. \begin{theorem} \label{thm1} For the energy $E(t)$ defined above, if $\rho =GI_{\rho }$ and {\rm (H1)} holds, then there exist two positive constants $K$ and $\kappa _0$ such that \begin{equation*} E(t)\leq Ke^{-\kappa _0t},\quad t>0. \end{equation*} \end{theorem} We first give some lemmas that will serve as a support for the proof of this theorem. \begin{lemma} \label{lem1} If $k$ and $\phi $ are two differentiable functions then \begin{align*} (k\ast \phi )(t)\phi '(t) &=\frac{1}{2}(k' \square \phi )(t)+\frac{1}{2}\frac{d}{dt} \Big[ \Big(\int_0^{t}k(s)ds\Big) \phi ^2(t)-(k\square \phi )(t)\Big] \\ &\quad -\frac{1}{2}k(t)\ \phi ^2(t),\quad t>0 \end{align*} where $\ast $ stands for the usual convolution. \end{lemma} \begin{proof} The statement of the this follows from the identity \begin{align*} \frac{d}{dt}(k\square \phi )(t) &=(k'\square \phi )(t)+2\Big(\int_0^{t}k(s)ds\Big)\ \phi _t(t)\phi (t)-2(k\ast \phi )(t)\phi _t(t) \\ &=(k'\square \phi )(t)+\frac{d}{dt} \Big[ \Big(\int_0^{t}k(s)ds\Big) \phi ^2(t)\Big] -k(t)\ \phi ^2(t)\\ &\quad -2(k\ast \phi )(t)\phi _t(t),\quad t>0. \end{align*} \end{proof} \begin{lemma} \label{lem2} The energy $E(t)$ given by \eqref{e5} satisfies \begin{equation*} \frac{d}{dt}E(t) =-\dfrac{h(t)}{2}\| (3s-\psi )_x\| ^2-4\alpha \| s_t\| ^2 +\dfrac{1}{2} \int_0^1(h'\square (3s-\psi )_x) dx,\quad t>0. \end{equation*} \end{lemma} \begin{proof} Multiplying the first equation of \eqref{e1} by $w_t$ and integrating over $(0,1)$ we obtain \begin{equation*} \frac{\rho }{2}\frac{d}{dt}\left[ \| w_t\| ^2\right] +G\int_0^1(\psi -w_x)_xw_tdx=0 \end{equation*} or \begin{equation*} \frac{\rho }{2}\frac{d}{dt}\left[ \| w_t\| ^2\right] -G\int_0^1(\psi -w_x)w_{xt}dx+\left[ G(\psi -w_x)w_t\right] _0^1=0 \end{equation*} and by our boundary conditions \eqref{e2} \begin{equation*} \frac{\rho }{2}\frac{d}{dt}[ \| w_t\| ^2] -G\int_0^1(\psi -w_x)w_{xt}dx=0,\quad t>0. \end{equation*} Note that \begin{align*} G\int_0^1(\psi -w_x)w_{xt}dx &=-G\int_0^1(\psi -w_x)(\psi -w_x-\psi )_tdx \\ &=-\frac{G}{2}\frac{d}{dt}[ \| \psi -w_x\| ^2] +G\int_0^1(\psi -w_x)\psi _tdx. \end{align*} Therefore, \begin{equation} \frac{1}{2}\frac{d}{dt}[ \rho \| w_t\| ^2+G\| \psi -w_x\| ^2] -G\int_0^1( \psi -w_x)\psi _tdx=0,\quad t>0. \label{e6} \end{equation} Similarly multiplying the second equation of \eqref{e1} by $3s_t-\psi _t$ and integrating over $(0,1)$ we obtain \begin{align*} &\frac{I_{\rho }}{2}\frac{d}{dt}[ \| 3s_t-\psi _t\|^2] -G\int_0^1(\psi -w_x)(3s_t-\psi_t)dx\\ &-\int_0^1(3s-\psi )_{xx}(3s_t-\psi_t)dx +\int_0^1(3s_t-\psi _t)\int_0^{t}h(t-r)(3s-\psi )_{xx}(r)\,dr\,dx=0 \end{align*} or, using integration by parts and the boundary conditions \eqref{e2} \begin{equation} \begin{aligned} &\frac{1}{2}\frac{d}{dt}\left[ I_{\rho }\| 3s_t-\psi _t\| ^2+\| 3s_x-\psi _x\| ^2\right] -G\int_0^1(\psi -w_x)(3s_t-\psi _t)dx \\ &-\int_0^1(3s_t-\psi _t)_x\int_0^{t}h(t-r)( 3s-\psi )_x(r)\,dr\,dx=0,\quad t>0. \end{aligned} \label{e7} \end{equation} By using Lemma \ref{lem2} we see that \begin{equation} \begin{aligned} &\int_0^1(3s_t-\psi _t)_x\int_0^{t}h(t-r)( 3s-\psi )_x(r)\,dr\,dx \\ &=\frac{1}{2}(h'\ \square (3s-\psi )_x) (t)-\frac{h(t)}{2}\| 3s_x-\psi _x\| ^2 \\ &\quad +\frac{1}{2}\frac{d}{dt}\Big[ \Big(\int_0^{t}h(s)ds\Big)\|3s_x-\psi _x\| ^2 -(h\square (3s-\psi )_x)(t)\Big] ,\quad t>0. \end{aligned}\label{e8} \end{equation} Likewise, multiplying the third equation of \eqref{e1} by $s_t$ and integrating over $(0,1)$, we obtain \begin{equation} \frac{1}{2}\frac{d}{dt}\big[ I_{\rho }\| s_t\| ^2+ \frac{4\gamma }{3}\| s\| ^2+\| s_x\| ^2\big] +G\int_0^1(\psi -w_x)s_tdx+\frac{4\alpha }{3 }\| s_t\| ^2=0, \label{e9} \end{equation} for $t>0$. Now it is clear from \eqref{e6}--\eqref{e9} that \begin{equation*} E'(t)=-4\alpha \| s_t\| ^2-\dfrac{h(t)}{2} \| (3s-\psi )_x\| ^2+\dfrac{1}{2} \int_0^1(h'\square (3s-\psi )_x) dx,\quad t>0. \end{equation*} This completes the proof. \end{proof} As $h'(t)\leq 0$, we see that $E'(t)\leq 0$ for all $t>0$. Therefore the energy is non-increasing and uniformly bounded above by $E(0)$. Next we shall construct a Lyapunov functional $F$ satisfying the inequalities \begin{equation*} \lambda _1E(t)\leq F(t)\leq \lambda _2E(t)\quad\text{and}\quad \frac{d}{dt} F(t)\leq -\kappa F(t) \end{equation*} for some positive constants $\lambda _1$, $\lambda _2$ and $\kappa $. The first two inequalities show that $E(t)$ and $F(t)$ are equivalent. The second one gives the exponential decay of $F(t)$ (and therefore the exponential decay of $E(t)$ as well). To this end, we define \begin{equation*} F(t)=E(t)+\sum\nolimits_{i=1}^{5}\delta _{i}G_{i}(t),\quad \delta _{i}>0,\;i=1,\dots ,5,\;t\geq 0, \end{equation*} where \begin{gather*} G_1(t)=I_{\rho }(s_t,s),\quad G_2(t)=-\rho (w_t,w),\quad G_{3}(t)=I_{\rho }(3s_t-\psi _t,3s-\psi ),\quad t\geq 0,\\ G_{4}(t)=-\frac{4\gamma \rho }{G}(w_t,\Theta )-\frac{3\rho }{G }(s_x,w_t)+3I_{\rho }(s_t,\psi -w_x),\quad t\geq 0, \end{gather*} with $\Theta (x,t)=\int_x^1s(\xi ,t)d\xi $ and \begin{equation*} G_5(t)=-I_{\rho }\Big(3s_t-\psi _t,\int_0^{t}h(t-r)\left[ (3s-\psi )(t)-(3s-\psi )(r)\right] dr\Big),\quad t\geq 0. \end{equation*} Using the Cauchy-Schwarz inequality and the Poincar\'{e} inequality, one can easily see that all the $G_{i}(t)$, $i=1,\dots ,5$ are bounded (above and below) by an expression containing the existing terms in the energy $E(t)$. This leads to the equivalence of $F(t)$ and $E(t)$. We shall now prove several lemmas with the purpose of creating negative counterparts of the terms that appear in the energy in the estimations of the derivatives of the above functionals. \begin{lemma} \label{lem3} Along the solutions of \eqref{e1}--\eqref{e2}, we have \begin{equation*} G_1'(t)\leq -\| s_x\| ^2+\big(\frac{G}{ 4\varepsilon _0}+\varepsilon -\frac{4}{3}\gamma \big)\|s\| ^2 +\varepsilon _0G\| \psi -w_x\|^2 +\big(I_{\rho }+\frac{4\alpha ^2}{9\varepsilon }\big)\| s_t\| ^2, \end{equation*} for all $t>0$ and some $\varepsilon _0,\varepsilon >0$. \end{lemma} \begin{proof} Clearly, \begin{equation*} G_1'(t)=I_{\rho }\| s_t\| ^2+I_{\rho }(s_{tt},s),\quad t>0 \end{equation*} and by the third equation in \eqref{e1} we obtain that for $t>0$, \begin{align*} G_1'(t) &=I_{\rho }\| s_t\| ^2-\| s_x\| ^2-\frac{4\gamma }{3}\| s\| ^2-\frac{ 4\alpha }{3}(s_t,s)-G(\psi -w_x,s)\\ &\leq I_{\rho }\| s_t\| ^2-\| s_x\| ^2+\big(\frac{G}{4\varepsilon _0}-\frac{4\gamma }{3}\big)\| s\| ^2+\varepsilon _0G\| \psi -w_x\| ^2+\varepsilon \| s\| ^2+\frac{4\alpha ^2}{ 9\varepsilon }\| s_t\| ^2 \\ &\leq -\| s_x\| ^2+\big(\frac{G}{4\varepsilon _0} +\varepsilon -\frac{4\gamma }{3}\big)\| s\| ^2+\varepsilon _0G\| \psi -w_x\| ^2+\big(I_{\rho }+\frac{4\alpha ^2}{9\varepsilon }\big)\| s_t\| ^2. \end{align*} \end{proof} \begin{lemma} \label{lem4} The derivative of $G_2(t)$ along solutions of \eqref{e1}--\eqref{e2} satisfies \begin{equation*} G_2'(t)\leq -\rho \| w_t\| ^2+(G+\varepsilon _1)\| \psi -w_x\| ^2 +\frac{G}{2\varepsilon _1} \| \psi _x-3s_x\| ^2+\frac{9G}{2\varepsilon _1} \| s_x\| ^2,\; \end{equation*} for all $t>0$ and some $\varepsilon _1>0$. \end{lemma} \begin{proof} Using the first equation in \eqref{e1} and the boundary conditions \eqref{e2}, we have that for $t>0$, \begin{align*} G_2'(t)&=-\rho \| w_t\| ^2-\rho ( w_{tt},w)\\ &=-\rho \| w_t\| ^2+G((\psi -w_x) _x,w)\\ &=-\rho \| w_t\| ^2-G(\psi -w_x,w_x)+G \left[ (\psi -w_x)w\right] _0^1 \\ &=-\rho \| w_t\| ^2+G(\psi -w_x,\psi -w_x)-G(\psi -w_x,\psi )\\ &\leq -\rho \| w_t\| ^2+G\| \psi -w_x\| ^2+\varepsilon _1G\| \psi -w_x\| ^2+\frac{G}{4\varepsilon _1}\| \psi _x\| ^2 \\ &\leq -\rho \| w_t\| ^2+(G+\varepsilon _1)\| \psi -w_x\| ^2+\frac{G}{2\varepsilon _1}\| \psi _x-3s_x\| ^2+\frac{9G}{2\varepsilon _1}\| s_x\| ^2. \end{align*} \end{proof} \begin{lemma} \label{lem5} The derivative of $G_{3}(t)$ along solutions of \eqref{e1}--\eqref{e2} satisfies \begin{align*} G_{3}'(t) &\leq I_{\rho }\| 3s_t-\psi _t\| ^2-(\varsigma -\frac{G}{4\varepsilon _2}-\varepsilon ) \| 3s_x-\psi _x\| ^2+\varepsilon _2G\| \psi -w_x\| ^2 \\ &\quad +\frac{1-\varsigma }{4\varepsilon }\int_0^1(h\square (3s_x-\psi _x))dx,\quad t>0 \end{align*} for $\varepsilon _2>0$, $\varepsilon >0$. \end{lemma} \begin{proof} Using the second equation in \eqref{e1} we find that \begin{align*} &I_{\rho }\frac{d}{dt}(3s_t-\psi _t,3s-\psi )=I_{\rho }\| 3s_t-\psi _t\| ^2-\| 3s_x-\psi _x\| ^2\\ &+[ (3s_x-\psi _x)(3s-\psi )] _0^1 +G((\psi -w_x),(3s-\psi ))\\ &+\Big( \int_0^{t}h(t-r)(3s_x-\psi _x)(r)dr,3s_x-\psi _x\Big),\quad t>0. \end{align*} Then \begin{align*} G_{3}'(t) &\leq I_{\rho }\| 3s_t-\psi _t\| ^2-\| 3s_x-\psi _x\| ^2+\varepsilon _2G\| \psi -w_x\| ^2+\frac{G}{4\varepsilon _2}\| 3s_x-\psi _x\| ^2 \\ &\quad +\Big(\int_0^{t}h(t-r)\left[ (3s_x-\psi _x)(r)-(3s_x-\psi _x)(t) \right] dr,3s_x-\psi _x\Big)\\ &\quad +\Big(\int_0^{t}h(r)dr\Big)((3s_x-\psi _x,3s_x-\psi_x) \end{align*} for $\varepsilon _2>0$, or \begin{align*} G_{3}'(t) &\leq I_{\rho }\| 3s_t-\psi _t\| ^2-\| 3s_x-\psi _x\| ^2 +\varepsilon _2G\| \psi -w_x\| ^2\\ &\quad +\frac{G}{4\varepsilon _2}\| 3s_x-\psi _x\| ^2 +\varepsilon \| 3s_x-\psi _x\| ^2+\frac{1-\varsigma }{ 4\varepsilon }\int_0^1(h\square (3s_x-\psi _x))dx\\ &\quad +(1-\varsigma )\| (3s_x-\psi _x)\| ^2, \end{align*} for $\varepsilon >0$. Hence \begin{align*} G_{3}'(t)&\leq I_{\rho }\| 3s_t-\psi _t\| ^2-(\varsigma -\frac{G}{4\varepsilon _2}-\varepsilon ) \| 3s_x-\psi _x\| ^2+\varepsilon _2G\| \psi -w_x\| ^2 \\ &\quad +\frac{1-\varsigma }{4\varepsilon }\int_0^1(h\square (3s_x-\psi _x))dx,\;t>0. \end{align*} \end{proof} \begin{lemma} \label{lem6} The derivative of $G_{4}(t)$ is estimated as follows \begin{align*} G_{4}'(t)&\leq -(3G-\varepsilon _1)\| \psi -w_x\| ^2+\varepsilon _1(1+\varepsilon )I_{\rho }\| 3s_t-\psi _t\| ^2+\varepsilon _1\| w_t\| ^2 \\ &\quad +\big[ \frac{4\gamma ^2\rho ^2}{\varepsilon _1G^2}+\frac{4\alpha ^2}{\varepsilon _1}+(9+\frac{1}{\varepsilon }+\frac{9}{ 4\varepsilon _1})I_{\rho }\big] \| s_t\|^2,\quad t>0, \end{align*} for $\varepsilon _1,\varepsilon >0$ provided that $I_{\rho }=\frac{\rho }{G}$. \end{lemma} \begin{proof} Using the first and third equations in \eqref{e1}, \begin{align*} G_{4}'(t)&=-\frac{4\gamma \rho }{G}(w_{tt},\Theta )- \frac{4\gamma \rho }{G}(w_t,\Theta _t)-\frac{3\rho }{G} (s_{xt},w_t)-\frac{3\rho }{G}(s_x,w_{tt})\\ &\quad +3I_{\rho }(s_{tt},\psi -w_x)+3I_{\rho }(s_t,\psi _t-w_{xt})\,. \end{align*} Then we find that \begin{align*} G_{4}'(t)&=4\gamma ((\psi -w_x)_x,\Theta )-\frac{4\gamma \rho }{G}(w_t,\Theta _t)-\frac{3\rho }{G}(s_{xt},w_t)+3(s_x,(\psi -w_x) _x)\\ &\quad +3(-G(\psi -w_x)-\frac{4\gamma }{3}s-\frac{4\alpha }{3} s_t+s_{xx},\psi -w_x)+3I_{\rho }(s_t,\psi _t-w_{xt}), \end{align*} for $t>0$. Next, by the definition of $\Theta $ and the assumption $I_{\rho }= \frac{\rho }{G}$, we obtain \begin{equation*} G_{4}'(t)=-\frac{4\gamma \rho }{G}(w_t,\Theta _t) -3G\| \psi -w_x\| ^2-4\alpha (s_t,\psi -w_x)+3I_{\rho }(s_t,\psi _t), \end{equation*} for $t>0$. Now, clearly \begin{gather*} \frac{4\gamma \rho }{G}(w_t,\Theta _t)\leq \varepsilon _1\| w_t\| ^2+\frac{4\gamma ^2\rho ^2}{ \varepsilon _1G^2}\| s_t\| ^2, \\ 4\alpha (s_t,\psi -w_x)\leq \varepsilon _1\| \psi -w_x\| ^2+\frac{4\alpha ^2}{\varepsilon _1}\| s_t\| ^2, \\ \begin{aligned} 3(s_t,\psi _t) &\leq \varepsilon _1\| \psi _t\| ^2+\frac{9}{4\varepsilon _1}\| s_t\| ^2 \\ &\leq \varepsilon _1(1+\varepsilon )\| 3s_t-\psi _t\| ^2+(9+\frac{1}{\varepsilon }+\frac{9}{4\varepsilon _1})\| s_t\| ^2 \end{aligned} \end{gather*} lead to \begin{align*} G_{4}'(t) &\leq \varepsilon _1\| w_t\| ^2+ \frac{4\gamma ^2\rho ^2}{\varepsilon _1G^2}\| s_t\| ^2-3G\| \psi -w_x\| ^2+\varepsilon _1\| \psi -w_x\| ^2+\frac{4\alpha ^2}{\varepsilon _1}\| s_t\| ^2 \\ &\quad +\varepsilon _1(1+\varepsilon )I_{\rho }\| 3s_t-\psi _t\| ^2+(9+\frac{1}{\varepsilon }+\frac{9}{ 4\varepsilon _1})I_{\rho }\| s_t\| ^2 \end{align*} or \begin{align*} G_{4}'(t) &\leq -(3G-\varepsilon _1)\| \psi-w_x\| ^2 +\varepsilon _1(1+\varepsilon )I_{\rho}\| 3s_t-\psi _t\| ^2+\varepsilon _1\| w_t\| ^2 \\ &\quad +\big[ \frac{4\gamma ^2\rho ^2}{\varepsilon _1G^2}+\frac{4\alpha ^2}{\varepsilon _1}+\big(9+\frac{1}{\varepsilon }+\frac{9}{ 4\varepsilon _1}\big)I_{\rho }\big] \| s_t\|^2,\quad t\geq 0. \end{align*} \end{proof} For the next lemma we need to get away from zero to ensure strict positivity of $\int_0^{t}h(r)dr$. So for that $t\geq t_0>0$ we have $\int_0^{t}h(r)dr\geq \int_0^{t_0}h(r)dr=h_0>0$. \begin{lemma} \label{lem7} For the functional $G_5(t)$ we have \begin{align*} G_5'(t)&\leq G\varepsilon \| \psi -w_x\| ^2+(G+4\varepsilon +2-\varsigma )\frac{1-\varsigma }{ 4\varepsilon }\int_0^1(h\ \square (3s-\psi )_x)dx \\ &\quad +(2-\varsigma )\varepsilon \| 3s_x-\psi _x\| ^2+I_{\rho }(\varepsilon -h_0)\| 3s_t-\psi _t\| ^2 \\ &\quad +\frac{I_{\rho }h(0)}{4\varepsilon } \int_0^1(| h'| \square (3s-\psi )_x)dx,\quad t\geq t_0>0 \end{align*} for $\varepsilon >0$. \end{lemma} \begin{proof} We recall that \begin{equation*} G_5(t)=-I_{\rho }\Big(3s_t-\psi _t,\int_0^{t}h(t-r)[ (3s-\psi )(t)-(3s-\psi )(r)] dr\Big),\quad t>0 \end{equation*} and therefore \begin{align*} G_5'(t) &=-I_{\rho }(3s_{tt}-\psi _{tt},\int_0^{t}h(t-r) [ (3s-\psi )(t)-(3s-\psi )(r)] dr)\\ &\quad -I_{\rho }\Big(3s_t-\psi _t,\int_0^{t}h'(t-r)[ (3s-\psi )(t)-(3s-\psi )(r)] dr\Big)\\ &\quad -I_{\rho }\Big(\int_0^{t}h(r)dr\Big)\| 3s_t-\psi _t\| ^2,\quad t>0. \end{align*} In view of the second equation in \eqref{e1} and the boundary conditions \eqref{e2} we write \begin{equation} \begin{aligned} G_5'(t)&=-\Big(G(\psi -w_x)+(3s-\psi )_{xx},\int_0^{t}h(t-r)[ (3s-\psi )(t)-(3s-\psi )(r)] dr\Big)\\ &\quad +\Big(\int_0^{t}h(t-r)(3s-\psi )_{xx}(r)dr,\int_0^{t}h(t-r)[ (3s-\psi )(t)-(3s-\psi )(r)] dr\Big)\\ &\quad -I_{\rho }\Big(3s_t-\psi _t,\int_0^{t}h'(t-r)[ (3s-\psi )(t)-(3s-\psi )(r)] dr\Big)\\ &\quad -I_{\rho }\Big(\int_0^{t}h(r)dr\Big)\| 3s_t-\psi _t\| ^2,\quad t>0. \end{aligned}\label{e10} \end{equation} It is easy to see that for $t>0$, \begin{equation} \begin{aligned} &-G\Big(\psi -w_x,\int_0^{t}h(t-r)\left[ (3s-\psi )(t)-(3s-\psi )(r) \right] dr\Big)\\ &\leq G\varepsilon \| \psi -w_x\| ^2+\frac{G(1-\varsigma )}{4\varepsilon }\int_0^1(h\ \square (3s-\psi )_x)dx, \end{aligned} \label{e11} \end{equation} \begin{equation} \begin{aligned} &\Big((3s-\psi )_{xx},\int_0^{t}h(t-r)\left[ (3s-\psi )(t)-(3s-\psi )(r)\right] dr\Big)\\ &=-\Big((3s-\psi )_x,\int_0^{t}h(t-r)\left[ (3s-\psi )_x(t)-(3s-\psi )_x(r)\right] dr\Big)\\ &\leq \varepsilon \| 3s_x-\psi _x\| ^2+\frac{ 1-\varsigma }{4\varepsilon }\int_0^1(h\square (3s-\psi)_x)dx, \end{aligned} \label{12} \end{equation} and \begin{equation} \begin{aligned} &\Big(\int_0^{t}h(t-r)(3s-\psi )_{xx}(r)dr,\int_0^{t}h(t-r)[ (3s-\psi )(t)-(3s-\psi )(r)] dr\Big)\\ &=\| \int_0^{t}h(t-r)[ (3s-\psi )_x(t)-(3s-\psi )_x(r)] dr\| ^2 \\ &\quad -\Big(\int_0^{t}h(r)dr\Big)\Big((3s-\psi )_x,\int_0^{t}h(t-r) [ (3s-\psi )_x(t)-(3s-\psi )_x(r)] dr\Big)\\ &\leq \| \int_0^{t}h(t-r)[ (3s-\psi )_x(t)-(3s-\psi )_x(r)] dr\| ^2 +(1-\varsigma ) \Big\{ \varepsilon \| 3s_x-\psi_x\| ^2\\ &\quad +\frac{1}{4\varepsilon }\| \int_0^{t}h(t-r) [ (3s-\psi )_x(t)-(3s-\psi )_x(r)] dr\| ^2\Big\} \\ &\leq (1+\frac{1-\varsigma }{4\varepsilon })(1-\varsigma )\int_0^1(h\ \square (3s-\psi )_x)dx+\varepsilon (1-\varsigma )\| 3s_x-\psi _x\| ^2, \end{aligned} \label{e13} \end{equation} for $t>0$. Further \begin{equation} \begin{aligned} &I_{\rho }(3s_t-\psi _t,\int_0^{t}h'(t-r)[ (3s-\psi )(t)-(3s-\psi )(r)] dr)\\ &\leq \varepsilon I_{\rho }\| 3s_t-\psi _t\| ^2 +\frac{ I_{\rho }h(0)}{4\varepsilon }\int_0^1(| h'| \square (3s-\psi )_x)dx,\quad t>0. \end{aligned} \label{e14} \end{equation} Taking into account estimates \eqref{e11}--\eqref{e14}, in \eqref{e10} and considering $ t\geq t_0>0$, we obtain \begin{align*} G_5'(t) &\leq G\varepsilon \| \psi -w_x\| ^2+ \frac{G(1-\varsigma )}{4\varepsilon }\int_0^1(h\ \square (3s-\psi )_x)dx+\varepsilon \| 3s_x-\psi _x\| ^2 \\ &\quad +\frac{1-\varsigma }{4\varepsilon }\int_0^1(h\square (3s-\psi)_x)dx +(1+\frac{1-\varsigma }{4\varepsilon })( 1-\varsigma )\int_0^1(h\ \square (3s-\psi )_x)dx \\ &\quad +\varepsilon (1-\varsigma )\| 3s_x-\psi _x\| ^2+\varepsilon I_{\rho }\| 3s_t-\psi_t\| ^2\\ &\quad +\frac{I_{\rho }h(0)}{4\varepsilon }\int_0^1( | h'| \square (3s-\psi )_x)dx -I_{\rho }h_0\| 3s_t-\psi _t\| ^2 \end{align*} or, for $t\geq t_0>0$ \begin{align*} G_5'(t)&\leq G\varepsilon \| \psi -w_x\| ^2+(G+4\varepsilon +2-\varsigma )\frac{1-\varsigma }{ 4\varepsilon }\int_0^1(h\ \square (3s-\psi )_x)dx \\ &\quad +(2-\varsigma )\varepsilon \| 3s_x-\psi _x\| ^2+I_{\rho }(\varepsilon -h_0)\| 3s_t-\psi _t\| ^2 \\ &\quad +\frac{I_{\rho }h(0)}{4\varepsilon }\int_0^1(| h'| \square (3s-\psi )_x)dx. \end{align*} The proof is complete. \end{proof} Using the previous lemmas we now give the proof of our main result. \begin{proof}[Proof of Theorem \ref{thm1}] Gathering the estimates in the previous lemmas we find that \begin{align*} F'(t)&=E'(t)+\sum\nolimits_{i=1}^{5}\delta _{i}G_{i}'(t)\leq -4\alpha \| s_t\| ^2-\dfrac{ h(t)}{2}\| (3s-\psi )_x\| ^2 \\ &\quad +\dfrac{1}{2}\int_0^1(h'\square (3s-\psi )_x)dx-\delta _1\| s_x\| ^2+\delta _1(\frac{G}{4\varepsilon _0}+\varepsilon -\frac{4}{3}\gamma )\| s\| ^2 \\ &\quad +\delta _1\varepsilon _0G\| \psi -w_x\| ^2+\delta _1(I_{\rho }+\frac{4\alpha ^2}{9\varepsilon })\| s_t\| ^2-\delta _2\rho \| w_t\| ^2 \\ &\quad +\delta _2(G+\varepsilon _1)\| \psi -w_x\| ^2+\frac{G\delta _2}{2\varepsilon _1}\| 3s_x-\psi _x\| ^2+\frac{9G\delta _2}{2\varepsilon _1}\| s_x\| ^2\\ &\quad +\delta_3I_{\rho }\| 3s_t-\psi_t\| ^2 -\delta_3(\varsigma -\frac{G}{4\varepsilon _2}-\varepsilon )\| 3s_x-\psi _x\| ^2+\delta_3\varepsilon _2G\| \psi -w_x\| ^2 \\ &\quad +\delta_3\frac{1-\varsigma }{4\varepsilon } \int_0^1(h\square (3s_x-\psi _x))dx-\delta _{4}(3G-\varepsilon _1)\| \psi -w_x\| ^2 \\ &\quad +\delta _{4}\varepsilon _1(1+\varepsilon )I_{\rho }\| 3s_t-\psi _t\| ^2+\delta _{4}[ \frac{4\gamma ^2\rho ^2}{\varepsilon _2G^2}+\frac{4\alpha ^2}{\varepsilon _1}+(9+ \frac{1}{\varepsilon }+\frac{9}{4\varepsilon _1})I_{\rho }] \| s_t\| ^2 \\ &\quad +\varepsilon _1\delta _{4}\| w_t\| ^2+\delta _5G\varepsilon \| \psi -w_x\| ^2+\delta _5\varepsilon (2-\varsigma )\| 3s_x-\psi _x\| ^2 \\ &\quad +\delta _5(G+4\varepsilon +2-\varsigma )\frac{1-\varsigma }{ 4\varepsilon }\int_0^1(h\ \square (3s-\psi )_x)dx\\ &\quad +\delta_5I_{\rho }(\varepsilon -h_0)\| 3s_t-\psi_t\| ^2 +\delta _5\frac{I_{\rho }h(0)}{4\varepsilon }\int_0^1(| h'| \square (3s-\psi )_x)dx,\quad t\geq t_0>0 \end{align*} or \begin{equation} \begin{aligned} F'(t)&\leq -\left\{ 4\alpha -\delta _1(I_{\rho }+\frac{ 4\alpha ^2}{9\varepsilon })-\delta _{4}\left[ (9+\frac{1}{ \varepsilon }+\frac{9}{4\varepsilon _1})I_{\rho }+\frac{4\alpha ^2 }{\varepsilon _1}+\frac{4\gamma ^2\rho ^2}{\varepsilon _2G^2} \right] \right\} \| s_t\| ^2 \\ &\quad -(\delta _1-\frac{9G\delta _2}{2\varepsilon _1}) \| s_x\| ^2+\delta _1(\frac{G}{4\varepsilon _0 }+\varepsilon -\frac{4}{3}\gamma )\| s\| ^2 \\ &\quad -\left[ \delta _{4}(3G-\varepsilon _1)-\delta _1\varepsilon _0G-\delta _2(G+\varepsilon _1)-\delta_3\varepsilon _2G-\delta _5G\varepsilon \right] \| \psi -w_x\| ^2 \\ &\quad -\Big\{ \delta_3(\varsigma -\frac{G}{4\varepsilon _2} -\varepsilon )-\frac{G\delta _2}{2\varepsilon _1}-\delta _5\varepsilon (2-\varsigma )\Big\} \| 3s_x-\psi _x\| ^2 \\ &\quad -(\delta _2\rho -\varepsilon _2\delta _{4})\| w_t\| ^2+I_{\rho }\left[ \delta_3+\delta _{4}\varepsilon _1(1+\varepsilon )+\delta _5(\varepsilon -h_0)\right] \| 3s_t-\psi _t\| ^2 \\ &\quad-\Big\{ \dfrac{\beta _1}{2}-\delta_3\frac{1-\varsigma }{4\varepsilon } -\delta _5(G+4\varepsilon +2-\varsigma )\frac{1-\varsigma }{ 4\varepsilon }\\ &\quad -\delta _5\frac{\beta _0I_{\rho }h(0)}{4\varepsilon } \Big\} \int_0^1(h\ \square (3s-\psi )_x)dx. \end{aligned} \label{e15} \end{equation} Our strategy for selecting the different coefficients and parameters is as follows: all the $\delta _{i}$, $i=1,\dots 5$ will be determined in terms of only one of them (here $\delta _1$). This $\delta _1$ will be accountable in front of $\alpha $ and $\beta _1$ in the coefficients of the first and the last term in \eqref{e15}. From the beginning, we have managed in our estimations to balance the largest coefficients (here $1/\varepsilon $) on the terms that appear in the derivative of the energy. This will allow us to ignore $\varepsilon $ at the beginning of the process of selection. Let us ignore for the moment the first and the last terms in \eqref{e15}. We shall, at the same time, ignore the terms having coefficients in $\varepsilon $. The focus will be on \begin{gather*} \delta _1-\frac{9G}{2\varepsilon _1}\delta _2>0, \quad \frac{G}{4\varepsilon _0}-\frac{4}{3}\gamma <0, \\ \delta _{4}(3G-\varepsilon _1)-\delta _1\varepsilon _0G-\delta _2(G+\varepsilon _1)-\delta_3\varepsilon _2G>0, \\ \delta_3(\varsigma -\frac{G}{4\varepsilon _2})-\frac{G}{ 2\varepsilon _1}\delta _2>0, \\ \delta _2\rho -\varepsilon _2\delta _{4}>0, \quad \delta_3+\delta _{4}\varepsilon _1-\delta _5h_0<0, \end{gather*} or \begin{equation} \begin{gathered} \frac{9G}{2\varepsilon _1}\delta _2<\delta _1, \quad \frac{G}{4\varepsilon _0}<\frac{4}{3}\gamma , \\ \delta _1\varepsilon _0G+\delta _2(G+\varepsilon _1) +\delta_3\varepsilon _2G<\delta _{4}(3G-\varepsilon _1), \\ \frac{G}{2\varepsilon _1}\delta _2<\delta_3(\varsigma -\frac{G}{ 4\varepsilon _2}), \\ \varepsilon _2\delta _{4}<\delta _2\rho , \quad \delta_3+\delta _{4}\varepsilon _1<\delta _5h_0. \end{gathered} \label{e16} \end{equation} Let $\varepsilon _0=\frac{G}{4\gamma }$ so that the second inequality in \eqref{e16} is satisfied. Put $\varepsilon _2=\frac{G}{2\varsigma }$, $\varepsilon _1=G$ and ignore the last inequality (we will take $\delta _5$ large enough as it does not appear elsewhere), we will be left with \begin{equation} \begin{gathered} \frac{9}{2}\delta _2<\delta _1, \\ \delta _1\frac{G}{4\gamma }+2\delta _2+\delta_3\frac{G}{2\varsigma } <2\delta _{4}, \\ \delta _2<\varsigma \delta_3, \quad \frac{G}{2\varsigma }\delta _{4}<\delta _2\rho . \end{gathered} \label{e17} \end{equation} Note that $2\delta _2<\delta _{4}<\frac{2\varsigma }{G}\delta _2\rho $ is valid if $G<\varsigma \rho $ and $\delta _{4}=\frac{G+\varsigma \rho }{G} \delta _2$. Therefore \eqref{e17} reduces to \begin{gather*} \frac{9}{2}\delta _2<\delta _1, \\ \delta _1\frac{G}{4\gamma }+\delta_3\frac{G}{2\varsigma }<\frac{ G+\varsigma \rho }{G}\delta _2, \\ \delta _2<\varsigma \delta_3. \end{gather*} By assumption (H1) we may have \[ \delta _1\frac{G}{4\gamma }<\frac{G+\varsigma \rho }{2G}\delta _2 <\frac{G+\varsigma \rho }{9G}\delta_1,\quad \delta_3\frac{G}{2\varsigma }<\frac{G+\varsigma \rho }{2G} \delta _2<\frac{G+\varsigma \rho }{2G}\varsigma \delta_3. \] These inequalities ensure the possibility of selecting (for instance) $\delta _2$ and $\delta_3$ in terms of $\delta _1$. It is now possible to select $ \delta _5$ (satisfying the last relation in \eqref{e16}) in terms of $\delta _1$ and then $\varepsilon $. Finally, $\delta _1$ is chosen so small that the coefficients of the first and the last terms in \eqref{e15} are satisfied. We end up with an inequality of the form \begin{equation*} F'(t)\leq -CF(t),\quad t\geq t_0>0. \end{equation*} This gives the exponential decay of $F(t)$ on $[t_0,\infty )$. The exponential decay of the energy follows from the equivalence with $F(t)$ and the statement of the theorem for $t\geq 0$ is clear. The proof is complete. \end{proof} \subsection*{Remark} It would be nice to remove the conditions on $G$ although $\rho =GI_{\rho }$ (equal wave speeds) seems natural as we have a similar one in the theory of Timoshenko beams. The assumption (H1) looks technical and we believe that it may be improved considerably through a better choice of the functionals and adequate estimations. Investigations on other boundary conditions would also be of great importance. \subsection*{Acknowledgments} The authors would like to acknowledge the support provided by King Abdulaziz City for Science and Technology (KACST) through the Science and Technology Unit at King Fahd University of Petroleum and Minerals (KFUPM) for funding this work through project No. AC -32- 49. The authors would like to thank also the anonymous referee for pointing out an error in the original paper and suggesting a way to fix it. \begin{thebibliography}{00} \bibitem{a1} Ammar-Khodja, A. Benabdallah, J. E. M. Rivera; \emph{Energy decay for Timoshenko system of memory type}, J. Diff. Eqs. 194 (1) (2003), 82-11. \bibitem{b1} C. F. Beards, I. M. A. Imam; \emph{The damping of plate vibration by interfacial slip between layers}, Int. J. Mach. Tool. Des. Res. Vol. 18 (1978), 131-137. \bibitem{c1} X.-G. Cao, D.-Y. Liu, G.-Q. Xu; \emph{Easy test for stability of laminated beams with structural damping and boundary feedback controls}, J. Dynamical Control Syst. Vol. 13 No. 3 (2007), 313-336. \bibitem{c2} M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. Ferreira; \emph{Existence and uniform decay for nonlinear viscoelastic equation with strong damping}, Math. Meth. Appl. Sci. 24 (2001), 1043-1053. \bibitem{c3} M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho, J. A. Soriano; \emph{Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping}, Diff. Integral Eqs. 14 (1) (2001), 85-116. \bibitem{c4} M. M. Cavalcanti, V. N. Domingos Cavalcanti, P. Martinez; \emph{General decay rate estimates for viscoelastic dissipative systems}, Nonl. Anal.: T. M. A. 68 (1) (2008), 177-193. \bibitem{c5} M. M. Cavalcanti, H. P. Oquendo; \emph{Frictional versus viscoelastic damping in a semilinear wave equation}, SIAM J. Control Optim., Vol. 42 No. 4 (2003), 1310-1324. \bibitem{d1} M. De Lima Santos; \emph{Decay rates for solutions of a Timoshenko system with memory conditions at the boundary}, Abstr. Appl. Anal. 7 (10) (2002), 53-546. \bibitem{h1} X. S. Han, M. X. Wang; \emph{Global existence and uniform decay for a nonlinear viscoelastic equation with damping}, Nonl. Anal.: T. M. A. 70 (9) (2009), 3090-3098. \bibitem{h2} S. W. Hansen, R. Spies; \emph{Structural damping in a laminated beam due to interfacial slip}, J. Sound Vibration, 204 (1997), 183-202. \bibitem{l1} Z. Liu, C. Pang; \emph{Exponential stability of a viscoelastic Timoshenko beam}, Adv. Math. Sci. Appl., 8 (1998) 1, 343-351. \bibitem{m1} M. Medjden, N.-e. Tatar; \emph{On the wave equation with a temporal nonlocal term}, Dyn. Syst. Appl. 16 (2007), 665-672. \bibitem{m2} M. Medjden, N.-e. Tatar; \emph{Asymptotic behavior for a viscoelastic problem with not necessarily decreasing kernel}, Appl. Math. Comput. Vol. 167, No. 2 (2005), 1221-1235. \bibitem{m3} S. Messaoudi; \emph{General decay of solutions of a viscoelastic equation}, J. Math. Anal. Appl. 341 (2) (2008), 1457-1467. \bibitem{m4} S. Messaoudi, M. I. Mustafa; \emph{A general result in a memory-type Timoshenko system}, Comm. Pure Appl. Anal. Issue 2 (2013), 957-972. \bibitem{m5} S. Messaoudi, B. Said-Houari; \emph{Uniform decay in a Timoshenko-type system with past history}, J. Math. Anal. Appl. 360 (2) (2009), 459-475. \bibitem{m6} J. E. Munoz Rivera, F. P. Quispe Gomez; \emph{Existence and decay in non linear viscoelasticity}, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 6 (2003), 1-37. \bibitem{p1} V. Pata; \emph{Exponential stability in linear viscoelasticity}, Quart. Appl. Math. Volume LXIV, No. 3 (2006), 499-513. \bibitem{r1} C. A. Rapaso, J. Ferreira, M. L. Santos, N. N. Castro; \emph{Exponential stabilization for the Timoshenko system with two weak dampings}, Appl. Math. Lett. 18 (2005), 535-541. \bibitem{r2} J. E. M. Rivera, R. Racke; \emph{Mildly dissipative nonlinear Timoshenko systems: Global existence and exponential stability}, J. Math. Anal. Appl. 276 (1) (2002), 248-278. \bibitem{r3} J. E. M. Rivera, R. Racke; \emph{Global stability for damped Timoshenko systems}, Discrete Contin. Dyn. Syst. 9 (2003) 6, 1625-1639. \bibitem{s1} D. H. Shi, D. X. Feng; \emph{Exponential decay of Timoshenko beam with locally distributed feedback}, IMA J. Math. Control Inform. 18 (3) (2001), 395-403. \bibitem{s2} D. H. Shi, S. H. Hou, D. X. Feng; \emph{Feedback stabilization of a Timoshenko beam with an end mass}, Int. J. Control 69 (1998), 285-300. \bibitem{s3} A. Soufyane, Wehbe; \emph{Uniform stabilization for the Timoshenko beam by a locally distributed damping}, Electron. J. Diff. Eqs. 29 (2003), 1-14. \bibitem{t1} N.-e. Tatar; \emph{Long time behavior for a viscoelastic problem with a positive definite kernel}, Australian J. Math. Anal. Appl. Vol. 1 Issue 1, Article 5, (2004), 1-11. \bibitem{t2} N.-e. Tatar; \emph{Exponential decay for a viscoelastic problem with a singular problem}, Zeit. Angew. Math. Phys., Vol. 60 No. 4 (2009), 640-650. \bibitem{t3} N.-e. Tatar; \emph{On a large class of kernels yielding exponential stability in viscoelasticity}, Appl. Math. Comp. 215 (6), (2009), 2298-2306. \bibitem{t4} N.-e. Tatar; \emph{Viscoelastic Timoshenko beams with occasionally constant relaxation functions}, Appl. Math. Optim. 66 (1) (2012), 123-145. \bibitem{t5} N.-e. Tatar; \emph{Exponential decay for a viscoelastically damped Timoshenko beam}, Acta Math. Sci. Ser. B Engl. Ed. 33 (2) (2013), 505-524. \bibitem{t6} N.-e. Tatar; \emph{Stabilization of a viscoelastic Timoshenko beam}, Appl. Anal.: An International Journal, 92 (1) (2013), 27-43. \bibitem{w1} J.-M. Wang, G.-Q. Xu, S.-P. Yung; \emph{Exponential stabilization of laminated beams with structural damping and boundary feedback controls}, SIAM J. Control Optim. 44 (5) (2005), 1575-1597. \bibitem{x1} G. Q. Xu; \emph{Feedback exponential stabilization of a Timoshenko beam with both ends free}, Int. J. Control 72 (4) (2005), 286-297. \bibitem{y1} Q. Yan, D. Feng; \emph{Boundary stabilization of nonuniform Timoshenko beam with a tipload}, Chin. Ann. Math. 22 (2001) 4, 485-494. \end{thebibliography} \end{document}