\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 132, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/132\hfil Entire functions sharing small functions] {Entire functions sharing small functions with their difference operators} \author[Z. Latreuch, A. EL Farissi, B. Bela\"idi \hfil EJDE-2015/132\hfilneg] {Zinel\^aabidine Latreuch, Abdallah EL Farissi, Benharrat Bela\"idi} \address{Zinel\^aabidine Latreuch \newline Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), B. P. 227 Mostaganem, Algeria} \email{z.latreuch@gmail.com} \address{Abdallah EL Farissi \newline Department of Mathematics and Informatics, Faculty of Exact Sciences, University of Bechar, Algeria} \email{elfarissi.abdallah@yahoo.fr} \address{Benharrat Bela\"idi \newline Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), B. P. 227 Mostaganem, Algeria} \email{belaidi@univ-mosta.dz} \thanks{Submitted February 16, 2015. Published May 10, 2015.} \subjclass[2010]{30D35, 39A32} \keywords{Uniqueness; entire functions; difference operators} \begin{abstract} We study the uniqueness for entire functions that share small functions of finite order with difference operators applied to the entire functions. In particular, we generalize of a result in \cite{c1}. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction and Main Results} In this article, we assume that the reader is familiar with the fundamental results and the standard notation of the Nevanlinna's value distribution theory \cite{h3,l1,y1}. In addition, we will use $\rho (f) $ to denote the order of growth of $f$ and $\tau (f) $ to denote the type of growth of $f$, we say that a meromorphic function $a(z) $ is a small function of $f(z) $ if $T(r,a) =S(r,f) $, where $S(r,f) =o(T(r,f) )$, as $r\to \infty $ outside of a possible exceptional set of finite logarithmic measure, we use $S(f) $ to denote the family of all small functions with respect to $f(z) $. For a meromorphic function $f(z) $, we define its shift by $f_c(z) =f(z+c) $ (Resp. $f_0(z) =f(z)$) and its difference operators by \begin{equation*} \Delta _cf(z) =f(z+c) -f(z) ,\quad \Delta _c^{n}f(z) =\Delta _c^{n-1}(\Delta_cf(z) ) ,\quad n\in \mathbb{N},\; n\geq 2. \end{equation*} In particular, $\Delta _c^{n}f(z) =\Delta ^{n}f(z) $ for the case $c=1$. Let $f(z) $ and $g(z) $ be two meromorphic functions, and let $a(z) $ be a small function with respect to $f(z) $ and $g(z) $. We say that $f(z) $ and $g(z) $ share $a(z)$ counting multiplicity (for short CM), provided that $f(z) -a(z) $ and $g(z) -a(z) $ have the same zeros including multiplicities. The problem of meromorphic functions sharing small functions with their differences is an important topic of uniqueness theory of meromorphic functions (see \cite{b1,c3,h1,h2}). In 1986, Jank, Mues and Volkmann \cite{j1} proved the following result. \begin{theorem} \label{thmA} Let $f$ be a nonconstant meromorphic function, and let $a\neq 0$ be a finite constant. If $f$, $f'$ and $f''$ share the value $a$ CM, then $f\equiv f'$. \end{theorem} Li and Yang \cite{l3} gave the following generalization of Theorem \ref{thmA}. \begin{theorem} \label{thmB} Let $f$ be a nonconstant entire function, let $a$ be a finite nonzero constant, and let $n$ be a positive integer. If $f$, $f^{(n)}$ and $f^{(n+1) }$ share the value $a$ CM, then $f\equiv f'$. \end{theorem} Chen et al \cite{c1} proved a difference analogue of result of Theorem \ref{thmA} and obtained the following results. \begin{theorem} \label{thmC} Let $f(z) $ be a nonconstant entire function of finite order, and let $a(z) (\not\equiv 0) \in S(f) $ be a periodic entire function with period $c$. If $f(z)$, $\Delta _cf$ and $\Delta _c^{2}f$ share $a(z) $ CM, then $\Delta _cf\equiv \Delta _c^{2}f$. \end{theorem} \begin{theorem} \label{thmD} Let $f(z) $ be a nonconstant entire function of finite order, and let $a(z) $, $b(z) (\not\equiv 0) \in S(f) $ be periodic entire functions with period $c$. If $f(z) -a(z)$,$\Delta _cf(z) -b(z) $ and $\Delta _c^{2}f(z) -b(z) $ share $0$ CM, then $\Delta _cf\equiv \Delta _c^{2}f$. \end{theorem} Recently Chen and Li \cite{c2} generalized Theorem \ref{thmC} and proved the following results. \begin{theorem} \label{thmE} Let $f(z) $ be a nonconstant entire function of finite order, and let $a(z) (\not\equiv 0) \in S(f) $ be a periodic entire function with period $c$. If $f(z)$, $\Delta _cf$ and $\Delta _c^{n}f$ $(n\geq 2) $ share $a(z) $ CM, then $\Delta _cf\equiv \Delta _c^{n}f$. \end{theorem} \begin{theorem} \label{thmF} Let $f(z) $ be a nonconstant entire function of finite order. If $f(z)$, $\Delta _cf(z) $ and $\Delta _c^{n}f(z) $ share $0$ CM, then $\Delta _c^{n}f(z) =C\Delta _cf(z) $, where $C$ is a nonzero constant. \end{theorem} It is interesting to see what happen when $f(z) $, $\Delta _c^{n}f(z) $ and $\Delta_c^{n+1}f(z) $ $(n\geq 1) $ share $a(z) $ CM. The aim of this article is to give a difference analogue of result of Theorem \ref{thmB}. In fact, we prove that the conclusion of Theorems \ref{thmE} and \ref{thmF} remain valid when we replace $\Delta _cf(z) $ by $\Delta _c^{n+1}f(z) $. We obtain the following results. \begin{theorem} \label{thm1.1} Let $f(z) $ be a nonconstant entire function of finite order, and let $a(z) (\not\equiv 0) \in S(f) $ be a periodic entire function with period $c$. If $f(z) $, $\Delta _c^{n}f(z) $ and $\Delta _c^{n+1}f(z) $ $(n\geq 1) $ share $a(z) $ CM, then $\Delta _c^{n+1}f(z) \equiv \Delta _c^{n}f(z) $. \end{theorem} \begin{example} \label{examp1.1}\rm Let $f(z) =e^{z\ln 2}$ and $c=1$. Then, for any $a\in \mathbb{C}$, we notice that $f(z) $, $\Delta _c^{n}f(z) $ and $\Delta _c^{n+1}f(z) $ share $a$ CM for all $n\in \mathbb{N}$ and we can easily see that $\Delta _c^{n+1}f(z) \equiv \Delta _c^{n}f(z) $. This example satisfies Theorem \ref{thm1.1}. \end{example} \begin{remark} \label{rmk1.1}\rm In Example \ref{examp1.1}, we have $\Delta_c^{m}f(z) \equiv \Delta _c^{n}f(z) $ for any integer $m>n+1$. However, it remains open when $f(z) $, $\Delta _c^{n}f(z) $ and $\Delta _c^{m}f(z) $ $(m>n+1) $ share $a(z) $ CM, the claim $\Delta _c^{n+1}f(z) \equiv \Delta _c^{n}f(z) $ in Theorem \ref{thm1.1} can be replaced by $\Delta_c^{m}f(z) \equiv \Delta _c^{n}f(z) $ in general. \end{remark} \begin{theorem} \label{thm1.2} Let $f(z) $ be a nonconstant entire function of finite order, and let $a(z) $, $b(z) (\not\equiv 0) \in S(f) $ be a periodic entire function with period $c$. If $f(z) -a(z)$, $\Delta _c^{n}f(z)-b(z) $ and $\Delta _c^{n+1}f(z)-b(z) $ share $0$ CM, then $\Delta _c^{n+1}f(z) \equiv \Delta _c^{n}f(z) $. \end{theorem} \begin{theorem} \label{thm1.3} Let $f(z) $ be a nonconstant entire function of finite order. If $f(z)$, $\Delta _c^{n}f(z) $ and $\Delta _c^{n+1}f(z) $ share $0$ CM, then $\Delta _c^{n+1}f(z) \equiv C\Delta _c^{n}f(z)$, where $C$ is a nonzero constant. \end{theorem} \begin{example} \label{examp1.2} Let $f(z) =e^{az}$ and $c=1$ where $a\neq 2k\pi i$ $(k\in \mathbb{Z}) $, it is clear that $\Delta _c^{n}f(z) =(e^{a}-1) ^{n}e^{az}$ for any integer $n\geq 1$. So, $f(z)$, $\Delta _c^{n}f(z) $ and $\Delta _c^{n+1}f(z) $ share $0$ CM for all $n\in\mathbb{N} $ and we can easily see that $\Delta _c^{n+1}f(z) \equiv C\Delta _c^{n}f(z) $ where $C=e^{a}-1$. This example satisfies Theorem \ref{thm1.3}. \end{example} \section{Some lemmas} \begin{lemma}[\cite{l2}] \label{lem2.1} Let $f$ and $g$ be meromorphic functions such that $0<\rho (f)$, $\rho (g) <\infty $ and $0<\tau (f) ,\tau (g) <\infty $. Then we have \begin{itemize} \item[(i)] If $\rho (f) >\rho (g) $, then we obtain \begin{equation*} \tau (f+g) =\tau (fg) =\tau (f) . \end{equation*} \item[(ii)] If $\rho (f) =\rho (g) $ and $\tau (f) \neq \tau (g) $, then \begin{equation*} \rho (f+g) =\rho (fg) =\rho (f) =\rho (g) . \end{equation*} \end{itemize} \end{lemma} \begin{lemma}[\cite{y1}] \label{lem2.2} Suppose $f_{j}(z) $ $(j=1,2,\dots ,n+1)$ and $g_{j}( z)$ $(j=1,2,\dots ,n)$ $(n\geq 1)$ are entire functions satisfying the following two conditions: \begin{itemize} \item[(i)] $\sum_{j=1}^n f_{j}(z) e^{g_{j}(z) }\equiv f_{n+1}(z)$; \item[(ii)] The order of $f_{j}(z) $ is less than the order of $e^{g_{k}(z)}$ for $1\leq j\leq n+1$, $1\leq k\leq n$. Furthermore, the order of $f_{j}(z) $is less than the order of $e^{g_{h}(z) -g_{k}(z) }$ for $n\geq 2$ and $1\leq j\leq n+1$, $1\leq hm$, then we obtain from \eqref{e3.14} that $\deg P\leq m$ which is a contradiction. (ii) If $\deg P1$ and \begin{equation*} P(z) =b_{m}z^{m}+b_{m-1}z^{m-1}+\dots +b_0,\quad (b_{m}\neq 0) . \end{equation*} Note that for $j=0,1,\dots ,n$, we have \begin{equation*} P(z+jc) =b_{m}z^{m}+(b_{m-1}+mb_{m}jc) z^{m-1}+\beta_{j}(z) , \end{equation*} where $\beta _{j}(z) $ are polynomials with degree less than $m-1$. Rewrite \eqref{e3.15} as \begin{equation} \begin{aligned} &e^{-\beta _{n}(z) }e^{-b_{m}z^{m}-(b_{m-1}+mb_{m}nc)z^{m-1}}\\ &-ne^{-\beta _{n-1}(z) }e^{-b_{m}z^{m}-(b_{m-1}+mb_{m}(n-1) c) z^{m-1}} +\dots \\ &+(-1) ^{n}e^{-\beta _0(z)}e^{-b_{m}z^{m}-b_{m-1}z^{m-1}}\equiv 0. \end{aligned} \label{e3.16} \end{equation} For any $0\leq l1$, then we go back to case (ii). It easy to see that \begin{align*} \Delta _c^{n}e^{-P} &=\sum_{i=0}^n C_{n}^{i}(-1) ^{n-i} e^{-\mu (z+ic) -\eta }\\ &=e^{-P} \sum_{i=0}^n C_{n}^{i}(-1) ^{n-i}e^{-\mu ic}\\ &=e^{-P}(e^{-\mu c}-1) ^{n}. \end{align*} This together with $\Delta _c^{n}e^{-P}\equiv 0$ gives $(e^{-\mu c}-1) ^{n}\equiv 0$, which yields $e^{\mu c}\equiv 1$. Therefore, for any $j\in \mathbb{Z}$, \begin{equation*} e^{P(z+jc) }=e^{\mu z+\mu jc+\eta }=(e^{\mu c}) ^{j}e^{P(z) }=e^{P(z) }. \end{equation*} To prove that $e^{Q(z) }$ is also periodic entire function with period $c$, we suppose the contrary, which means that $e^{\alpha c}\neq 1$. Since $e^{P(z) }$ is of period $c$, then by \eqref{e3.14}, we obtain \begin{equation} \alpha _{1}e^{(\alpha -\mu ) z}+\alpha _{2}e^{2(\alpha -\mu ) z}+\dots +\alpha _{n}e^{n(\alpha -\mu ) z} =e^{\mu z+\eta }, \label{e3.17} \end{equation} where $\alpha _{i}$ $(i=1,\dots ,n) $ are constants. In particular, \begin{equation*} \alpha _{n}=e^{n(\beta -\eta ) +\alpha c\frac{n(n-1)}{2}} \end{equation*} and \begin{align*} \alpha _{1} &=\Big[ \sum_{i=1}^n C_{n}^{i}(-1) ^{n-i} +\sum_{i=2}^n C_{n}^{i}(-1) ^{n-i}e^{\alpha c} \\ &\quad+ \sum_{i=3}^n C_{n}^{i}(-1)^{n-i}e^{2\alpha c} +\dots +e^{(n-1) \alpha c}] e^{(\beta -\eta ) } \\ &=\Big[C_{n}^{1}(-1) ^{n-1}+C_{n}^{2}(-1) ^{n-2}(1+e^{\alpha c}) +C_{n}^{3}(-1) ^{n-3}(1+e^{\alpha c}+e^{2\alpha c}) \\ &\quad +\dots +C_{n}^{n}(-1) ^{n-n}(1+e^{\alpha c}+\dots +e^{(n-1) \alpha c}) \Big]e^{(\beta -\eta ) } \\ &=\Big[C_{n}^{1}(-1) ^{n-1}\frac{e^{\alpha c}-1}{e^{\alpha c}-1} +C_{n}^{2}(-1) ^{n-2}\frac{e^{2\alpha c}-1}{e^{\alpha c}-1} +C_{n}^{3}(-1) ^{n-3}\frac{e^{3\alpha c}-1}{e^{\alpha c}-1} \\ &\quad +\dots +C_{n}^{n}(-1) ^{n-n}\frac{e^{n\alpha c}-1}{e^{\alpha c}-1}]e^{(\beta -\eta ) } \\ &=\Big[C_{n}^{1}(-1) ^{n-1}(e^{\alpha c}-1) +C_{n}^{2}(-1) ^{n-2}(e^{2\alpha c}-1) +C_{n}^{3}(-1) ^{n-3}(e^{3\alpha c}-1) \\ &\quad +\dots +C_{n}^{n}(-1) ^{n-n}(e^{n\alpha c}-1) \Big] \frac{e^{(\beta -\eta ) }}{e^{\alpha c}-1} \\ &=\Big[ \underset{i=0}{\overset{n}{\sum }}C_{n}^{i}(-1) ^{n-i}e^{i\alpha c}-(-1) ^{n}-\sum_{i=1}^n C_{n}^{i}(-1) ^{n-i}\Big] \frac{e^{(\beta -\eta ) } }{e^{\alpha c}-1} \\ &=(e^{\alpha c}-1) ^{n-1}e^{(\beta -\eta ) }. \end{align*} Rewrite \eqref{e3.17} as \begin{equation} \alpha _{1}e^{(\alpha -2\mu ) z}+\alpha _{2}e^{(2\alpha -3\mu ) z}+\dots +\alpha _{n}e^{(n\alpha -(n+1) \mu ) z}=e^{\eta }, \label{e3.18} \end{equation} it is clear that for each $1\leq l0$, from the equation \eqref{e3.12}, we see \begin{equation*} \deg P\leq \deg P-1, \end{equation*} which is a contradiction. Then $P(z) $ must be a constant and since $h(z) =Q(z) -P(z) $ is a constant, we deduce that both of $P(z) $ and $Q(z) $ is constant. This case is impossible too (the last case in Part (1)), and we deduced that $h(z) $ can not be a constant. Thus, the proof complete. \end{proof} \begin{proof}[Proof of the Theorem \ref{thm1.2}] Setting $g(z)=f(z) +b(z) -a(z) $, we can remark that \begin{gather*} g(z) -b(z) =f(z) -a(z) , \\ \Delta _c^{n}g(z) -b(z) =\Delta _c^{n}f(z) -b(z), \\ \Delta _c^{n+1}g(z) -b(z) =\Delta _c^{n}f(z) -b(z) ,\; n\geq 2. \end{gather*} Since $f(z) -a(z)$, $\Delta _c^{n}f(z) -b(z) $ and $\Delta _c^{n+1}f(z) -b(z) $ share $0$ CM, it follows that $g(z)$, $\Delta _c^{n}g(z) $ and $\Delta _c^{n+1}g(z) $ share $b(z) $ CM. By using Theorem \ref{thm1.1}, we deduce that $\Delta _c^{n+1}g(z) \equiv \Delta _c^{n}g(z) $, which leads to $\Delta _c^{n+1}f(z) \equiv \Delta _c^{n}f(z) $ and the proof complete. \end{proof} \begin{proof}[Proof of the Theorem \ref{thm1.3}] Note that $f(z) $ is a nonconstant entire function of finite order. Since $f(z)$, $\Delta _c^{n}f(z) $ and $\Delta _c^{n+1}f(z) $ share $0$ CM, it follows that \begin{gather} \frac{\Delta _c^{n}f(z) }{f(z) }=e^{P(z) }, \label{e3.22} \\ \frac{\Delta _c^{n+1}f(z) }{f(z) }=e^{Q(z) }, \label{e3.23} \end{gather} where $P$ and $Q$ are polynomials. If $Q-P$ is a constant, then we can get easily from \eqref{e3.22} and \eqref{e3.23} \begin{equation*} \Delta _c^{n+1}f(z) =e^{Q(z) -P(z)}\Delta _c^{n}f(z) :\equiv C\Delta _c^{n}f(z) . \end{equation*} This completes the proof. If $Q-P$ is a not constant, with a similar arguing as in the proof of Theorem \ref{thm1.1}, we can deduce that the case $\deg P=\deg (Q-P) >1$ is impossible. For the case $\deg P=\deg (Q-P) =1$, we can obtain that $e^{P(z) }$ is periodic entire function with period $c$. This together with \eqref{e3.22} yields \begin{equation} \Delta _c^{n+1}f(z) =e^{P(z) }\Delta _cf(z) \label{e3.24} \end{equation} which means that $f(z)$, $\Delta _cf(z) $ and $\Delta _c^{n+1}f(z) $ share $0$ CM. Thus, by Theorem \ref{thmF}, we obtain \begin{equation*} \Delta _c^{n+1}f(z) \equiv C\Delta _cf(z) \end{equation*} which is a contradiction to \eqref{e3.22} and $\deg P=1$. Theorem \ref{thm1.3} is thus proved. \end{proof} \subsection*{Acknowledgements.} The authors are grateful to the anonymous referees for their valuable comments which lead to the improvement of this paper. \begin{thebibliography}{00} \bibitem{b1} W. Bergweiler, J. K. Langley; \emph{Zeros of differences of meromorphic functions}, Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 1, 133--147. \bibitem{c1} B. Chen, Z. X. Chen, S. Li; \emph{Uniqueness theorems on entire functions and their difference operators or shifts}, Abstr. Appl. Anal. 2012, Art. ID 906893, 8 pp. \bibitem{c2} B. Chen, S. Li; \emph{Uniquness problems on entire functions that share a small function with their difference operators}, Adv. Difference Equ. 2014, 2014:311, 11 pp. \bibitem{c3} Y. M. Chiang, S. J. Feng; \emph{On the Nevanlinna characteristic of $f(z+\eta ) $ and difference equations in the complex plane}, Ramanujan J. 16 (2008), no. 1, 105-129. \bibitem{h1} R. G. Halburd, R. J. Korhonen; \emph{ Difference analogue of the lemma on the logarithmic derivative with applications to difference equations}, J. Math. Anal. Appl. 314 (2006), no. 2, 477-487. \bibitem{h2} R. G. Halburd, R. J. Korhonen; \emph{Nevanlinna theory for the difference operator}, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463--478. \bibitem{h3} W. K. Hayman; \emph{Meromorphic functions}, Oxford Mathematical Monographs Clarendon Press, Oxford 1964. \bibitem{j1} G. Jank. E. Mues, L. Volkmann; \emph{ Meromorphe Funktionen, die mit ihrer ersten und zweiten Ableitung einen endlichen Wert teilen}, Complex Variables Theory Appl. 6 (1986), no. 1, 51--71. \bibitem{l1} I. Laine; \emph{Nevanlinna theory and complex differential equations}, de Gruyter Studies in Mathematics, 15. Walter de Gruyter \& Co., Berlin, 1993. \bibitem{l2} Z. Latreuch, B. Bela\"{\i}di; \emph{Estimations about the order of growth and the type of meromorphic functions in the complex plane}, An. Univ. Oradea, Fasc. Matematica, Tom XX (2013), Issue No. 1, 179-186. \bibitem{l3} P. Li, C. C. Yang; \emph{Uniqueness theorems on entire functions and their derivatives}, J. Math. Anal. Appl. 253 (2001), no. 1, 50--57. \bibitem{y1} C. C. Yang, H. X. Yi; \emph{Uniqueness theory of meromorphic functions}, Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003. \end{thebibliography} \end{document}