\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 139, pp. 1--15.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/139\hfil Laplace transform] {Laplace transform of fractional order differential equations} \author[S. Liang, R. Wu, L. Chen \hfil EJDE-2015/139\hfilneg] {Song Liang, Ranchao Wu, Liping Chen} \address{Song Liang \newline School of Mathematics, Anhui University, Hefei 230601, China} \email{songliangeq@163.com} \address{Ranchao Wu \newline School of Mathematics, Anhui University, Hefei 230601, China} \email{rcwu@ahu.edu.cn} \address{Liping Chen \newline School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China} \email{lip\_chenhut@126.com} \thanks{Submitted October 10, 2014. Published May 20, 2015.} \subjclass[2010]{26A33, 34A08, 34K37, 44A10} \keywords{Fractional-order differential equation; Laplace transform; \hfill\break\indent exponential order} \begin{abstract} In this article, we show that Laplace transform can be applied to fractional system. To this end, solutions of linear fractional-order equations are first derived by a direct method, without using Laplace transform. Then the solutions of fractional-order differential equations are estimated by employing Gronwall and H\"older inequalities. They are showed be to of exponential order, which are necessary to apply the Laplace transform. Based on the estimates of solutions, the fractional-order and the integer-order derivatives of solutions are all estimated to be exponential order. As a result, the Laplace transform is proved to be valid in fractional equations. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} Fractional calculus is generally believed to have stemmed from a question raised in the year 1695 by L'Hopital and Leibniz. It is the generalization of integer-order calculus to arbitrary order one. Frequently, it is called fractional-order calculus, including fractional-order derivatives and fractional-order integrals. Reviewing its history of three centuries, we could find that fractional calculus were mainly interesting to mathematicians for a long time, due to its lack of application background. However, in the previous decades more and more researchers have paid their attentions to fractional calculus, since they found that the fractional-order derivatives and fractional-order integrals were more suitable for the description of the phenomena in the real world, such as viscoelastic systems, dielectric polarization, electromagnetic waves, heat conduction, robotics, biological systems, finance and so on; see, for example, \cite{Ahmed,Butzer,Hilfer,Kilbas,Laskin,Ozalp,Podlubny,Samko}. Owing to great efforts of researchers, there have been rapid developments on the theory of fractional calculus and its applications, including well-posedness, stability, bifurcation and chaos in fractional differential equations and their control. Several useful tools for solving fractional-order equations have been discovered, of which Laplace transform is frequently applied. Furthermore, it is showed to be most efficient and helpful in analysis and applications of fractional-order systems, from which some results could be derived immediately. For instance, in \cite{Li1,Li2}, the authors investigated stability of fractional-order nonlinear dynamical systems using Laplace transform method and Lyapunov direct method, with the introduction of Mittag-Leffler stability and generalized Mittag-Leffler stability concepts. In \cite{Deng}, Deng et al studied the stability of $n$-dimensional linear fractional differential equation with time delays by Laplace transform method. In \cite{Sabatier}, Jocelyn Sabatier et al obtained the stability conditions in the form of linear matrix inequality (LMI) for fractional-order systems by using Laplace transform. The Laplace transform was also used in \cite{Gao,Hamamci,MaltiA,MaltiM,Mesbahi,Ye}. Although it is often used in analyzing fractional-order systems, the validity of Laplace transform to fractional systems is seldom touched upon when it is applied to fractional systems. In this paper, its validity to fractional systems will be justified. It is showed that Laplace transform could be applied to fractional systems under certain conditions. To this end, solutions of linear fractional-order equations are first derived by direct method, without using the Laplace transform. The obtained results match those obtained by the Laplace transform very well. The method provides an alternative way of solution, different from the Laplace transform. Then solutions of fractional-order differential equations are estimated. They are showed to be of exponential order, which is necessary to apply the Laplace transform. Finally, the Laplace transform is proved to be feasible in fractional equations. The article is organized as follows. In Section 2, some preliminaries about fractional calculus are presented. In Section 3, solutions of linear fractional-order equations are expressed by the direct method, without using Laplace transform. Section 4 is devoted to the estimates of solutions of fractional-order equations. The Laplace transform is proved to be valid in fractional-order equations in Section 5. Finally, some conclusions are drawn in Section 6. \section{Preliminaries} In fractional calculus, the traditional integer-order integrals and derivatives of functions are generalized to fractional-order ones, which are commonly defined by Laplace convolution operation as follows. \begin{definition}[{\cite[p. 92]{Kilbas}}] \rm Caputo fractional derivative with order $\alpha$ for a function $x(t)$ is defined as $$ {}^{C}D^{\alpha}_{t_0}x(t)=\frac{1}{\Gamma(m-\alpha)} \int^{t}_{t_0}(t-\tau)^{m-\alpha-1}x^{(m)}(\tau)d\tau, $$ where $0\leq m-1\leq\alpha0$ for a function $x: \mathbb{R}^{+} \mathbb{R} $ is defined as $$ I_{t_0}^{\alpha}f(t)=\frac{1}{F(\alpha)} \int^{t}_{t_0}(t-\tau)^{\alpha-1}f(\tau)d\tau, $$ where $t=t_0$ is the initial time and $\Gamma(.)$ is the Gamma function. \end{definition} \begin{definition}[{\cite[p. 70]{Kilbas}}] \rm Riemann-Liouville fractional derivative with order $\alpha$ for a function $x: \mathbb{R}^{+} \mathbb{R} $ is defined as $$ {}^{RL}D^{\alpha}_{t_0}x(t)=\frac{1}{\Gamma(m-\alpha)}\frac{d^{m}}{dt^{m}} \int^{t}_{t_0}(t-\tau)^{m-\alpha-1}x(\tau) d\tau, $$ where $0\leq m-1\leq\alpha0$, $z\in C$. The two-parameter Mittag-Leffler function is defined as $$ E_{\alpha,\beta}(z)=\sum_{k=0}^{\infty}\frac{z^{k}}{\Gamma(ka+\beta)}, $$ where $\alpha>0$, $\beta>0$, $z\in C$. \end{definition} There are some properties between fractional-order derivatives and fractional-order integrals, which are expressed as follows. \begin{lemma}[{\cite[pp. 75-76, 96]{Kilbas}}]\label{lem2.5} \rm Let $\alpha >0$, $n=[\alpha]+1$ and $f_{n-\alpha}(t)=(I^{n-\alpha}_{a}f)(t)$. Then fractional integrals and fractional derivatives have the following properties. % 3.1 (1) If $f(t)\in L^1(a,b)$ and $f_{n-\alpha}(t)\in AC^n[a,b]$, then $$ (I^{\alpha}_{a}{^{RL}}D^{\alpha}_{a}f)(t) =f(t)-\sum^{n}_{j=1}\frac{f^{(n-j)}_{n-\alpha}(a)} {\Gamma(a-j+1)}(t-a)^{\alpha-j}, $$ holds almost everywhere in $[a,b]$. (2) If $f(t)\in AC^n[a,b]$ or $f(t)\in C^n[a,b]$, then $$ (I^{\alpha}_{a}{^{C}}D^{\alpha}_{a}f)(t) =f(t)-\sum^{n-1}_{k=0}\frac{f^{(k)}(a)}{k!}(t-a)^{k}. $$ \end{lemma} Note that the Laplace transform is a useful tool for analyzing and solving ordinary and partial differential equations. The definition of Laplace transform and some applications to integer-order systems are recalled from \cite{Schiff}. They will be useful for later analysis. \begin{definition}[{\cite[pp. 1-2]{Schiff}}] \rm The Laplace transform of $f$ is defined as $$ F(s)=\mathcal{L}(f(t))(s)=\int^{\infty}_{0}e^{-st}f(t)dt =\lim_{\tau\to\infty} \int^{\tau}_{0}e^{-st}f(t)dt, $$ whenever the limit exists (as a finite number). \end{definition} \begin{definition}[{\cite[p. 10]{Schiff}}] \rm A function $f$ is piecewise continuous on the interval $[0,\infty)$ if (i) $\lim_{t\to0^{+}} f(t)=f(0^{+})$ exists and (ii) $f$ is continuous on every finite interval $(0, b)$ except possibly at a finite number of points $\tau_1,\tau_2,\dots,\tau_n$ in $(0, b)$ at which $f$ has a jump discontinuity. \end{definition} \begin{definition}[{\cite[p. 12]{Schiff}}] \rm A function $f$ is of exponential order $\gamma$ if there exist constants $M>0$ and $\gamma$ such that for some $t_0>0$ such that $|f(t)|\leq Me^{\gamma t}$ for $t\geq t_0$. \end{definition} Some existence results of Laplace transform for functions and their derivatives are listed as follows. \begin{theorem}[{\cite[p. 13]{Schiff}}] If $f$ is piecewise continuous on $[0,\infty)$ and of exponential order $\gamma$, then the Laplace transform $\mathcal{L}(f(t))$ exists for $\operatorname{Re}(s) > \gamma$ and converges absolutely. \end{theorem} \begin{theorem}[{\cite[p. 56]{Schiff}}] \label{thm2.10} If we assume that $f'$ is continuous $[0,\infty)$ and also of exponential order, then it follows that the same is true of $f$. \end{theorem} \begin{theorem} [{\cite[p. 57]{Schiff}}] \label{thm2.11} Suppose that $f(t), f'(t),\dots,f^{(n-1)}(t)$ are continuous on $(0,\infty)$ and of exponential order, while $f^{(n)}(t)$ is piecewise continuous on $[0,\infty)$. Then $$ \mathcal{L}(f^{(n)}(t))(s)=s^n\mathcal{L}(f(t))-s^{n-1}f(0+)-s^{n-2}f'(0+) -\dots-f^{(n-1)}(0+). $$ \end{theorem} Although the Laplace operator can be applied to many functions, there are some functions, to which it could not be applied, see for example \cite[p.6]{Schiff}. The following inequalities will also be helpful for later analysis. \begin{lemma}[\cite{Ye}] Suppose $\beta >0$, $a(t)$ is a nonnegative function locally integrable on $0\leq t0$, $u(t)$ and $a(t)$ are locally integrable on $0\leq t0$ such that $\|f(x) \|\leq L\|x\|$; \item[(ii)] $d(t)$ is bounded, that is, there exists a constant $M>0$ such that $\|d(t)\|\leq M$. \end{itemize} Then we have the following result. \begin{theorem}\label{thm4.1} When $t>1$, $D$ denotes $^CD$ or $^{RL}D$ and \eqref{4.1} satisfies assumptions {\rm (i)} and {\rm (ii)}, then the solution of \eqref{4.1} satisfies \begin{equation} \|x(t)\|\leq \widetilde{M}_1e^{p_1t}, \end{equation} where \begin{gather*} p_1=\frac{2^{h-1}(\|A\|+L)^h\Gamma^{\frac{h}{v}}(va-v+1)} {hv^{\alpha h-h+\frac{h}{v}}\Gamma^h (\alpha)}+\alpha+1, \\ h=1+\frac{1}{\alpha},\quad v=1+\alpha,\quad \widetilde{M}_1=\frac{1}{2}(l+1)\overline{M}, \\ \begin{aligned} \overline{M} =\max\Big\{&\frac{\|x_{l-1}^{(l-\alpha)}(0)\|}{\Gamma(\alpha-1+1)}, \frac{\|x_{l-2}^{((l-\alpha))}(0)\|} {\Gamma(\alpha-2+1)},\dots, \frac{\|x_{0}^{(l-\alpha)}(0)\|}{\Gamma(\alpha-l+1)},\\ &\frac{M}{\Gamma(\alpha+1)}\frac{\|x(0)\|}{0!}, \frac{\|x'(0)\|}{1!}, \dots,\frac{\|x^{(l-1)}(0)\|}{(l-1)!}\Big\}. \end{aligned} \end{gather*} \end{theorem} \begin{proof} Applying the operator $I_{0}^{\alpha}$ on both sides of \eqref{4.1}, we have \begin{equation}\label{4.3} x(t)=u(t)+\frac{1}{\Gamma (\alpha)}\int^{t}_{0}(t-\tau)^{\alpha-1}(Ax(\tau)+f(x(\tau))+d(\tau))d\tau, \end{equation} where \[ u(t)=\begin{cases} \sum^{l}_{j=1}\frac{x^{(l-j)}_{l-\alpha}(0)}{\Gamma(a-j+1)}t^{a-j}, & D={^{RL}D},\\ \sum^{l-1}_{j=0}\frac{x^{(j)}(0)}{j!}t^{j},& D={^{C}D}. \end{cases} \] Taking norms of both sides of \eqref{4.3}, one obtains \begin{equation} \|x(t)\|\leq\|u(t)\|+\frac{1}{\Gamma (\alpha)} \int^{t}_{0}(t-\tau)^{\alpha-1}(\|A\|\|x(\tau)\|+\|f(x(\tau))\| +\|d(\tau)\|)d\tau, \end{equation} where \[ \|u(t)\|\leq \begin{cases} \sum^{l}_{j=1}\frac{\|x^{(l-j)}_{l-\alpha}(0)\|}{\Gamma(a\alpha-j+1)}t^{\alpha-j}, & D={^{RL}D},\\ \sum^{l-1}_{j=0}\frac{\|x^{(j)}(0)\|}{j!}t^{j},& D={^{C}D}. \end{cases} \] From assumptions (i) and (ii), one has \begin{equation}\label{4.5} \begin{aligned} \|x(t)\| &\leq \|u(t)\|+\frac{1}{\Gamma (\alpha)} \int^{t}_{0}(t-\tau)^{\alpha-1}[(\|A\|+L)\|x(\tau)\|+M]d\tau \\ &= \|u(t)\|+\frac{Mt^{\alpha}}{\Gamma(\alpha+1)} +\frac{1}{\Gamma (\alpha)}\int^{t}_{0}(t-\tau)^{\alpha-1} (\|A\|+L)\|x(\tau)\|d\tau. \end{aligned} \end{equation} Let $t>1$, $\hat{M}=(l+1)\overline{M}$ and \begin{align*} \overline{M} =\max\Big\{&\frac{\|x_{l-1}^{(l-\alpha)}(0)\|}{\Gamma(\alpha-1+1)}, \frac{\|x_{l-2}^{((l-\alpha))}(0)\|} {\Gamma(\alpha-2+1)},\dots,\frac{\|x_{0}^{(l-\alpha)}(0)\|}{\Gamma(\alpha-l+1)} ,\\ & \frac{M}{\Gamma(\alpha+1)}\frac{\|x(0)\|}{0!}, \frac{\|x'(0)\|}{1!}, \dots,\frac{\|x^{(l-1)}(0)\|}{(l-1)!}\Big\}. \end{align*} Then we have \begin{equation}\label{4.6} \begin{aligned} \|x(t)\| &\leq \hat{M}t^{\alpha}+\frac{1}{\Gamma (\alpha)}\int^{t}_{0} (t-\tau)^{\alpha-1}(\|A\|+L)\|x(\tau) \|d\tau \\ &= \hat{M}t^{\alpha}+\frac{1}{\Gamma (\alpha)}\int^{t}_{0} (t-\tau)^{\alpha-1}e^{\tau-t}e^{t-\tau}(\|A\|+L) \|x(\tau)\|d\tau. \end{aligned} \end{equation} Let $h=1+\frac{1}{\alpha}$, $v=1+\alpha$, from \eqref{4.6} and H\"older inequality, we have \begin{equation}\label{4.7} \begin{aligned} &\|x(t)\|\\ &\leq \hat{M}t^{\alpha}+\frac{\|A\|+L}{\Gamma (\alpha)} \Big[\int^{t}_{0}\left((t-\tau)^{\alpha-1} e^{\tau-t}\right)^vd\tau\Big]^{1/v} \Big[\int^{t}_{0}\left(e^{t-\tau}\|x(\tau) \|\right)^hd\tau\Big]^{1/h} \\ &= \hat{M}t^{\alpha}+\frac{\|A\|+L}{\Gamma (\alpha)} \Big[\int^{t}_{0}(t-\tau)^{v\alpha-v}e^{v\tau-vt} d\tau\Big]^{1/v} \Big[\int^{t}_{0}e^{ht-h\tau}\|x(\tau)\|^hd\tau\Big]^{1/h}. \end{aligned} \end{equation} Note that \begin{equation}\label{4.8} \begin{aligned} \int^{t}_{0}(t-\tau)^{v\alpha-v}e^{-(vt-v\tau)}d\tau &= \int^{t}_{0}s^{v\alpha-v}e^{-sv}ds \\ &= \frac{1}{v}\int^{tv}_{0}u^{v\alpha-v}e^{-u}du \\ &\leq \frac{1}{v^{v\alpha-v+1}}\int^{+\infty}_{0}u^{v\alpha-v}e^{-u}du \\ &= \frac{1}{v^{v\alpha-v+1}}\Gamma(va-v+1), \end{aligned} \end{equation} where $s=t-\tau$,$u=sv$. Submitting \eqref{4.8} into \eqref{4.7}, one has \begin{equation}\label{4.9} \|x(t)\|\leq\hat{M}t^{\alpha}+\frac{(\|A\|+L)\Gamma^{1/v}(va-v+1)} {v^{\alpha-1+\frac{1}{v}}\Gamma (\alpha)} \Big[\int^{t}_{0}e^{ht-h\tau}\|x(\tau)\|^hd\tau\Big]^{1/h}. \end{equation} From Lemma \ref{lem2.13} and \eqref{4.9} it follows that \begin{equation}\label{4.10} \begin{aligned} &\|x(t)\|^h\\ &\leq2^{h-1}\hat{M}^h t^{h\alpha}+2^{h-1} \frac{(\|A\|+L)^h\Gamma^{\frac{h}{v}}(va-v+1)e^{ht}} {v^{\alpha h-h+\frac{h}{v}}\Gamma^h (\alpha)} \int^{t}_{0}e^{-h\tau}\|x(\tau)\|^hd\tau, \end{aligned} \end{equation} then we can obtain \begin{equation}\label{4.11} \begin{aligned} &\|x(t)\|^he^{-ht}\\ &\leq 2^{h-1}\hat{M}^h t^{h\alpha}e^{-ht}+\frac{2^{h-1} (\|A\|+L)^h\Gamma^{\frac{h}{v}} (va-v+1)}{v^{\alpha h-h+\frac{h}{v}}\Gamma^h (\alpha)} \int^{t}_{0}e^{-h\tau}\|x(\tau)\|^hd\tau \\ &\leq 2^{h-1}\hat{M}^h t^{h\alpha} +\frac{2^{h-1}(\|A\|+L)^h\Gamma^{\frac{h}{v}}(va-v+1)}{v^{\alpha h-h +\frac{h}{v}}\Gamma^h (\alpha)} \int^{t}_{0}e^{-h\tau}\|x(\tau)\|^hd\tau. \end{aligned} \end{equation} From Lemma \ref{lem2.14}, we have \begin{equation}\label{4.12} \|x(t)\|^he^{-ht}\leq 2^{h-1}\hat{M^h}t^{h\alpha}e^{\tilde{K}t} \leq 2^{h-1}\hat{M^h}e^{(\tilde{K}+h\alpha)t}, \end{equation} where \[ \tilde{K}=\frac{2^{h-1}(\|A\|+L)^h\Gamma^{\frac{h}{v}}(va-v+1)} {v^{\alpha h-h+\frac{h}{v}}\Gamma^h (\alpha)}. \] Then one obtains \begin{equation}\label{4.13} \|x(t)\|\leq \frac{1}{2}\hat{M}e^{(\frac{\tilde{K}}{h}+\alpha+1)t}. \end{equation} Let $\widetilde{M}_1=\frac{1}{2}\hat{M}$, $p_1={\frac{\tilde{K}}{h}}+\alpha+1$, then $||x(t)||\leq\widetilde{M}_1e^{p_1t}$. The proof is complete. \end{proof} \begin{theorem}\label{thm4.2} (1) When $00$, then the solution of \eqref{4.1} satisfies \begin{equation} \|x(t)\|\leq \widetilde{M}_3e^{p_3t}\quad (t>b>0), \end{equation} where $\widetilde{M}_3=\frac{1}{2}(l+1)\overline{M}b^{\alpha-l}$, $p_3=\frac{2^{h-1}(\|A\|+L)^h\Gamma^{\frac{h}{v}} (va-v+1)}{hv^{\alpha h-h+\frac{h}{v}}\Gamma^h (\alpha)}+1$. The expressions $\overline{M}$, $h$ and $v$ are the same as in Theorem \ref{thm4.1}. \end{theorem} \begin{proof} (1) When $0b$, we can write \eqref{4.5} as \begin{equation} \begin{aligned} \|x(t)\| &\leq \hat{M}b^{\alpha-l}+\frac{1}{\Gamma (\alpha)} \int^{t}_{0}(t-\tau)^{\alpha-1}(\|A\|+L)\|x(\tau)\| d\tau \\ &= \hat{M}b^{\alpha-l}+\frac{1}{\Gamma (\alpha)} \int^{t}_{0}(t-\tau)^{\alpha-1}e^{\tau-t}e^{t-\tau}(\|A\|+L)\| x(\tau)\|d\tau. \end{aligned} \end{equation} Following the same process as in Theorem \ref{thm4.1}, we have \begin{equation} \|x(t)\|\leq \widetilde{M}_3e^{p_3t}, \end{equation} where $\widetilde{M}_3=\frac{1}{2}(l+1)\overline{M}b^{\alpha-l}$, \[ p_3=\frac{2^{h-1}(\|A\|+L)^h\Gamma^{\frac{h}{v}} (va-v+1)}{hv^{\alpha h-h+\frac{h}{v}}\Gamma^h (\alpha)}+1. \] The proof is complete. \end{proof} The methods to prove Theorems \ref{thm4.1} and \ref{thm4.2} are similar to those in \cite{Wu} and \cite{Chenl}. From Theorems \ref{thm4.1} and \ref{thm4.2}, we can have the following theorem. \begin{theorem} \label{thm4.3} (1) When $D$ denotes $^CD$, and \eqref{4.1} satisfies {\rm (i)} and {\rm (ii)}, there exist constants $\widetilde{M}>0$ and $p>0$ such that \begin{equation} \|x(t)\|\leq \widetilde{M}e^{pt}, \end{equation} for all $t>0$. (2) When $D$ denotes $^{RL}D$, and \eqref{4.1} satisfies {\rm (i)} and {\rm (ii)}, there exist constants $\widetilde{M}>0$ and $p>0$ for any $b>0$ such that \begin{equation} \|x(t)\|\leq \widetilde{M}e^{pt}, \end{equation} for all $t>b>0$. \end{theorem} \section{Validity of Laplace transform for fractional-order equations} Consider the one-dimensional fractional-order differential equation \begin{equation}\label{5.1} D^{\alpha}_0x(t)=ax(t)+f_1(x(t))+d_1(t), \end{equation} where $D$ denotes ${^{RL}D}$ or ${^CD}$, $l-1<\alpha\leq l$, $l\in N$, $\lambda\in R$, $x\in R$, $f_1(x)$ is the nonlinear part and continuous in $x\in R$, $d_1(t)$ is the input of the equation. And $f_1$ and $d_1$ also satisfy the assumptions (i) and (ii). Before the validity of Laplace transform method is justified, some lemmas and theorems are needed. \begin{lemma}[{\cite[p. 84]{Kilbas}}] \label{lem5.1} Let $\operatorname{Re}(\alpha)>0$ and $f\in L^1(0,b)$ for any $b>0$. Also let the estimate $$ |f(t)|\leq Ae^{p_0t}\quad(t>b>0) $$ hold for some constants $A>0$ and $p_0>0$. Then the relation $\mathcal{L}(I_0^{\alpha}f(t))=s^{-\alpha}\mathcal{L}(f(t))$ is valid for $Re\{s\}>p_0$. \end{lemma} \begin{theorem}\label{thm5.2} If $\alpha>0$, $n=[\alpha]+1$, and $x(t), I^{n-\alpha}_0x(t)$, $\frac{d}{dt}I^{n-\alpha}_0x(t),\dots,\frac{d^{n-1}}{dt^{n-1}}\\I^{n-\alpha}_0x(t)$ are continuous in $(0,\infty)$ and of exponential order, while $^{RL}D^{\alpha}_0x(t)$ is piecewise continuous on $[0,\infty)$. Then $$ \mathcal{L}(^{RL}D^{\alpha}_0x(t))=s^\alpha \mathcal{L}(x(t)) -\sum^{n-1}_{k=0}s^{n-k-1}\frac{d^{(k-1)}}{dt^{(k-1)}}I^{n-\alpha}_0x(0+). $$ \end{theorem} \begin{proof} Since $^{RL}D^{\alpha}_0x(t)=\frac{d^{(n)}}{dt^{(n)}}I^{n-\alpha}_0x(t)$, let $f(t)=I^{n-\alpha}_0x(t)$, then $^{RL}D^{\alpha}_0x(t)=\frac{d^{(n)}}{dt^{(n)}}f(t)$. Under the assumptions, from theorem \ref{thm2.11} we have \begin{align*} \mathcal{L}(^{RL}D^{\alpha}_0x(t)) &= \mathcal{L}(f^{(n)}(t))=s^n\mathcal{L}(f(t))-\sum^{n-1}_{k=0} s^{n-k-1}f^{(k)}(0+) \\ &= s^\alpha \mathcal{L}(x(t))-\sum^{n-1}_{k=0}s^{n-k-1} \frac{d^{(k-1)}}{dt^{(k-1)}}I^{n-\alpha}_0x(0+). \end{align*} This completes the proof. \end{proof} \begin{theorem} When $D$ denotes ${^{RL}D}$, the Laplace transform can be taken on both sides of \eqref{5.1}, if assumptions {\rm (i)} and {\rm (ii)} are satisfied and $x(t)$ is continuous. \end{theorem} \begin{proof} From \eqref{5.1} and Theorem \ref{thm4.3}, there exist constants $M_1>0$ and $P_1>0$ such that \begin{align*} |^{RL}D^{\alpha}_0x(t)| &\leq |a||x(t)|+|f_1(x(t))|+|d_1(t)|\\ &\leq (|a|+L)x(t)+M\\ &\leq M_1e^{p_1t}. \end{align*} This implies $^{RL}D^{\alpha}_0x(t)=\frac{d^{n}}{dt^{n}}I^{n-\alpha}_0x(t)$ begin of exponential order. Then from Theorems \ref{thm2.10} and \ref{thm4.3} and Lemma \ref{lem5.1}, we have that $x(t)$, $I^{n-\alpha}_0x(t)$, and $\frac{d}{dt}I^{n-\alpha}_0x(t)$, \dots, $\frac{d^{n-1}}{dt^{n-1}}I^{n-\alpha}_0x(t)$ are of exponential order. From theorem \ref{thm5.2}, the Laplace transform can be taken on both sides of \eqref{5.1}. \end{proof} \begin{theorem}\label{thm5.4} If $\alpha>0$, $n=[a]+1$, and $x(t), x'(t), x''(t), x^{(n-1)}(t)$ are continuous on $[0,+\infty)$ and of exponential order, while $^{C}D^{\alpha}_0x(t)$ is piecewise continuous on $[0,\infty)$. Then $$ \mathcal{L}(^{C}D^{\alpha}_0x(t)) =s^\alpha \mathcal{L}(x(t))-\sum^{n-1}_{k=0}s^{\alpha-k-1}x^{(k)}(0). $$ \end{theorem} \begin{proof} Since \begin{align*} ^{C}D^{\alpha}_0x(t) &= \frac{1}{\Gamma(n-\alpha)}\int^{t}_0(t-\tau)^{m-\alpha-1}x^{(n)}(\tau)d\tau\\ &= \frac{1}{\Gamma(n-\alpha)}t^{m-\alpha-1}\ast x^{(n)}(t). \end{align*} Under the assumptions in Theorem \ref{thm2.11}, one has \begin{align*} \mathcal{L}(^{C}D^{\alpha}_0x(t)) &= \frac{1}{\Gamma(n-\alpha)}\mathcal{L}(t^{n-\alpha-1})\cdot\mathcal{L} (x^{(n)}(t))\\ &= s^\alpha \mathcal{L}(x(t))-\sum^{n-1}_{k=0}s^{\alpha-k-1}x^{(k)}(0). \end{align*} \end{proof} \begin{lemma}\label{lem5.5} If $^{C}D^{\alpha}_{0}x(t)$ is of exponential order and $n=[\alpha]+1$, then $x^{(j)}(t)(j=1,\dots,n-1)$ is also of exponential order. \end{lemma} \begin{proof} Since $^{C}D^{\alpha}_{0}x(t)$ is of exponential order, then there exist constants $M_2>0$ and $P_2>0$ such that \begin{align*} |^{C}D^{\alpha}_0x(t)|=|^{C}D^{\alpha-j}_0x^{(j)}(t)|\leq M_2e^{p_2t}; \end{align*} that is, \begin{align*} - M_2e^{p_2t}\leq{^{C}D^{\alpha-j}_0x^{(j)}(t)}\leq M_2e^{p_2t}. \end{align*} Then there exist functions $M_1(t)\leq 0, M_2(t)\leq 0$ such that \begin{align*} - M_2e^{p_2t}+M_1(t)={^{C}D^{\alpha-j}_0x^{(j)}(t)}=M_2e^{p_2t}-M_2(t). \end{align*} This is equivalent to \begin{align*} & \sum_{i=0}^{n-i-1} \frac{x^{(i+j)}(0)}{i!} t^i - I^{\alpha-j}_0(M_2e^{p_2t})+I^{\alpha-j}_0M_1(t)\\ &=x^{(j)}(t) = \sum_{i=0}^{n-i-1} \frac{x^{(i+j)}(0)}{i!} t^i +I^{\alpha-j}_0(M_2e^{p_2t}) -I^{\alpha-j}_0M_2(t). \end{align*} In view of $I^{\alpha-j}_0M_1(t)\geq 0$ and $I^{\alpha-j}_0M_2(t)\geq 0$, we have \begin{align*} \sum_{i=0}^{n-i-1} \frac{x^{(i+j)}(0)}{i!} t^i - I^{\alpha-j}_0(M_2e^{p_2t})\leq x^{(j)}(t) \leq \sum_{i=0}^{n-i-1} \frac{x^{(i+j)}(0)}{i!} t^i +I^{\alpha-j}_0(M_2e^{p_2t}). \end{align*} Note that \begin{align*} I^{\alpha-j}_0e^{p_2t} &= \frac{1}{\Gamma(\alpha-j)}\int^{t}_{0}(t-\tau)^{\alpha-j-1}e^{p_2\tau}d\tau\\ &= \frac{1}{\Gamma(\alpha-j)}e^{p_2t}\int^{t}_{0}(t-\tau)^{\alpha-j-1}e^{p_2(\tau-t)}d\tau\\ &= \frac{1}{\Gamma(\alpha-j)}e^{p_2t}\int^{t}_0s^{\alpha-j-1}e^{-sp_2}ds\\ &= \frac{1}{\Gamma(\alpha-j)}e^{p_2t}\frac{1}{p_2^\alpha}\int^{p_2t}_0u^{\alpha-j-1}e^{-u}du\\ &\leq \frac{1}{\Gamma(\alpha-j)}p_2^{-\alpha+j}e^{p_2t}\int^{+\infty}_0u^{\alpha-j-1}e^{-u}du\\ &\leq p_2^{-\alpha+j}e^{p_2t}, \end{align*} where $s=t-\tau$, $u=p_2s$. It is not difficult to get that there exist $M_3>0$ and $p_3>0$ such that $$ |x^{(j)}(t)|\leq M_3e^{p_3t}, $$ where $j=0,\dots,n-1$. \end{proof} \begin{theorem} \label{thm5.6} When $D$ denotes $^{C}D_0^\alpha$, the Laplace transform can be taken on both sides of \eqref{5.1}, if assumptions {\rm (i)} and {\rm (ii)} are satisfied and $x(t)$ is continuous. \end{theorem} \begin{proof} From \eqref{5.1} and Theorem \ref{thm4.3}, then there exist constants $M_4>0$ and $P_4>0$ such that \begin{align*} |^{C}D^{\alpha}_0x(t)|&\leq |a||x(t)|+|f_1(x(t))|+|d_1(t)|\\ &\leq (|a|+L)x(t)+M\\ &\leq M_4e^{p_4t}. \end{align*} It means that $^{C}D^{\alpha}_0x(t)$ is of exponential order. Then from Lemma \ref{lem5.5} and Theorem \ref{thm4.3} we have $x^{(j)}(t) (j=0,\dots,n-1)$ is of exponential order. From Theorem \ref{thm5.4}, the Laplace transform can be taken on both sides of \eqref{5.1}. \end{proof} \subsection*{Conclusions} By Gronwall and H\"older inequalities, solutions of fractional-order equations are showed to be of exponential order. Based on that, the fractional-order and integer-order derivatives are all estimated to be of exponential order. Consequently, the Laplace transform is proved to be valid for fractional-order equations under general conditions. So the validity of Laplace transform of fractional-order equations is justified. \subsection*{Acknowledgments} This work was supported by the National Science Foundation of China (No. 61403115), by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20093401120001), by the Natural Science Foundation of Anhui Province (No. 11040606M12, 1508085QF120), and by the 211 project of Anhui University (No.KJJQ1102, KJTD002B). \begin{thebibliography}{00} \bibitem{Ahmed} E. Ahmed, A. S. Elgazzar; \emph{On fractional order differential equations model for nonlocal epidemics}, Physica A \textbf{379} (2007), 607-614. \bibitem{Butzer} P. L. Butzer, U. Westphal; \emph{An introduction to fractional calculus}, World Scientific Press, Singapore, 2000. \bibitem{Chenl} L. Chen, Y. Chai, R. Wu, et al; \emph{Dynamic analysis of a class of fractional-order neural networks with delay}, Neurocomputing \textbf{111} (2013), 190-194. \bibitem{Cordone} C. Corduneanu; \emph{Principles of Differential and Integral Equations}, Allyn and Bacon, Boston, 1971. \bibitem{Deng} W. Deng, C. Li, J. L\"u; \emph{Stability analysis of linear fractional differential system with multiple time delays}, Nonlinear Dynam. \textbf{48} (2007), 409-416. \bibitem{Gao} Z. Gao; A computing method on stability intervals of time-delay for fractional-order retarded systems with commensurate time-delays, Automatica {\bf50} (2014), 1611-1616. \bibitem{Hamamci} S. E. Hamamci; \emph{An algoritheorem for stabilization of fractional-order time delay systems using fractional-order PID controllers}, IEEE Trans. Automat. Control \textbf{52} (2007), 1964-1969. \bibitem{Hilfer} R. Hilfer; \emph{Applications of Fractional calculus in physics}, Word Scientific Press, Singapore, 2000. \bibitem{Kilbas} A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo; \emph{Theory and applications of fractional differential equations}, Elsevier, Amsterdam, 2006. \bibitem{Laskin} N. Laskin; \emph{Fractional quantum mechanics and L\'evy path integrals}, Phys. Lett. A \textbf{268} (2000), 298-305. \bibitem{Li1} Y. Li, Y. Q. Chen, I. Podlubny; \emph{Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability}, Comput. Math. Appl. {\bf59} (2010), 1810-1821. \bibitem{Li2} Y. Li, Y. Q. Chen, I. Podlubny; \emph{Mittag-Leffler stability of fractional order nonlinear dynamic systems}, Automatica {\bf45} (2009), 1965-1969. \bibitem{MaltiA} R. Malti, M. Aoun, F. Levron, et al; \emph{Analytical computation of the $H_2$-norm of fractional commensurate transfer functions}, Automatica {\bf47} (2011), 2425-2432. \bibitem{MaltiM} R. Malti, X. Moreau, F. Khemane, et al; \emph{Stability and resonance conditions of elemmaentary fractional transfer functions}, Automatica \textbf{47} (2011), 2462-2467. \bibitem{Mesbahi} A. Mesbahi, M. Haeri; \emph{Robust non-fragile fractional order PID controller for linear time invariant fractional delay systems}, J. Process Contr. \textbf{24} (2014), 1489-1494. \bibitem{Ozalp} N. \"{O}zalp, E. Demirci; \emph{A fractional order SEIR model with vertical transmission}, Math. Comput. Model \textbf{54} (2011), 1-6. \bibitem{Podlubny} I. Podlubny; \emph{Fractional differential equations}, Academic Press, New York, 1999. \bibitem{Sabatier} J. Sabatier, M. Moze, C. Farges; \emph{LMI stability conditions for fractional order systems}, Comput. Math. Appl. {\bf59} (2010), 1594-1609. \bibitem{Samko} S. G. Samko, A. A. Kilbas, O. I. Marichev; \emph{Fractional Integrals and Derivatives, Theory and Applications}, Gordon and Breach, Yverdon, 1993. \bibitem{Schiff} J. L. Schiff; \emph{The Laplace transform: theory and applications}, Springer, New York, 1999. \bibitem{Ye} H. Ye, J. Gao, Y. Ding; \emph{A generalized Gronwall inequality and its application to a fractional differential equation}, J. Math. Anal. Appl. {\bf328} (2007), 1075-1081. \bibitem{Kuczma} M. Kuczma; \emph{An introduction to the theory of functional equations and inequalities: Cauchy's equation and Jensen's inequality}, Birkh\"auser Verlag AG, Basel-Boston-Berlin, 2009. \bibitem{Henry} D. Henry; \emph{Geometric Theory of Semilinear Parabolic Equations}, Lecture Notes in Math., vol. 840, Springer-Verlag, New York, 1981. \bibitem{Wu} R. Wu, Y. Lu, L. Chen; \emph{Finite-time stability of fractional delayed neural networks}, Neurocomputing {\bf149}(2015), 700-707. \end{thebibliography} \end{document}