\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 140, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/140\hfil Nonexistence of positive solutions] {Nonexistence of positive solutions for a nonpositone system in a ball} \author[S. Hakimi \hfil EJDE-2015/140\hfilneg] {Said Hakimi} \address{Said Hakimi \newline Universit\'e Sultan Moulay Slimane, Facult\'e polydisciplinaire \newline D\'epartement de Math\'ematiques \\ Mghila B.P. 592, B\'eni Mellal, Morocco} \email{h\_saidhakimi@yahoo.fr} \thanks{Submitted October 30, 2014. Published May 21, 2015.} \subjclass[2010]{35J57, 34B18} \keywords{Nonpositone system; positive solutions; nonexistence} \begin{abstract} In this article, we prove the nonexistence of positive solutions for a nonpositone system in a ball when the nonlinearities may have more than one zero. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} Reaction-diffusion systems model many phenomena in biology, chemical reaction, population dynamics etc. A typical example of these models is the boundary value problem \begin{equation} \begin{gathered} -\Delta u(x)=\lambda f(u(x)),\quad x\in \Omega \\ u(x)=0,\quad x\in \partial \Omega. \end{gathered} \label{eq0} \end{equation} The fact that the reaction term $f$ may be negative at the origin makes it very challenging problem in showing the positivity of the solution. In the case of systems, it is even more difficult since we have to the positivity of every component. In this work we restrict our analysis to the system \begin{equation} \begin{gathered} -\Delta u(x)=\lambda f(v(x)),\quad x\in \Omega \\ -\Delta v(x)=\mu g(u(x)),\quad x\in \Omega \\ u(x)=v(x)=0,\quad x\in \partial \Omega, \end{gathered} \label{eq1} \end{equation} where $\min(\lambda,\mu) \geq \varepsilon _0>0$, $\Omega=B(0,R) $ is a ball in $\mathbb{R}^N$ with radius $R$, $N\geq2$, $f$ and $g$ are smooth functions that grow at least linearly at infinity. When $f$ and $g$ are a monotone nondecreasing nonlinearities and have only one zero, problem \eqref{eq1} has been studied by Hai, Oruganti and Shivaji \cite{h3} in a ball, and by Hakimi \cite{h6} in an annulus. Let $(u,v)$ be a positive solution of \eqref{eq1}. Then $u, v$ are radial, decreasing and satisfy \begin{equation} \begin{gathered} -(r^{N-1}u')'=\lambda r^{N-1}f(v),\quad 0\sigma$. \end{theorem} \noindent\textbf{Remark.} Existence result for positive solutions with superlinearities satisfying (H1), (H2), $\lambda=\mu$ and $\lambda$ small can be found in \cite{h1, h2}. For the single equation case, see \cite{a1,c1,h4, h7} for existence results and \cite{a1,b1,h5} for nonexistence results. To prove Theorem \ref{thm2.1}, we need the next three lemmas. We note that the proofs of the first and the second lemma are analogous to those of \cite[lemma 2.1, theorem B]{h3}. On the other hand, the proof of the last is different from that of \cite[Lemma 2.2]{h3}. This is so because our $f$ and $g$ have no constant sign in $( \alpha _1,+\infty)$ and $( \beta _1,+\infty)$ respectively. Here we use ideas adapted from Hai, Oruganti and Shivaji \cite{h3}. Let $t_1 \in (0,R)$. We have the following result. \begin{lemma} \label{lem2.2} There exists a positive constant $C$ such that for $\lambda \mu $ large, \begin{equation*} u(t_1)+v(t_1)\leq C. \end{equation*} \end{lemma} \begin{proof} Let $\lambda_1$ be the first eigenvalue of the $-\Delta$ with Dirichlet boundary conditions. Multiplying the first equation in \eqref{eq2} by a positive eigenfunction, say $\phi$ corresponding to $\lambda _1$, and using (H3) we obtain \begin{equation*} -\int_0^{R}(r^{N-1}u')'\phi dr \geq\int_0^{R}\lambda (a_1v-b_1)\phi r^{N-1}dr; \end{equation*} that is, \begin{equation} \int_0^{R} \lambda_1 u r^{N-1}\phi dr \geq\int_0^{R}\lambda (a_1v-b_1)\phi r^{N-1}dr. \label{eq3} \end{equation} Similarly, using the second equation in \eqref{eq2} and (H3), we obtain \begin{equation} \int_0^{R} \lambda_1 v r^{N-1}\phi dr \geq\int_0^{R}\mu (a_2u-b_2)\phi r^{N-1}dr. \label{eq4} \end{equation} Combining \eqref{eq3} and \eqref{eq4}, we obtain $$ \int_0^{R}[ \lambda _1-\lambda \mu \frac{a_1a_2}{\lambda _1}] v\phi r^{N-1}dr\geq \int_0^{R}\mu [ -\lambda \frac{a_2b_1}{\lambda _1}-b_2] \phi r^{N-1}dr. $$ Now, if $\frac{\lambda \mu a_1a_2}2 \geq \lambda _1^2$, then $$ \int_0^{R}\mu [ -\lambda a_2b_1-b_2\lambda _1] \phi r^{N-1}dr\leq \int_0^{R}-\frac{\lambda \mu }2a_1a_2v\phi r^{N-1}dr; $$ that is, \begin{equation} \int_0^{R}\frac{a_1a_2}2v\phi r^{N-1}dr\leq \int_0^{R}[ a_2b_1+\frac{b_2\lambda _1}{\varepsilon _0}] \phi r^{N-1}dr, \label{eq5} \end{equation} (because $\min(\lambda,\mu) \geq \varepsilon _0$). Similarly \begin{equation} \int_0^{R}\frac{a_1a_2}2u\phi r^{N-1}dr\leq \int_0^{R}[ a_1b_2+\frac{b_1\lambda _1}{\varepsilon _0}] \phi r^{N-1}dr. \label{eq6} \end{equation} Adding \eqref{eq5} and \eqref{eq6}, we obtain the inequality $$ \int_0^{R}(u+v)\phi r^{N-1}dr\leq \frac{2}{a_1a_2}\int_0^{R}[ a_1b_2+\frac{b_1\lambda _1}{\varepsilon _0}+a_2b_1+\frac{b_2\lambda _1}{\varepsilon _0}] \phi r^{N-1}dr.\\ $$ Then \begin{align*} (u+v)(t_1)\int_{0}^{t_1}\phi r^{N-1}dr &\leq \int_{0}^{t_1}(u+v)\phi r^{N-1}dr\\ &\leq \int_{0}^{R}(u+v)\phi r^{N-1}dr\\ &\leq \frac{2}{a_1a_2}\int_0^{R}[ a_1b_2+\frac{b_1\lambda _1}{\varepsilon _0}+a_2b_1+\frac{b_2\lambda _1}{\varepsilon _0}] \phi r^{N-1}dr, \end{align*} because $u$ and $v$ are decreasing. The proof is complete. \end{proof} Now, assume that there exists $z\geq 0$ ($z\not\equiv 0$) on $\overline{I}$ where $I=(a,b)$, and a constant $\gamma$ such that \begin{equation} -(r^{N-1}z')'\geq \gamma r^{N-1}z\,,\quad r\in I. \label{eq7} \end{equation} Let $\lambda _1=\lambda _1(I)>0$ denote the principal eigenvalue of \begin{equation} \begin{gathered} -(r^{N-1}\psi')'=\lambda r^{N-1}\psi,\quad r\in (a,b)\\ \psi(a)=0=\psi (b), \end{gathered}\label{eq8} \end{equation} where $00$), an eigenfunction corresponding to the principal eigenvalue $\lambda _1(I)$, and integrating by parts (twice) we obtain \begin{equation} \int_a^b[ \gamma -\lambda _1(I)] r^{N-1}z\psi dr \leq b^{N-1}\psi '(b)z(b)-a^{N-1}\psi'(a)z(a). \label{eq9} \end{equation} But $\psi'(b)<0$ and $\psi'(a)>0$. Hence the right-hand side of \eqref{eq9} is less than or equal to zero. Then $\gamma\leq\lambda _1(I)$, and the proof is complete. \end{proof} Now, we define \[ t_0=t_1+\frac{R-t_1}3, \quad t_2=t_1+\frac{2(R-t_1)}3. \] \begin{lemma}\label{lem2.4} For $\lambda \mu $ sufficiently large, $u(t_2)\leq \beta _3$ or $v(t_2)\leq \alpha _3$. \end{lemma} \begin{proof} We argue by contradiction. Suppose that $u(t_2)>\beta _3$ and $v(t_2)>\alpha _3$. \smallskip \noindent\textbf{Case 1:} $u(t_0)>\rho _2$ or $v(t_0)>\rho _1$, where $\rho _1=\frac{\alpha_3 +\theta_1}2$ and $\rho _2=\frac{\beta_3 +\theta_2}2$ ($\theta_1$ and $\theta_2$ are the greatest zeros of $F$ and $G$ respectively. If $u(t_0)>\rho _2$ then \[ -(r^{N-1}v')' =\mu r^{N-1}g(u) \geq \varepsilon _0r^{N-1}g(\rho _2)\quad\text{in }J=(t_1,t_0) \] and $v(r)\geq \alpha _3$ on $\bar{J}$. Let $\omega $ be the unique solution of \begin{gather*} -(r^{N-1}\omega')' = \varepsilon _0r^{N-1}g(\rho _2)\quad \text{in }J\\ \omega =\alpha _3\quad \text{on }\partial J. \end{gather*} Then by comparison arguments, $ v(r)\geq \omega (r)=\varepsilon _0g(\rho _2)\omega _0(r)+\alpha _3$ in $\bar{J}$, where $\omega _0$ is the unique (positive) solution of \begin{gather*} -(r^{N-1}\omega _0')' =r^{N-1}\quad\text{in }J \\ \omega _0 = 0\quad \text{on }\partial J. \end{gather*} In particular, there exists $\overline{\alpha }_3>\alpha _3$ ($f(\overline{\alpha }_3)\neq 0$) such that \[ v(t_1+\frac{2(t_0-t_1)}3) \geq \omega (t_1+\frac{2(t_0-t_1)}3) \geq \overline{\alpha }_3 \] in $J^{*}=(t_1+\frac{t_0-t_1}3,t_1+\frac{2(t_0-t_1)}3)$. Then \begin{align*} -(r^{N-1}(u-\beta _3)')' &=\lambda r^{N-1}f(v)\\ &\geq \lambda r^{N-1}f(\overline{\alpha }_3)\\ &\geq (\frac{\lambda f(\overline{\alpha }_3)}C) r^{N-1}(u-\beta _3)\quad \text{in }J^{*}, \end{align*} (where $C$ is as in Lemma \ref{lem2.2}). Since $u-\beta _3>0$ in $\bar{J}^*$, it follows that \begin{equation} \frac{\lambda f(\overline{\alpha }_3)}C\leq \lambda _1(J^{*}), \label{eq10} \end{equation} where $\lambda _1(J^{*})$ is the principal eigenvalue of \eqref{eq8} (with $(a,b)=J^{*}$). Next we consider \begin{align*} (r^{N-1}(v-\alpha _3)')' &= \mu r^{N-1}g(u)\\ &\geq \mu r^{N-1}g(\rho _2)\\ &\geq (\frac{\mu g(\rho _2)}C) r^{N-1}(v-\alpha _3)\quad \text{in }J. \end{align*} Since $v-\alpha _3>0$ in $\bar{J}$, it follows that \begin{equation} \frac{\mu g(\rho _2)}C\leq \lambda _1(J), \label{eq11} \end{equation} where $\lambda _1(J)$ is the principal eigenvalue of \eqref{eq8} (with $(a,b)=J$). Combining \eqref{eq10} and \eqref{eq11}, we obtain $$ \frac{\lambda \mu f(\overline{\alpha }_3)g(\rho _2)}{C^2}\leq \lambda _1(J^{*})\lambda _1(J), $$ but $f(\overline{\alpha }_3)$, $g(\rho _2)$ and $C$ are fixed positive constants. This is a contradiction for $\lambda \mu $ large. A similar contradiction can be reached for the case $v(t_0)>\rho _1$. \smallskip \noindent\textbf{Case 2:} $u(t_0)\leq \rho _2$ and $v(t_0)\leq \rho _1$. Then $\beta _3 t_2$ such that $u(t_{2}^*)\leq \beta _1$). Then \begin{gather*} -(r^{N-1}v')' =\mu r^{N-1}g(u)\leq 0\quad \text{in } J_3=(t_2,R)\\ v(t_2) \leq C,\quad v(R)=0, \end{gather*} hence, by comparison arguments, $v(r)\leq \widetilde{\omega }(r)$, where $\widetilde{\omega }$ is the solution of \begin{gather*} -(r^{N-1}\widetilde{\omega }')' =0\quad \text{in }J_3\\ \widetilde{\omega }(t_2)=C,\quad \widetilde{\omega}(R)=0. \end{gather*} However, $\widetilde{\omega }(r)= C\int_r^{R}s^{1-N}ds/\int_{t_2}^{R}s^{1-N}ds$ decreases from $C$ to $0$ on $[t_2,R]$, hence there exists $r_1\in (t_2,R)$ (independent of $\lambda \mu $) such that $\widetilde{\omega }(r_1)=\frac{\alpha _1}2$. Hence $v(r_1)\leq \alpha _1/2$, and \begin{align*} -(r^{N-1}(\beta _3-u)')' &= -\lambda r^{N-1}f(v)\\ &\geq -\lambda r^{N-1}f(\frac{\alpha _1}2)\\ &\geq \lambda \big(-f(\frac{\alpha _1}2)\big) r^{N-1}\frac{\beta _3-u}{\beta _3}\quad \text{in }J_4=(r_1,R). \end{align*} Since $\beta _3-u>0$ in $\bar{J}_4$, we have \begin{equation} \frac{\lambda \widetilde{K}_1}{\beta _3}\leq \lambda _1(J_4), \label{eq15} \end{equation} where $\widetilde{K}_1=-f(\alpha _1/2)$ and $\lambda_1(J_4)$ is the principal eigenvalue of \eqref{eq8} (with $(a,b)=J_4$). Similarly, there exists $r_2\in (r_1,R)$ (independent of $\lambda \mu $) such that $$ v(r_2)<\frac{\alpha _1}2. $$ Hence \begin{gather*} -(r^{N-1}u')' = \mu r^{N-1}f(v)\leq 0\quad \text{in } J_5=(r_2,R)\\ u(r_2) \leq C,\quad u(R)=0, \end{gather*} then, by comparison arguments we obtain $$ u(r)\leq \omega _1(r) =\frac C{\int_{r_2}^{R}s^{1-N}ds}\int_r^{R}s^{1-N}ds; $$ which satisfies \begin{gather*} -(r^{N-1}\omega _1')'=0,\quad \text{in }J_5,\\ \omega_1(r_2)=C,\quad \omega _1(R)=0. \end{gather*} Arguing as before there exists $r_3\in (r_2,R)$ (independent of $\lambda \mu $) such that $$ u(r_3)\leq \omega _1(r_3)\leq \frac{\beta _1}20$ in $\bar{J}_6$, it follows that \begin{equation} \frac{\mu \widetilde{K}_2}{\alpha _3}\leq \lambda_1(J_6),\label{eq16} \end{equation} where $\widetilde{K}_2=-g(\frac{\beta _1}2)$ and $\lambda_1(J_6)$ is the principal eigenvalue of \eqref{eq8} (with $(a,b)=J_6$). Combining \eqref{eq15} and \eqref{eq16}, we obtain $$ \frac{\lambda \mu \widetilde{K}_1\widetilde{K}_2}{\alpha _3\beta _3}\leq \lambda _1(J_4)\lambda _1(J_6), $$ which is a contradiction to $\lambda \mu $ being large. A similar contradiction can be reached for the case $v(t_2)\leq \alpha_3$. Hence Theorem \ref{thm2.1} is proven. \end{proof} \begin{thebibliography}{00} \bibitem{a1} D. Arcoya. A. Zertiti; \emph{Existence and non-existence of radially symmetric non-negative solutions for a class of semi-positone problems in annulus}, Rendiconti di Mathematica, serie VII, Volume 14, Roma (1994), 625-646. \bibitem{b1} K. J. Brown, A. Castro, R. Shivaji; \emph{Non-existence of radially symmetric non-negative solutions for a class of semi-positone problems}, Diff. and Int. Equations, 2, (1989), 541-545. \bibitem{c1} A. Castro, R. Shivaji; \emph{Nonnegative solutions for a class of radially symmetric nonpositone problems}, Proc. AMS, 106(3) (1989), pp. 735-740. \bibitem{h1} D. D. Hai; \emph{On a class of semilinear elliptic systems}, Journal of Mathematical Analysis and Applications. Volume 285, issue 2, (2003), pp. 477-486. \bibitem{h2} D. D. Hai, R. Shivaji; \emph{Positive solutions for semipositone systems in the annulus}, Rocky Mountain J. Math., 29(4) (1999), pp. 1285-1299. \bibitem{h3} D. D. Hai, R. Shivaji, S. Oruganti; \emph{Nonexistence of Positive Solutions for a Class of Semilinear Elliptic Systems}, Rocky Mountain Journal of Mathematics. Volume 36, Number 6 (2006), 1845-1855. \bibitem{h4} S. Hakimi, A. Zertiti; \emph{Radial positive solutions for a nonpositone problem in a ball}, Electronic Journal of Differential Equations, Vol. 2009 (2009), No. 44, pp. 1-6. \bibitem{h5} S. Hakimi, A. Zertiti; \emph{Nonexistence of radial positive solutions for a nonpositone problem}; Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 26, pp. 1-7. \bibitem{h6} S. Hakimi; \emph{Nonexistence of radial positive solutions for a nonpositone system in an annulus}; Electronic Journal of Differential Equations, Vol. 2011 (2011), No. 152, pp. 1-7. \bibitem{h7} S. Hakimi, A. Zertiti; \emph{Existence of radial positive solutions for a nonpositone problem in an annulus}; Eletronic Journal of Differential Equations, Vol. 2014 (2014), No. 26, pp. 1-10. \end{thebibliography} \end{document}