\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 151, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/151\hfil Periodic solutions] {Periodic solutions for Li\'enard differential equations with singularities} \author[S. Li, F. Liao, W. Xing \hfil EJDE-2015/151\hfilneg] {Shengjun Li, Fang-fang Liao, Wenya Xing} \address{Shengjun Li \newline College of Information Sciences and Technology, Hainan University, Haikou 570228, China} \email{shjli626@126.com} \address{Fang-fang Liao \newline Nanjing College of Information Technology, Nanjing 210046, China} \email{liaofangfang8178@sina.com} \address{Wenya Xing \newline College of Information Sciences and Technology, Hainan University, Haikou 570228, China} \email{wenyaxing@hainu.edu.cn} \thanks{Submitted November 2, 2014. Published June 10, 2015.} \subjclass[2010]{34C25} \keywords{Periodic solution; singular systems; topological degree} \begin{abstract} In this article, we study the second-order forced Li\'enard equation $x''+f(x)x'+g(x)=e(t)$. By using the topological degree theory, we prove that the equation has at least one positive periodic solution when $g$ admits a repulsive singularity near the origin and satisfies some semilinear growth conditions near infinity. Recent results in the literature are generalized and complemented. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} In this work, we are concerned with the existence of positive $T$-periodic solutions for the Li\'enard equation \begin{equation} \label{e1.1} x''+f(x)x'+g(x)=e(t), \end{equation} where $f:\mathbb{R}\to \mathbb{R}$ is a continuous functions, $g: (0,\infty)\to \mathbb{R}$ is continuous and admits a repulsive singularity near the origin, $e$ is continuous and $T$-periodic. As we know, the Li\'enard equation appears in a number of physical models, for example, it is used to describe fluid mechanical and nonlinear elastic mechanical phenomena. During the last few decades, the Li\'enard equation has attracted many researchers. One important related topic is to look for periodic solutions under different conditions. We refer the reader to \cite{ dlu, jma1, jma2, pom, zwa1} and the references therein. Here we mention the following results: Fonda et al \cite{fonda2} used the Poincare-Birkhoff theorem to obtain the existence of positive periodic solutions, including all subharmonics, for the following special case of \eqref{e1.1} \begin{equation}\label{exg} x''+g(x)=e(t), \end{equation} where $e\in C(\mathbb{R},\mathbb{R})$ is $T$-periodic and $g\in C(\mathbb{R^{+}},\mathbb{R})$ satisfies the following strong force condition at $x=0$: \begin{equation}\label{elim} \lim_{x \to 0^{+}}g(x)=-\infty, \quad \lim_{x \to 0^{+}}G(x)=+\infty ,\quad (G(x)=\int^{x}_{1}g(s)ds) \end{equation} and $g$ is superlinear at $x=+\infty$: \begin{equation}\label{esf} \lim_{x \to +\infty}g(x)=+\infty, \end{equation} Later, Wang \cite{zwa2} used the phase-plane analysis methods proved the existence of at least one positive $T$-periodic solution of \eqref{exg} if $g$ satisfies \eqref{elim} near $x=0$, and $g$ satisfies semilinear condition at $x=+\infty$: there is an integer $k\geq 0$ and a small constant $\varepsilon >0$ such that \begin{equation}\label{efra} \big(\frac{k\pi}{T}\big)^{2}+\varepsilon \leq \frac{g(x)}{x}\leq (\frac{(k+1)\pi}{T})^{2}-\varepsilon \end{equation} for all $t$ and all $x\gg1$. We note that the conditions \eqref{efra} are the standard uniform nonresonance conditions with respect to the Dirichlet boundary condition, not the periodic boundary condition. When $f\neq 0$, equation \eqref{e1.1} is a non-conservative system. Lefschetz \cite{lefs} gave the first existence theorem for equation \eqref{e1.1} under some dissipativity conditions. Many researchers tried to improve the results of \cite{lefs}. We assume that there exists a constant $d>0$ such that \begin{equation}\label{e1.3} g(x)\operatorname{sgn}(x)>0, \quad | x| \geq d. \end{equation} Mawhin \cite{jma1} studied the existence of periodic solutions under assumption that $g$ satisfies \eqref{e1.3} and the sublinear condition \begin{equation}\label{e1.4} \lim_{| x |\to +\infty}\frac{g(x)}{x}=0. \end{equation} Later, Mawhin and Ward \cite{jma2} improved such a condition, and used the following condition \[ %\label{e} \limsup_{x \to +\infty}\frac{g(x)}{x} < (\frac{\pi}{T})^{2}. \] instead of \eqref{e1.4}. This article is mainly motivated by the work mentioned above and the recent papers \cite{zwa2,zhang1,zhang3}. The result is obtained using topological degree theory, thanks to a priori estimates on the solutions of a suitable family of problems. Our main result reads as follows: \begin{theorem} \label{thm1.1} Assume that $f, e : \mathbb{R}\to\mathbb{R}, g: (0,\infty)\to \mathbb{R}$ are continuous functions and $e$ is $T$-periodic. Suppose further that \begin{itemize} \item[(H1)] %\label{ec} $\lim_{x\to 0^{+}}g(x)=-\infty$ and $\lim_{x\to 0^{+}}\int^{x}_1 g(r)dr=+\infty$;\\ \item[(H2)] There exist $T$-periodic continuous functions $a, b$ such that \begin{equation} \label{ee} a(t)\leq \liminf_{x\to +\infty}\frac{g(x)}{x} \leq \limsup_{x\to +\infty}\frac{g(x)}{x}\leq b(t). \end{equation} Also, \begin{equation}\label{e16} \bar{a}>0 \quad \text{and} \quad \underline{\lambda}_{1}(b)>0, \end{equation} here $\bar{a}=\frac{1}{T}\int_{0}^{T}a(t)dt$ and $\{\underline{\lambda}_{1}(q)\}$ denotes the first anti-periodic eigenvalues of \begin{equation}\label{e17} x''+(\lambda+q(t))x=0. \end{equation} \end{itemize} Then \eqref{e1.1} has at least one positive $T$-periodic solution. \end{theorem} The main novelty in the present paper is represented by the conditions at infinity, which remind of a situation between the first and the second eigenvalue, but are more general since the comparison involves the mean and the weighted eigenvalue associated with the functions $a, b$ controlling the $g(x)/x$. During the previous few decades, singular differential equations or singular dynamical systems have been attracted the attention of many researchers \cite{az93, dm, fonda, hs, htz, ls, sol, zhang1, zhang2}. It is well-known that electrostatic or gravitational forces are the most important applications of singular interactions. It was also found recently that one special singular differential equation which is called ``Ermakov-Pinney equation'' plays an important role in the studying of the stability of periodic solutions of conservative systems with degree of lower freedom (see \cite{cz-dcds} and the references therein). Usually, the proof is based on either variational approach \cite{az87, az93} or topological methods. The proof of the main results in this paper is based on topological methods, which started with the pioneering paper of Lazer and Solimini \cite{ls}. From then on, some fixed point theorems in cones for completely continuous operators\cite{fw,t04}, the method of upper and lower solutions \cite{ htz, rtv}, Schauder's fixed point theorem \cite{t07}, degree theory \cite{fonda, yz} and a nonlinear alternative principle of Leray-Schauder type \cite{ctz, cft, jcz} have been widely applied. The rest of this article is organized as follows. In Section 2, some preliminary results will be given. In Section 3, by the use of topological degree theory, we will state and prove the main results. To illustrate the new results, some applications are also given. \section{Preliminaries} In this section, we present some results which will be applied in Sections $3$. Let us first introduce some known results on eigenvalues. Let $q$ be a $T$-periodic potential such that $q\in L^{1}(\mathbb{R})$. Consider the eigenvalue problems of \eqref{e17} with the $T$-periodic boundary condition : \begin{equation}\label{e21} x(0)-x(T)=x'(0)-x'(T)=0, \end{equation} or, with the anti-$T$-periodic boundary condition : \begin{equation}\label{e22} x(0)+x(T)=x'(0)+x'(T)=0. \end{equation} We use $\lambda_{1}^{D}(q)<\lambda_{2}^{D}(q)<\dots<\lambda_{n}^{D}(q)<\dots$ to denote all eigenvalues of \eqref{e17} with the Dirichlet boundary condition: \begin{equation}\label{ea34} x(0)=x(T)=0. \end{equation} The following are the standard results for eigenvalues. See, e.g. Reference \cite{wma}. \begin{itemize} \item[(E1)] there exist two sequences $\{\underline{\lambda}_{n}(q):n\in\mathbb{N} \}$ and $\{\bar{\lambda}_{n}(q):n\in \mathbb{Z}^{+}\}$ such that $$ -\infty <\overline{\lambda}_{0}(q)<\underline{\lambda}_{1}(q) \leq \overline{\lambda}_{1}(q) <\underline{\lambda}_{2}(q) \leq \overline{\lambda}_{2}(q)<\dots<\underline{\lambda}_{n}(q) \leq \overline{\lambda}_{n}(q)<\dots $$ where $\underline{\lambda}_{n}(q)\to +\infty, \overline{\lambda}_{n}(q)\to +\infty$ as $n\to +\infty$. Moreover, $\lambda$ is an eigenvalue of \eqref{e17}-\eqref{e21} if and only if $\lambda=\underline{\lambda}_{n}(q)$ or $\overline{\lambda}_{n}(q)$ with $n$ is even; and $\lambda$ is an eigenvalue of $\eqref{e17}-\eqref{e22}$ if and only if $\lambda=\underline{\lambda}_{n}(q)$ or $\overline{\lambda}_{n}(q)$ with $n$ is odd. \item[(E2)] If $q_{1}\leq q_{2}$ then $$ \underline{\lambda}_{n}(q_{1})\geq \underline{\lambda}_{n}(q_{2}), \overline{\lambda}_{n}(q_{1})\geq \overline{\lambda}_{n}(q_{2}), \lambda_{n}^{D}(q_{1})\geq \lambda_{n}^{D}(q_{2}) $$ for any $n\geq 1$. \item[(E3)] For any $n\geq 1$, $$ \underline{\lambda}_{n}(q)=\min \{ \lambda_{n}^{D}(q_{t_{0}}): t_{0}\in \mathbb{R}\}, \overline{\lambda}_{n}(q) =\max \{ \lambda_{n}^{D}(q_{t_{0}}):t_{0}\in \mathbb{R}\} $$ where $q_{t_{0}}$ denotes the translation of $q:q_{t_{0}}(t)\equiv q(t+t_{0})$. \item[(E4)] $\bar{\lambda}_{n}(q), \underline{\lambda}_{n}(q)$ and $\lambda_{n}^{D}(q)$ are continuous in $q$ in the $L^{1}$-topology of $L^{1}(0,T)$. \item[(E5)] It follows from a variational principle that the first eigenvalue $\lambda_{1}^{D}$ can be found as $$ \lambda_{1}^{D}(q) = {\inf _{x\in H_{0}^{1}(0,T)\,\, x\neq0} \frac{\int^{T}_{0}\big(x'^{2}(t)-q(t)x^{2}(t)\big)dt}{\int^{T}_{0}x^{2}(t)dt}}. $$ In particular, $$ \lambda_{1}^{D}(q)\leq -\bar{q}, $$ where $\bar{q}$ is the mean value. Moreover, the equality holds if and only if $q(t)=\bar{q}$ for a.e. $t$. \end{itemize} To prove our results, we need the following preliminary results, recall some notation and terminology from \cite{cmz}. Define $L:\text{dom}L\subset X\to Z,~Lx=\dot{x}$, a Fredholm mapping of index zero, with $\operatorname{dom}L=\{x\in X:x(\cdot)\text{ is absolutely continuous}\}$, where the Banach spaces $X,Z$ are \[ X=\{x\in C([0,T],\mathbb{R}^m):x(0)=x(T)\},\quad Z=L^1([0,T],\mathbb{R}^m) \] with their usual norms. Then $L$ is a Fredholm mapping of index zero \cite{eze}. Let $M_0$ be the Nemitzky operator from $X$ to $Z$ induced by the map $F:X\to \mathbb{R}^m$; that is, $M_0:X\to Z, x(\cdot)\to F(x(\cdot))$. Consider the equation \[ Lx=M_0x,\quad x\in \operatorname{dom}L. \] \begin{lemma}[{\cite[Theorem 1]{cmz}}] \label{lem2.1} % \label{emawhin} Let $\Omega\subset X$ be a bounded open subset and assume that there is no $x(\cdot)\in\partial_X\Omega$ such that $\dot{x}=f_0(x).$ Then \[ \deg _{L}(L-M_0,\Omega)=(-1)^m \deg _{B}(f_0,\Omega\cap R^m,0), \] where $\deg _{L},~\deg _{B}$ denote the Schauder degree and the Brouwer degree, respectively. \end{lemma} We refer the reader to \cite{eze} for more details about degree theory. \section{Proof of Theorem \ref{thm1.1}}\label{esec4} We will apply Lemma \ref{lem2.1} to the singular problem \eqref{e1.1}. To this end, we deform \eqref{e1.1} to a simpler singular autonomous equation \[ %\label{eg} x''+c_{0} x= \frac{1}{x}, \] where $c_{0}$ for some positive constant satisfy $00. $$ Applying Lemma \ref{lem3.3} to $q_{1}=b$ and $q_{0}=c_{0}$, we have \[ \underline{\lambda}_{1}(b_{\tau}) \geq \tau\underline{\lambda}_{1}(b)+(1-\tau)\underline{\lambda}_{1}(c_{0})\\ \geq \min (\underline{\lambda}_{1}(b), \underline{\lambda}_{1}(c_{0})) > 0. \] Thus $a_{\tau}$ and $b_{\tau}$ defined above satisfy \eqref{e16} uniformly in $\tau\in[0,1]$. For obtaining a priori estimates for all possible positive solutions to \eqref{eh}--\eqref{e21}, we simply prove this for all possible positive solutions to \eqref{e1.1}--\eqref{e21}, because $a_{\tau},b_{\tau}$ satisfy \eqref{ee} and also \eqref{e16} uniformly in $\tau\in[0,1]$. \begin{lemma} \label{lem3.4} Assume that $\underline{\lambda}_{1}(b)>0$ of the equation \begin{align*} y''+(\lambda+b(t))y=0\,. \end{align*} Then \[ \|y'\|_{2}^{2} \geq \int^{T}_{0}b(t+t_{0})y^{2}(t)dt +\lambda_{1}^{D}(b_{t_{0}})\int^{T}_{0}y^{2}(t)dt. \] \end{lemma} \begin{proof} By (E3), we have \begin{align*} \lambda_{1}^{D}(b_{t_{0}})\geq \underline{\lambda}_{1}(b)>0. \end{align*} for all $t_{0}\in \mathbb{R}$. Then, by the theory of second order linear differential operators \cite{wne}, the eigenvalues of \[ y''+(\lambda+b(t+t_{0}))y=0 \] with Dirichlet boundary conditions form a sequence \[ \lambda_{1}^{D}(b_{t_{0}})<\lambda_{2}^{D}(b_{t_{0}})<\dots, \] which tends $+\infty$, and the corresponding eigenfunctions $\psi_{1},\psi_{2},\dots$ are an orthonormal base of $L^{2}(0,T)$. Hence, given $c_{i}\in \mathbb{R}$ and $y\in H^{1}_{0}(0,T)$, we can write \[ y(t)=\sum _{i\geq 1}c_{i}\psi_{i}(t), \] and \begin{align*} \int^{T}_0((y'(t))^{2}-b(t+t_{0})y^{2}(t))dt &= \sum _{i\geq 1}c^{2}_{i}\int^{T}_0((\psi'_{i}(t))^{2} -b(t+t_{0})\psi_{i}^{2}(t))dt\\ &= \sum _{i\geq 1}c^{2}_{i}\lambda_{i}^{D}(b_{t_{0}})\int^{T}_0\psi_{i}^{2}(t)dt\\ &\geq \lambda_{1}^{D}(b_{t_{0}})\int^{T}_0y^{2}(t)dt. \end{align*} This completes the proof. \end{proof} The usual $L^{p}$-norm is denoted by $\|\cdot\|_{p}$, and the supremum norm of $C[0,T]$ is denoted by $\|\cdot\|_{\infty}$. \begin{lemma} \label{lem3.5} Under the assumptions as in Theorem \ref{thm1.1}, there exist $B_{1}>B_{0}>0$ such that any positive $T$-periodic solution $x(t)$ of \eqref{e1.1}-\eqref{e21} satisfies \begin{equation}\label{e66} B_{0}0$ such that \[ g(s)-e(t)<0 \quad \text{for all } 0B_{0}$. Next, noticing \eqref{e16}, we can take some constant $\varepsilon_{0}\in \big(0, \min \{ \overline{a},\underline{\lambda}_{1}(b)\}\big)$. It follows from $(\rm{H_{2}} )$ that there exists a constants $B_{1}(>B_{0})$ large enough such that \begin{equation}\label{e34} a(t)-\varepsilon_{0}\leq \frac{g(s)-e(t)}{s}\leq b(t)+\varepsilon_{0}. \end{equation} for all $t$ and all $s\geq B_{1}$. We assert that $x(t_{*})T(\bar{a}-\varepsilon_{0})>0$ is used. Note that $\tilde{x}(t_{0})=0 $ for some $t_{0}$, $\tilde{x}(t_{0}+T)=0 $, so $\tilde{x}(t) \in H_{0}^{1}(t_{0},t_{0}+T)$. We assert that $\tilde{x} \equiv 0$. On the contrary, assume that $\tilde{x} \not\equiv 0$. Now by \eqref{eff}, the first Dirichlet eigenvalue \[ \lambda_{1}^{D}(p|_{[t_{0},t_{0}+T]}) = {\inf _{\varphi\in H_{0}^{1}(t_{0},t_{0}+T),\, \varphi\neq0} \frac{\int^{t_{0}+T}_{t_{0}}\big(\varphi'^{2}(t)-p(t)\varphi^{2}(t)\big)dt} {\int^{t_{0}+T}_{t_{0}}\varphi^{2}(t)dt}}\leq0. \] So, \[ \underline{\lambda}_{1}(p)=\min \{ \lambda_{1}^{D}(p)\}\leq0. \] On the other hand, $p(t)0. \] This is a contradiction. Now it follows from \eqref{em} that $\bar{x}=0$ and $x\equiv 0$, a contradiction to the positiveness of $x(t)$. We have proved that $x(t^{*})>B_{0}$ for some $t^{*}\in [0,T]$ and $x(t_{*})B_{1}>0$, $B_{3}>0$ such that any positive $T$-periodic solution $x(t)$ of \eqref{e1.1}-\eqref{e21} satisfies \[ \|x\|_{\infty}0$ such that \begin{equation}\label{e386} g(s)-e(t)\leq (b(t)+\varepsilon_{0})s+h_{0} \end{equation} for all $t$ and $s>0$. Multiplying \eqref{e1.1} by $x$ and then integrating over $[0,T]$, using the fact that $$\int_{0}^{T}f(x(t))x'(t)x(t)dt=0,$$ we obtain \begin{equation}\label{en} \begin{aligned} \|x'\|_{2}^{2} &= \int^{T}_0 -(xx''+x f(x)x')dt \\ &= \int^{T}_0 (g(x(t))-e(t))x(t)dt \\ &\leq \int^{T}_0 ((b(t)+\varepsilon_{0})x(t)+h_{0}) x(t)dt \\ & = \int^{T}_0 b(t){x}^{2}(t)dt+\varepsilon_{0}\|x\|_{2}^{2}+h_{0}\|x\|_{1}. \end{aligned} \end{equation} It follows from Lemma \ref{lem3.5} that there exists $t_{0}$ satisfying $B_{0}0$. By \eqref{eo}, one has $\|x'\|_{2}=\|u'\|_{2}0.$ From these, for any $t\in [t_{0},t_{0}+T]$, \begin{align*} |x(t)| &\leq |x(t_{0})|+\big|\int^{t}_{t_{0}}x'(t)dt\big|\\ &\leq B_{1}+T^{1/2}\|x'\|_{2}\\ &\leq B_{1}+T^{1/2}A_{3}:=B_{2}. \end{align*} Thus $\|x\|_{\infty}B_{4} \quad \text{for all } t. \] \end{lemma} \begin{proof} From (H1), we fix some $A_{4}\in(0,B_{0})$ such that \begin{align*} g(s)-e(t)<-B_{3}C_{1}. \end{align*} for all $t$ and all $0B_{0}$. Let $t_{3}>t_{2}$ be the first time instant such that $x(t)=A_{4}$. Then for any $t\in[t_{2},t_{3}]$, we have $x(t)\leq A_{4}$ and $|-f(x(t))x'(t)|\leq B_{3}C_{1}$. Hence, for $t\in[t_{2},t_{3}]$, \[ x''(t) = -f(x(t))x'(t)-g(x(t))-e(t)\\ > B_{3}C_{1}-f(x(t))x'(t) \geq 0. \] As $x'(t_{2})=0,x'(t)>0$ for $t\in(t_{2},t_{3}]$. Therefore, the function $x:[t_{2},t_{3}]\to\mathbb{R}$ has an inverse, denoted by $\xi$. Now multiplying \eqref{e1.1} by $x'(t)$ and integrating over $[t_{2},t_{3}]$, we obtain \begin{align*} \int^{A_{4}}_{m}-g(\xi(x))dx &= \int^{t_{3}}_{t_{2}}-g(x(t))x'(t)dt \\ &= \int^{t_{3}}_{t_{2}}(x''(t)x'(t)+f(x(t)(x'(t))^{2}+e(t)x'(t))dt \leq A_{5} \end{align*} for some $A_{5}>0$, where Lemma \ref{lem3.6} is used. By (H1), \begin{equation} \label{ep} \int^{A_{4}}_{m}-g(\xi(x))dx\to +\infty \end{equation} if $m\to 0^{+}$. Thus we know from \eqref{ep} that $m>B_{4}$ for some constant $B_{4}>0$. \end{proof} Now we give the proof of Theorem \ref{thm1.1}. Consider the homotopy equation \eqref{eh}, we can get a priori estimates as in Lemmas \ref{lem3.5}, \ref{lem3.6} and \ref{lem3.7}. That is, any positive $T$-periodic solution of \eqref{eh} satisfies \begin{align*} B'_{4}0$ is the solution of $$ c_{0}x-\frac{1}{x}=0. $$ Let $X$ be a Banach space of functions such that $C^{1}([0,T])\subseteq X\subseteq C([0,T])$, with continuous immersions. Set $X_{*}=\{x\in X: \min _{t} x(t)> 0\}$. Define the space: \[ D(L)=\{x\in W^{2,1}(0,T): x(0)=x(T), x'(0)=x'(T)\}, \] and the following two operators: \[ L: D(L)\subset X\to L^{1}(0,T), \quad (Lx)(t)=-x''(t), \] and \begin{gather*} N_{\tau}: X_{*}\to L^{1}(0,T), \\ (N_{\tau}x)(t)=\tau f(x(t))x'(t)+\tau (g(x(t))-e(t))+(1-\tau)(c_{0}x-\frac{1}{x}). \end{gather*} Taking $\sigma \in \mathbb{R}$ not belonging to the spectrum of $L$, the $T$-periodic for equation \eqref{eh} is thus equivalent to the operator equation \[ Lx=N_{\tau}x, \] which is also can be translated to \[ x-(L-\sigma I)^{-1} (N_{\tau}-\sigma I)x=0, \] since $L-\sigma I$ is invertible. By the homotopy invariance of degree and Lemma \ref{lem2.1}, \begin{align*} \deg (I-(L-\sigma I)^{-1}(N_{1}-\sigma I),\Omega, 0) &= \deg (I-(L-\sigma I)^{-1}(N_{0}-\sigma I),\Omega, 0)\\ &= \deg (c_{0}x-\frac{1}{x}, \Omega\cap\mathbb{R}, 0)=+1. \end{align*} Thus \eqref{eh}, with $\tau=1,$ has at least one solution in $\Omega$, which is a positive $T$-periodic solution of \eqref{e1.1}. The proof of Theorem \ref{thm1.1} is thus complete. \begin{remark} \label{rmk3.8} \rm It is known (see (E3), (E5)) that \[ \bar{\lambda}_{0}(a)\leq -1/T\int_{0}^{T}a(t)dt<0, \] Therefore \eqref{e16} implies \[ \bar{\lambda}_{0}(a)<0<\underline{\lambda}_{1}(b). \] \end{remark} \begin{remark} \label{rmk3.9} \rm Some classes of potentials $q$ for $\underline{\lambda}_{1}(q)>0$ to hold have been found recently in \cite{caba}. To describe these, let $K(\alpha,T)$ denote the best Sobolev constant in the inequality \[ C \|u\|_{\alpha}^{2} \le \|u'\|_{2}^{2} \quad \text{for all } u\in H_0^1(0,T). \] The explicit formula for $K(\alpha,T)$ is \[ K(\alpha,T) = \begin{cases} \frac{2\pi}{\alpha T^{1+2/\alpha}} \big( \frac{2}{\alpha+2} \big)^{1-2/\alpha} \big(\frac {\Gamma(1/\alpha) }{\Gamma(1/2+1/\alpha)}\big)^{2}, & \text{for } 1\le \alpha <\infty, \\[3pt] 4/T, & \text{for } \alpha=\infty, \end{cases} \] and $\Gamma(\cdot)$ is the Euler's Gamma function. \end{remark} Now \cite[Theorem 2.1]{caba} reads as follows: let $q\in L^{p}(0,T)$ for some $1\leq p \leq \infty$, $q_{+}=\max\{q,0\}$ is the positive part of $q$ and $p^{*}=\frac{p}{p-1}$ the conjugate of $p$. If \begin{align*} \|q_{+}\|_{p}< K(2p^{*},T), \end{align*} then \[ \underline{\lambda}_{1}(q)\geq \left(\frac{\pi}{T}\right)^{2} \Big(1-\frac{\|q_{+}\|}{K(2p^{*},T)}\Big)>0. \] \begin{example} \label{examp3.10} \rm Let $f, \varphi, h\in C (\mathbb{R},\mathbb{R})$, $\varphi (t)\geq 0, \gamma\geq 1$. For some $1\leq p \leq \infty$, if \[ \|\varphi_{+}\|_{p}< K(2p^{*},T), \] then the singular equation \begin{align*} x''+f(x)x'+\varphi(t)x-\frac{1}{x^{\gamma}}=h(t) \end{align*} has at least one positive $T$-periodic solution. \end{example} \subsection*{Acknowledgments} This work is supported by the National Natural Science Foundation of China (Grant No. 11461016), Hainan Natural Science Foundation (Grant No. 113001). \begin{thebibliography}{00} \bibitem{az87} A. Ambrosetti, V. Coti Zelati; \newblock {Critical points with lack of compactness and singular dynamical systems.} \newblock {\em Ann. Mat. Pura Appl.} \textbf{149}, 237-259(1987). \bibitem{az93} A. Ambrosetti, V. Coti Zelati; \newblock {\em Periodic solutions of singular Lagrangian systems.} \newblock Birkh\"{a}user Boston, Boston, MA, 1993. \bibitem{bci} I. V. Barteneva, A. Cabada, A. O. Ignatyev; \newblock {Maximum and anti-maximum principles for the general operator of second order with variable coefficients.} \newblock {\em Appl. Math. Comput.} \textbf{134}, 173-184(2003). \bibitem {caba} A. Cabada, J. A. Cid; \newblock {On the sign of the Green's function associated to Hill's equation with an indefinite potential.} \newblock {\em Appl. Math. Comput.} \textbf{117}, 1-14(2001). \bibitem {cmz}A. Capietto, J. Mawhin, F. Zanolin; \newblock {Continuation theorems for periodic perturbations of autonomous systems.} \newblock {\em Trans. Amer. Math. Soc.} \textbf{329}, 41-72(1992). \bibitem{ctz} J. Chu, P. J. Torres, M. Zhang; \newblock {Periodic solutions of second order non-autonomous singular dynamical systems.} \newblock {\em J. Differential Equations.} \textbf{239}, 196-212(2007). \bibitem{cz-dcds} J. Chu, M. Zhang; \newblock {Rotation numbers and Lyapunov stability of elliptic periodic solutions.} \newblock {\em Discrete Contin. Dyn. Syst.} \textbf{21}, 1071-1094(2008). \bibitem{cft} J. Chu, N. Fan, P. J. Torres; \newblock {Periodic solutions for second order singular damped differential equations.} \newblock {\em J. Math. Anal. Appl.} \textbf{2}, 665-675(2012). \bibitem{dm} M. A. del Pino, R. F. Man\'asevich; \newblock {Infinitely many $T$-periodic solutions for a problem arising in nonlinear elasticity.} \newblock {\em J. Differential Equations.} \textbf{103}, 260-277(1993). \bibitem{wne} W. N. Everitt, M. K. Kwong, A. Zettl; \newblock {Oscillations of eigenfunctions of weighted regular Sturm-Liouville problems.} \newblock {\em J. London Math. Soc.} \textbf{27}, 106-120(1983). \bibitem{fonda} A. Fonda, R. Toader; \newblock {Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach.} \newblock {\em J. Differential Equations.} \textbf{244}, 3235-3264(2008). \bibitem{fonda2} A. Fonda, R. Man\'{a}sevich, F. Zanolin; \newblock {Subharmonic solutions for some second order differential equations with singularities.} \newblock {\em SIAM J. Math. Anal.} \textbf{24}, 1294-1311(1993). \bibitem{fw} D. Franco, J. R. L. Webb; \newblock {Collisionless orbits of singular and nonsingular dynamical systems.} \newblock {\em Discrete Contin. Dyn. Syst.} \textbf{15}, 747-757(2006). \bibitem{hs} P. Habets, L. Sanchez; \newblock {Periodic solution of some Li\'enard equations with singularities.} \newblock {\em Proc. Amer. Math. Soc.} \textbf{109}, 1135-1144 (1990). \bibitem{htz} R. Hakl, P. J. Torres, M. Zamora; \newblock {Periodic solutions of singular second order differential equations: upper and lower functions.} \newblock {\em Nonlinear Anal.} \textbf{74}, 7078-7093 (2011). \bibitem{jcz} D. Jiang, J. Chu, M. Zhang; \newblock {Multiplicity of positive periodic solutions to superlinear repulsive singular equations.} \newblock {\em J. Differential Equations,} \textbf{211}, 282-302 (2005). \bibitem{Kra} M. A. Krasnosel'skii; \newblock {\em Positive Solutions of Operator Equations.} \newblock Noordhoff, Groningen, 1964. \bibitem{ls} A. C. Lazer, S. Solimini; \newblock {On periodic solutions of nonlinear differential equations with singularities.} \newblock {\em Proc. Amer. Math. Soc.} \textbf{99}, 109-114 (1987). \bibitem{lefs} S. Lefschetz; \newblock {Existence of periodic solutions for certain differential equations.} \newblock {\em Proc. Natl. Acad. Sci.} \textbf{29}, 29-32 (1943). \bibitem {dlu} D. Luo, D. Zhu, M. Han; \newblock {Periodic solutions of forced Li\'enard equations.} \newblock {\em Chinese Ann. Math.} \textbf{13}, 341-349 (1992). \bibitem {wma} W. Magnus, S. Winkler; \newblock {\em Hill's Equations.} \newblock corrected reprint of 1966 edition, Dover, New York, 1979. \bibitem {jma1} J. Mawhin; \newblock {\em Recent trends in nonlinear boundary value problems, in "Proc. 7th Int. Conf. Nonlinear Oscillation.} \newblock Berlin, 1977, pp. 57-70.. \bibitem {jma2} J. Mawhin, J. Ward; \newblock {Periodic solutions of second order forced Li\'enard differential equations at resonance.} \newblock {\em Arch. Math.} \textbf{41}, 337-351 (1983). \bibitem{rtv} I. Rachunkov\'{a}, M. Tvrd\'{y}, I. Vrko\u{c}; \newblock {Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems.} \newblock {\em J. Differential Equations,} \textbf{176}, 445-469 (2001). \bibitem {pom} P. Omari, G. Villari, F. Zanolin; \newblock {Periodic solutions of Li\'enard Equations with one-sided growth restrications.} \newblock {\em J. Differential Equations} \textbf{67}, 278-293 (1987). \bibitem{sol} S. Solimini; \newblock {On forced dynamical systems with a singularity of repulsive type.} \newblock {\em Nonlinear Anal.} \textbf{14}, 489-500 (1990). \bibitem{t07} P. J. Torres; \newblock {Weak singularities may help periodic solutions to exist.} \newblock {\em J. Differential Equations,} \textbf{232}, 277-284 (2007). \bibitem{t04} H. Wang; \newblock {Positive periodic solutions of singular systems with a parameter.} \newblock {\em J. Differential Equations,} \textbf{249}, 2986-3002 (2010). \bibitem {zwa1} Z. Wang; \newblock {Existence and multiplicity of periodic solutions of the second order Li\'enard equation with Lipschtzian condition.} \newblock {\em Nonlinear Anal.} \textbf{49}, 1049-1064 (2002). \bibitem {zwa2} Z. Wang; \newblock {Periodic solutions of the second order differential equations with singularity.} \newblock {\em Nonlinear Anal.} \textbf{58}, 319-331 (2004). \bibitem{yz}P. Yan, M. Zhang; \newblock {Higher order nonresonance for differential equations with singularities.} \newblock {\em Math. Methods Appl. Sci.} \textbf{26}, 1067-1074 (2003). \bibitem {eze} E. Zeidler; \newblock {\em Nonlinear functional analysis and its applications.} \newblock vol. 1, Springer, New York, Heidelberg, 1986. \bibitem{zhang1} M. Zhang; \newblock {A relationship between the periodic and the Dirichlet BVPs of singular differential equations.} \newblock {\em Proc. Roy. Soc. Edinburgh Sect. A} \textbf{128}, 1099-1114 (1998). \bibitem{zhang2} M. Zhang; \newblock {Periodic solutions of equations of Emarkov¨CPinney type.} \newblock {\em Adv. Nonlinear Stud.} \textbf{6}, 57-67 (2006). \bibitem{zhang3} M. Zhang; \newblock {Optimal conditions for maximum and antimaximum principles of the periodic solution problem.} \newblock {\em Bound. Value Probl.} 2010 (2010), Art. ID 410986, 26 pp. \end{thebibliography} \end{document}