\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 154, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/154\hfil Sturm-Picone type theorems] {Sturm-Picone type theorems for nonlinear differential systems} \author[A. Tiryaki \hfil EJDE-2015/154\hfilneg] {Aydin Tiryaki} \address{Aydin Tiryaki \newline Department of Mathematics and Computer Sciences, Faculty of Arts and Sciences, Izmir University, 35350 Uckuyular, Izmir, Turkey} \email{aydin.tiryaki@izmir.edu.tr} \thanks{Submitted March 10, 2015. Published June 11, 2015.} \subjclass[2010]{34C10, 34C15} \keywords{Comparison theorem; Sturm-Picone theorem; \hfill\break\indent half-linear equations; nonlinear differential systems} \begin{abstract} In this article, we establish a Picone-type inequality for a pair of first-order nonlinear differential systems. By using this inequality, we give Sturm-Picone type comparison theorems for these systems and a special class of second-order half-linear equations with damping term. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} Let $\alpha>0$ and define $\varphi_{\alpha} (s)=|s|^{\alpha-1}s$ if $s\neq 0$ and $\varphi_{\alpha} (0)=0$. By comparing with the zeros of the first component of the solution of the system \begin{equation} \label{d1} \begin{gathered} x'=a(t)x+b(t)\varphi_{1/\alpha}(y) \\ y'=-c(t)\varphi_{\alpha}(x)-d(t)y \end{gathered} \end{equation} we would like to obtain some information about the existence and distribution of zeros of the first component of the solution of the system \begin{equation} \label{d2} \begin{gathered} u'=A(t)u+B(t)\varphi_{1/\alpha}(v) \\ v'=-C(t)\varphi_{\alpha}(u)-D(t)v \end{gathered} \end{equation} where $a, A, b, B, c, C, d$ and $D$ are continuous real-valued functions on a given interval $I$ and $b(t)>0$ and $B(t)>0$ in $I$. The existence and uniqueness of the solution of the initial and boundary value problems for \eqref{d1} (or \eqref{d2}) were considered by Elbert \cite{Elbert} and Mirzov \cite{Mirzov1976, Mirzov1979}. We have the following special cases, considering, for example the second system: If $A(t)\equiv D(t)$ in $I$, then \eqref{d2} is the nonlinear Hamiltonian system \[ %\label{d3} u'=\frac{\partial H}{\partial v}, \;\;v'=- \frac{\partial H}{\partial u} \] where \begin{equation}\label{d4} H(t;u,v)=\frac{1}{\alpha+1} C(t)|u|^{\alpha+1}+A(t)uv +\frac{\alpha}{\alpha+1}B(t)|v|^{1+\frac{1}{\alpha}}. \end{equation} When $A(t)\equiv 0$ in $I$, the system \eqref{d2} is equivalent to the scaler second-order half-linear equation \begin{equation}\label{d5} (P(t)\varphi_{\alpha}(u'))'+R(t)\varphi_{\alpha}(u')+Q(t)\varphi_{\alpha}(u)=0 \end{equation} where the coefficient functions are \[ P(t)\equiv B(t)^{-\alpha}, \quad R(t)=D(t)B(t)^{-\alpha}, \quad Q(t)=C(t). \] If $A(t)\equiv 0$ and $D(t)\equiv 0$ in $I$, then \eqref{d5} reduced to the half-linear Sturm-Liouville equation \begin{equation}\label{d6} (P(t)\varphi_{\alpha}(u'))'+Q(t)\varphi_{\alpha}(u)=0. \end{equation} Moreover, if we take the transformation \begin{equation} \label{ektransformations} \begin{gathered} u=h(t)W \\ v=\frac{1}{h(t)}z \end{gathered} \end{equation} where $h'(t)=A(t)h(t)$, i.e $h(t)=\exp\big(\int_{t_{0}}^{t} A(s)ds \big)$ in system \eqref{d2} with $A(t)\equiv D(t)$, is equivalent for any $r \in C^{1}(I)$ \begin{equation} \label{ek17} \Big(P_{1}(t)\varphi_{\alpha}(W')\Big)'+R_{1}(t)\varphi_{\alpha}(W)+Q_{1}(t)\varphi_{\alpha}(W)=0 \end{equation} where the coefficient function are \begin{gather*} P_{1}(t)=r(t), \quad R_{1}(t)=(\alpha+1)r(t)A(t)-r'(t)-\alpha r(t) \frac{B'(t)}{B(t)},\\ Q_{1}(t)=r(t)C(t)B^{\alpha} (t). \end{gather*} It is not difficult to see that if we choose $r(t)=B^{-\alpha}(t)$ we get the scalar second-order half-linear equation \begin{equation} \Big(P(t)\varphi_{\alpha}(W')\Big)'+(\alpha+1)R(t)\varphi_{\alpha}(W') +Q(t)\varphi_{\alpha}(W)=0 \label{ek18} \end{equation} where $P$, $R$ and $Q$ are defined as in \eqref{d5}. Most of the classical results in oscillation theory are formulated for the solutions of the self-adjoint Sturm-Liouville equations of the form \begin{gather} -(p_{1}(x)u')'+p_{0}(x)u=0, \label{11} \\ -(P_{1}(x)v')'+P_{0}(x)v=0, \label{12} \end{gather} where $p_{0}$, $p_{1}$, $P_{0}$, $P_{1}$ are real valued continuous functions and $p_{1}$ and $P_{1}$ are positive on an appropriate interval. The starting point for this theory is the well known comparison theorem for Sturm \cite{Sturm} discovered in 1836. \begin{theorem}[Sturm Comparison Theorem] \label{thm11} Suppose that $p_{1}(x)\equiv P_{1}(x)$ and \break $P_{0}(x)\leq p_{0}(x)$ and $P_{0}(x)\neq p_{0}(x)$ for $x \in [x_{1}, x_{2}]$. If $x_1$ and $x_2$ are consecutive zeros of a nontrivial real solutions $u$ of \eqref{11}, then every real solution of $v$ of \eqref{12} has a zero in $(x_{1}, x_{2})$. \end{theorem} In 1909, Picone \cite{Picone} modified Sturm's theorem as follows. \begin{theorem}[Sturm-Picone Theorem] \label{thm12} Suppose that $00$, $p_1$, $p_0$, $P_1$, $P_0$ are defined as before. The above equations are also called half-linear or sometimes homogeneous of degree $\alpha$. They established a suitable Picone-type identity as follows \begin{equation} \begin{split} &\frac{d}{dt}\{\frac{u}{\varphi(v)}\left(\varphi(v)p_{1}\varphi(u') -\varphi(u)P_{1}\varphi(v')\right)\}\\ &=\left(p_{1}-P_{1}\right)|u'|^{\alpha+1} +\left(P_{0}-p_{0}\right)|u|^{\alpha+1}\\ &+P_{1} \big[|u'|^{\alpha+1}+\alpha |\frac{uv'}{v}|^{\alpha+1}-(\alpha+1)u'\varphi \Big(\frac{uv'}{v}\Big)\big]. \end{split} \label{166} \end{equation} Using the above identity, they obtained the following comparison results which is extension of Theorem \ref{thm12} to the class of half linear equations \eqref{144} and \eqref{155}. \begin{theorem}[\cite{JarosandKusano1999}] \label{thm13} Suppose that $00$ and $B(t)>0$ on $I$ and $(x, y)$ is a solution of \eqref{d2} such that the function $x(t)$ has consecutive zeros at $t_{1}, t_{2} \in I$ and \eqref{d1} is a Sturmian majorant for \eqref{d2} in the sense that \begin{equation} \label{ineq} [ B(t)-b(t)] |\xi|^{\alpha+1}+\big[A(t)-a(t)-\frac{d(t)-D(t)}{\alpha} \big] \xi \varphi_{\alpha}(\eta)+\frac{C(t)-c(t)}{\alpha}|\eta|^{\alpha+1}\geq 0, \end{equation} for all $\xi, \eta \in R$ and $t \in I$, then for any solution $(u, v)$ of \eqref{d1} the first component $u(t)$ has at least one zero in $(t_{1}, t_{2})$. Note that the inequality \eqref{ineq} holds for $\xi, \eta \in R \setminus \{0\}$ if $B(t)>b(t)$, $C(t)>c(t)$, and \[ \big(B(t)-b(t)\big)\big(C(t)-c(t)\big)^{\alpha+1} \geq \big(\frac{\alpha}{\alpha+1} \big)^{\alpha+1} |\alpha\big(A(t)-a(t)\big)-\left(d(t)-D(t)\right)|^{\alpha+1}. \] Elbert proved his result by means of the generalized Pr\"ufer transformation. In the particular case $a(t) \equiv A(t) \equiv D(t) \equiv 0$, Elbert's criterion reduces to the half-linear generalization of the classical Sturm-Picone comparison theorem due to Mirzov \cite{Mirzov1976}. Recently, Jaro\v{s} studied the system \eqref{d2} under suitable sufficient conditions. He established Picone-type identity for the nonlinear system of the form \eqref{d2} and applied it to derive Wirtinger type inequalities. He also gave some results to obtain information about the existence and distribution of zeros of the first component of the solution of \eqref{d2}. Indeed the following result is interesting. \begin{theorem}[\cite{Jaros2013}] \label{thm14} If for some nontrivial $C^{1}$-function $x$ defined on $[t_{1}, t_{2}]$ and satisfying $x(t_{1})=x(t_{2})=0$, the condition $$ J(x)=\int_{t_{1}}^{t_{2}} \Big[ B(t)^{-\alpha}|x'-\frac{\alpha A(t)+D(t)}{\alpha+1} x|^{\alpha+1}-c(t)|x|^{\alpha+1} \Big] dt\leq 0 $$ holds, then for any solution $(u,v)$ of \eqref{d2} the first component $u(t)$ either has a zero in $(t_{1}, t_{2})$ or is a constant multiple of $x(t)\exp \big( \int_{t_{0}}^{t} \frac{A(s)-D(s)}{\alpha+1} ds \big)$ for some $t_{0} \in I$ \end{theorem} We would like to obtain some information about the existence and distribution of the zeros of the first component of the solution of \eqref{d2} by comparing with the zeros of the first component of the solution of \eqref{d1} and obtain sufficient conditions for the case including $B(t)\geq b(t)$ and $C(t)\geq c(t)$. Note that our results, that are formulated in terms of the continuous function $a(t)=\frac{\alpha A(t)+D(t)}{(\alpha+1)}$ yield a variety of comparison results. Even if we reduce our consideration to the special cases of $a(t)$ mentioned above, our results seem to be new. \section{Picone-type inequality and Leightonian comparison theorems} Let \begin{equation} \label{d21} \Phi_{\alpha}(\xi, \eta):= \xi \varphi_{\alpha}(\xi) +\alpha \eta \varphi_{\alpha}(\eta)-(\alpha+1)\xi \varphi_{\alpha}(\eta). \end{equation} for $\varepsilon, \eta \in R$ and $\alpha>0$. From the Young inequality, it follows that $\Phi_{\alpha}(\xi,\eta)\geq 0$ for all $\xi,\eta \in R$, and the equality holds if and only if $\xi= \eta$. The Picone-type inequality in the following lemma is of basic importance for our main results, it may be verified directly by differentiation. \begin{lemma}[Picone-type inequality] \label{lem21} Suppose that $(u,v)$ is a solution of \eqref{d2} such that $u(t)\neq 0$ in $I$. If there exists a solution $(x,y)$ of \eqref{d1}, then \begin{equation} \begin{aligned} &\frac{d}{dt} \Big[\frac{x}{\varphi_{\alpha}(u)} \\ \Big( \varphi_{\alpha}(u)y-\varphi_{\alpha}(x)v \Big) \Big] &\geq \Big[C(t)-c(t)-\frac{1}{\alpha+1}|a(t)-d(t)| \Big] x \varphi_{\alpha}(x) \\ &\quad +\Big[b(t)-\frac{b^{\alpha+1}(t)}{B^{\alpha}(t)} -\frac{\alpha}{\alpha+1}|a(t)-d(t)| \Big]y \varphi_{1/\alpha}(y)\\ &\quad +B^{-\alpha}(t)\Phi_{\alpha} (b(t)\varphi_{1/\alpha}(y), B(t)\frac{x}{u}\varphi_{1/\alpha}(v)) \\ &\quad -\Big[(\alpha+1)a(t)-\alpha A(t)-D(t) \Big]x \varphi_{\alpha} \Big(\frac{x}{u}\Big)v. \end{aligned}\label{d22} \end{equation} \end{lemma} We begin with the following functionals $V_{\sigma\tau}$ and $M_{\sigma\tau}$ defined for $t_{1}<\sigma<\tau0$, conclusion (ii) of Corollary \ref{coro23} does not hold. \end{remark} From Corollary \ref{coro23} we immediately have the following result which is an extension of Sturm-Picone Comparison Theorem of the systems \eqref{d1} and \eqref{d2}. \begin{theorem} \label{thm22} Suppose there exists a nontrivial solution $(x,y)$ of \eqref{d1} in $(t_{1}, t_{2})$ such that $x(t_{1})=x(t_{2})=0$. If \begin{equation} \label{ek215} C(t)\geq c(t)+\frac{1}{\alpha+1} \Big|\frac{\alpha A(t)+D(t)}{\alpha+1}-d(t) \Big| \end{equation} and \[ b(t) \geq \frac{b^{\alpha+1}(t)}{B^{\alpha}(t)} +\frac{\alpha}{\alpha+1}\Big| \frac{\alpha A(t)+D(t)}{\alpha+1}-d(t) \Big| \] for every $t \in (t_{1}, t_{2})$, then the first component $u(t)$ of every nontrivial solution $(u,v)$ of \eqref{d2} has at least one zero in $(t_{1}, t_{2})$ unless $u$ is a nonzero constant multiple of \begin{eqnarray*} x(t)\exp\Big(\int_{t_{0}}^t \frac{A(s)-D(s)}{\alpha+1} ds \Big). \end{eqnarray*} \end{theorem} \begin{remark}\label{remk2} \rm Note that when $a(t)\equiv d(t)\equiv A(t)\equiv D(t)$, the case \eqref{ek214} is already satisfied, hence we can obtain special cases of the above results given in Corollary \ref{coro22}-\ref{coro23} and Theorem \ref{thm22}. \end{remark} Now we consider a class of second-order half-linear equations with damping term: \begin{gather} \label{x1} \Big(b^{-\alpha}(t)\varphi_{\alpha}(w') \Big)' +(\alpha+1)b^{-\alpha}(t)D(t)\varphi_{\alpha}(w')+c(t)\varphi_{\alpha}(w)=0,\\ \label{x2} \Big(B^{-\alpha}(t)\varphi_{\alpha}(W') \Big)' +(\alpha+1)B^{-\alpha}(t)D(t)\varphi_{\alpha}(W')+C(t)\varphi_{\alpha}(W)=0 \end{gather} Note that Equation \eqref{x2} is the same as Equation (1.8), which is obtained from \eqref{d2}, Equation \eqref{x1} can be obtained from \eqref{d1} using similar transformations. From Remark \ref{remk2}, we immediately have the following theorem which is straightforward Sturm-Picone comparison result for the above damped half-linear equations. \begin{theorem} \label{thm23} Suppose that there exists a nontrivial real solution $w$ of \eqref{x1} in $(t_{1}, t_{2})$ such that $w(t_{1})=0=w(t_{2})$. If $B(t)\geq b(t)$ and $C(t)\geq c(t)$, then every nontrivial solution $W$ of \eqref{x2} either has a zero in $(t_{1}, t_{2})$ or it is a nonzero constant multiple of $w$. \end{theorem} \begin{remark} \label{rmk3} \rm Note that, Theorem \ref{thm23} is a partial answer to the open problem given in \cite{Tiryaki-Oinarov-Ramazanova}. \end{remark} \begin{thebibliography}{00} \bibitem{Ahmad1} Ahmad, S.; Lazer, A., C.; \emph{A new generalization of the Sturm comparison theorem to self adjoint systems}, Proc. Amer. Math. Soc., 68 (1978), 185-188. \bibitem{Ahmad2} Ahmad, S.; \emph{On Sturmian theory for second order systems}, Proc. Amer. Math. Soc. 87 (1983), 661-665. \bibitem{Allegretto2000} Allegretto, W.; \emph{Sturm type theorems for solutions of elliptic nonlinear problems}, Nonlinear Differ. Equ. Appl., 7 (2000), 309-321. \bibitem{Allegretto and Huang98} Allegretto, W.; Huang, Y., -X.; \emph{A Picones identitiy for the p-Laplacian and applications}, Nonlinear Analysis T. M. A, 32 (1998), 819-830. \bibitem{Allegretto2001} Allegretto, W.; \emph{Sturm theorems for degenerate elliptic equations}, Proc. Amer. Math. Soc. 129 (2001), 3031-3035. \bibitem{Dosly2002} Dosl\'y, O.; \emph{The Picone identity for a class of partial differential equations}, Mathematica Bohemica, 127 (2002), 581-589. \bibitem{Elbert} Elbert, A.; \emph{A half-linear second order differential equation}, Colloq. Math. J$\acute{a}$nos Bolyai 30, (1979), 153-180. \bibitem{Fisnarova} Fisnarov\'a, S.; Marik, R.; \emph{Generalized Picone and Riccati inequalites for half-linear differential operators with arbitrary elliptic matrices}, Electronic J. Diff. Equations, No. 111, (2010), pp. 1-13. \bibitem{JarosandKusano1999} Jaro\v{s}, J.; Kusano T.; \emph{A Picone type identity for second order half-linear differential equations}, Acta Math. Univ. Comenianae, Vol. LXVIII, 1(1999), 137-151. \bibitem{JarosKusanoYoshida2000} Jaro\v{s}, J.; Kusano, T.; Yoshida, N.; \emph{Forced superlinear oscillations via Picone's identity}, Acta Math. Univ. Comenianae, LXIX (2000), 107-113. \bibitem{JarosKusanoYoshida2002} Jaro\v{s}, J.; Kusano, T.; Yoshida, N.; \emph{Picone type inequalies for half linear elliptic equations and their applications}, Adv. Math. Sci. Appl., 12(2), (2002), 709-724. \bibitem{Jaros2013} Jaro\v{s}, J.; \emph{Wirtinger inequality and nonlinear differential systems}, Archivum Mathematicum, Vol. 49 (2013), No. 1, 35-41. \bibitem{Kreith1970} Kreith, K.; \emph{A Picone identity for first order systems}, J. Math. Anal. Appl. 31 (1970), 297-308. \bibitem{Kreith1973} Kreith, K.; \emph{Oscillation Theory}, Lecture Notes in Mathematics, no. 324, Springer-Verlag, 1973. \bibitem{Leighton1962} Leighton, W.; \emph{Comparison theorems for linear differential equations of second order}, Proc. Amer. Math. Soc. 13 (1962), 603–610. \bibitem{Mirzov1976} Mirzov, J. D.; \emph{On some analogs of Sturm's and Kneser's theorems for nonlinear systems}, J. Math. Anal. Appl. 53 (1976), 418-425. \bibitem{Mirzov1979} Mirzov, J. D.; \emph{Sturm-Liouville boundary value problem to a nonlinear system} (in Russian), Izv. Vis. Ucheb. Zav, 203 (1979), 28-32. \bibitem{Muller} M\"uller-Pfeiffer, E.; \emph{Sturm Comparison theorems for non-selfadjoint differential equations on non-compact intervals}, Math. Nachr., 159 (1992), 291-298. \bibitem{Picone} Picone, M.; \emph{Sui valori eccezionali di un parametro da cui dipende un’equazione differenziale lineare ordinaria del second ordine}, Ann. Scuola Norm. Pisa 11 (1909), 1-141. \bibitem{Sturm} Sturm, C.; \emph{Sur les \'equations diff\'entielles lin\'earies du second ordere}, J. Math. Pures. Appl., 1 (1836), 106-186. \bibitem{Swanson} Swanson, C. A.; \emph{Comparison and Oscillation Theory of Linear Differential Equations}, Academic Press, New York, 1968. \bibitem{Tadie} Tadie; \emph{Oscillation criteria for semilinear elliptic equations with a damping term in $R^n$}, Electronic J. Diff. Equations, No. 51, (2010), pp. 1-5. \bibitem{Tiryaki1} Tiryaki, A.; \emph{Sturm-Picone type theorems for second-order nonlinear differential equations}, Electronic J. Diff. Equations, Vol. 2014, No. 146, (2014), pp. 1-11. \bibitem{Tiryaki2} Tiryaki, A.; \emph{Sturm-Picone type theorems for second-order nonlinear elliptic differential equations}, Electronic J. Diff. Equations, Vol. 2014, No. 214, (2014), pp. 1-10. \bibitem{Tiryaki-Oinarov-Ramazanova} Tiryaki, A.; Oinarov, R.; Ramazanova, K.; \emph{Sturm comparison theorems for half-linear equations with damping term}, submitted for publication. \bibitem{TyagiandRaghavendra2008} Tyagi, T.; Raghavendra, V.; \emph{A note on generalization of Sturm's comparison theorem}, Nonlinear Dyn. Syst. Theory, 8(2) (2008), 213-216. \bibitem{Tyagi2013} Tyagi, J.; \emph{Generalizations of Sturm-Picone theorem for second order nonlinear differential equations}, Taiwanese Journal of Mathematics, Vol. 17, No. 1, (2013), pp. 361-378. \bibitem{Yoshida2008} Yoshida, N.; \emph{Oscillation theory of partial differential equations}, World Scientific, 2008. \bibitem{Yoshida2009} Yoshida, N.; \emph{A Picone identity for half-linear elliptic equations and its applications to oscillation theory}, Nonlinear Anal., 71 (2009), pp. 4935-4951. \bibitem{Zhang} Zhang, C.; Sun, S.; \emph{Sturm-Picone comparison theorem of second-order linear equationson time scales}, Adv. Diff. Eqs., (2009), pp. 12. \end{thebibliography} \end{document}