\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 158, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/158\hfil $p(x)$-biharmonic problem] {Existence and non-existence of solutions for a $p(x)$-biharmonic problem} \author[G. A. Afrouzi, M. Mirzapour, N. T. Chung \hfil EJDE-2015/158\hfilneg] {Ghasem A. Afrouzi, Maryam Mirzapour, Nguyen Thanh Chung} \address{Ghasem A. Afrouzi \newline Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran} \email{afrouzi@umz.ac.ir} \address{Maryam Mirzapour \newline Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran} \email{mirzapour@stu.umz.ac.ir} \address{Nguyen Thanh Chung \newline Department of Mathematics, Quang Binh University, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam} \email{ntchung82@yahoo.com} \thanks{Submitted July 22, 2014. Published June 15, 2015.} \subjclass[2010]{35J60, 35B30, 35B40} \keywords{$p(x)$-Biharmonic; variable exponent; critical points; \hfill\break\indent minimum principle; fountain theorem; dual fountain theorem} \begin{abstract} In this article, we study the following problem with Navier boundary conditions \begin{gather*} \Delta (|\Delta u|^{p(x)-2}\Delta u)+|u|^{p(x)-2}u =\lambda |u|^{q(x)-2}u +\mu|u|^{\gamma(x)-2}u\quad \text{in } \Omega,\\ u=\Delta u=0 \quad \text{on } \partial\Omega. \end{gather*} where $\Omega$ is a bounded domain in $\mathbb{R}^{N}$ with smooth boundary $\partial \Omega$, $N\geq1$. $p(x),q(x)$ and $\gamma(x)$ are continuous functions on $\overline{\Omega}$, $\lambda$ and $\mu$ are parameters. Using variational methods, we establish some existence and non-existence results of solutions for this problem. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} In recent years, the study of differential equations and variational problems with $p(x)$-growth conditions was an interesting topic, which arises from nonlinear electrorheological fluids and elastic mechanics. In that context we refer the reader to Ruzicka \cite{Ru}, Zhikov \cite{Zhikov1} and the reference therein; see also \cite{Hamidi,Fan4,Fan5,Fan6}. Fourth-order equations appears in many context. Some of theses problems come from different areas of applied mathematics and physics such as Micro Electro-Mechanical systems, surface diffusion on solids, flow in Hele-Shaw cells (see \cite{Fer}). In addition, this type of equations can describe the static from change of beam or the sport of rigid body. El Amrouss et al \cite{Amr} studied a class of $p(x)$-biharmonic of the form \begin{gather*} \Delta (|\Delta u|^{p(x)-2}\Delta u)=\lambda |u|^{p(x)-2}u+f(x,u) \quad \text{in } \Omega,\\ u=\Delta u=0 \quad \text{on } \partial\Omega, \end{gather*} where $\Omega$ is a bounded domain in $\mathbb{R}^{N}$, with smooth boundary $\partial \Omega$, $N\geq 1$, $\lambda\leq 0$ and some assumptions on the Carath\'{e}odory function $f:\Omega\times \mathbb{R}\to \mathbb{R}$. They obtained the existence and multiplicity of solutions. In a recent article, Lin Li et al \cite{Lin} considered the above problem and using variational methods, by the assumptions on the Carath\'{e}odory function $f$, they establish the existence of at least one solution and infinitely many solutions of the problem. Inspired by the above references and the work of Jinghua Yao \cite{Yao}, the aim of this article is to study the existence and multiplicity of weak solutions of the following fourth-order elliptic equation with Navier boundary conditions \begin{equation}\label{e1.1} \begin{gathered} \Delta (|\Delta u|^{p(x)-2}\Delta u)+|u|^{p(x)-2}u =\lambda |u|^{q(x)-2}u +\mu|u|^{\gamma(x)-2}u\quad \text{in } \Omega,\\ u=\Delta u=0 \quad \text{on } \partial\Omega. \end{gathered} \end{equation} where $\Omega$ is a bounded domain in $\mathbb{R}^N$ with smooth boundary $\partial \Omega$, $N\geq1$, $p(x),q(x)$ and $\gamma(x)$ are continuous functions on $\overline{\Omega}$ with $\inf_{x\in \overline{\Omega}}p(x)>1,\inf_{x\in \overline{\Omega}}q(x)>1$, $\inf_{x\in \overline{\Omega}}\gamma(x)>1$ and $\lambda$ and $\mu$ are parameters. Throughout the paper, we assume that $\lambda^{2}+\mu^{2}\neq 0$. \section{Preliminaries} To study $p(x)$-Laplacian problems, we need some results on the spaces $L^{p(x)}(\Omega)$ and $W^{k,p(x)}(\Omega)$, and properties of $p(x)$-Laplacian, which we use later. Let $\Omega$ be a bounded domain of $\mathbb{R}^N$, denote \[ C_+(\overline{\Omega})=\{h(x); h(x)\in C(\overline{\Omega}), h(x)>1, \forall x\in \overline{\Omega}\}. \] For any $h\in C_+(\overline{\Omega})$, we define \[ h^+=\max\{h(x);~x \in\overline{\Omega}\},\quad h^-=\min\{h(x);~x \in\overline{\Omega}\}; \] For any $p\in C_+(\overline{\Omega})$, we define the \emph{variable exponent Lebesgue space} \begin{align*} L^{p(x)}(\Omega)=\Big\{&u; u\textrm{ is a measurable real-valued function such that}\\ & \int_{\Omega}|u(x)|^{p(x)}dx<\infty\Big\}, \end{align*} endowed with the so-called \emph{Luxemburg norm} \[ |u|_{p(x)}=\inf \big\{\mu>0;~\int_{\Omega}|\frac{u(x)}{\mu}|^{p(x)}dx\leq 1\big\}. \] Then $(L^{p(x)}(\Omega),|\cdot|_{p(x)})$ becomes a Banach space. \begin{proposition}[\cite{Fan2}] \label{prop2.1} The space $(L^{p(x)}(\Omega),|\cdot|_{p(x)})$ is separable, uniformly convex, reflexive and its conjugate space is $L^{q(x)}(\Omega)$ where $q(x)$ is the conjugate function of $p(x)$, i.e., \[ \frac{1}{p(x)}+\frac{1}{q(x)}=1, \] for all $x\in \Omega$. For $u\in L^{p(x)}(\Omega)$ and $v\in L^{q(x)}(\Omega)$, we have \[ \big|\int_{\Omega}uvdx\big| \leq \Big(\frac{1}{p^{-}}+\frac{1}{q^{-}}\Big)|u|_{p(x)}|v|_{q(x)} \leq 2|u|_{p(x)}|v|_{q(x)}. \] \end{proposition} The Sobolev space with variable exponent $W^{k,p(x)}(\Omega)$ is defined as \[ W^{k,p(x)}(\Omega)=\{ u\in L^{p(x)}(\Omega): D^{\alpha}u\in L^{p(x)}(\Omega), |\alpha|\leq k\}, \] where $D^{\alpha}u=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_1} \partial x_{2}^{\alpha_2}\dots \partial x_{N}^{\alpha_N}}u$, with $\alpha=(\alpha_1,\dots ,\alpha_N)$ is a multi-index and $|\alpha|=\sum_{i=1}^N \alpha_i$. The space $W^{k,p(x)}(\Omega)$ equipped with the norm \[ \|u\|_{k,p(x)}=\sum_{|\alpha|\leq k}|D^{\alpha}u|_{p(x)}, \] also becomes a separable and reflexive Banach space. For more details, we refer the reader to \cite{Fan,Fan2,Mih1,Yao}. Denote \[ p_{k}^{*}(x)=\begin{cases} \frac{Np(x)}{N-kp(x)} & \text{if } kp(x)0:\int_{\Omega}\Big(\Big|\frac{\Delta u(x)}{\mu}\Big|^{p(x)} +\lambda\big|\frac{u(x)}{\mu}\big|^{p(x)}\Big)dx\leq 1\Big\}. \] \begin{remark}\rm According to \cite{Fu}, the norm $\|\cdot\|_{2,p(x)}$ is equivalent to the norm $|\Delta\cdot|_{p(x)}$ in the space $X$. Consequently, the norms $\|\cdot\|_{2,p(x)}$, $\|\cdot\|$ and $|\Delta\cdot|_{p(x)}$ are equivalent. \end{remark} \begin{proposition}[\cite{Amr}] \label{prop2.4} If we denote $\rho(u)=\int_{\Omega}(|\Delta u|^{p(x)}+|u|^{p(x)})dx$, then for $u,u_n\in X$, we have \begin{itemize} \item[(1)] $\|u\|<1$ (respectively=1; $>1$) $\Longleftrightarrow$ $\rho(u)<1$ (respectively $=1$; $>1$); \item[(2)] $\|u\|\leq1\Rightarrow\|u\|^{p^{+}}\leq \rho(u)\leq \|u\|^{p^{-}}$; \item[(3)] $\|u\|\geq1\Rightarrow\|u\|^{p^{-}}\leq \rho(u)\leq\|u\|^{p^{+}}$; \item[(4)] $\|u\|\to 0$ (respectively $\to \infty$) $\Longleftrightarrow$ $\rho(u)\to 0$ (respectively $\to \infty$). \end{itemize} \end{proposition} It is clear that the energy functional associated with \eqref{e1.1} is defined by $$ I_{\lambda,\mu}(u)=\int_{\Omega}\frac{1}{p(x)}(|\Delta u|^{p(x)}+|u|^{p(x)})dx -\lambda\int_{\Omega}\frac{1}{q(x)}|u|^{q(x)}dx -\mu\int_{\Omega}\frac{1}{\gamma(x)}|u|^{\gamma(x)}dx. $$ Let us define the functional \begin{align*} J(u)=\int_{\Omega}\frac{1}{p(x)}(|\Delta u|^{p(x)}+|u|^{p(x)})dx. \end{align*} It is well known that $J$ is well defined, even and $C^1$ in $X$. Moreover, the operator $L=J':X\to X^*$ defined as \begin{align*} \langle L(u),v\rangle=\int_{\Omega}(|\Delta u|^{p(x)-2} \Delta u\Delta v+|u|^{p(x)-2}uv)dx \end{align*} for all $u,v\in X$ satisfies the following assertions. \begin{proposition}[\cite{Amr}] \label{prop2.5} \begin{itemize} \item[(1)] $L$ is continuous, bounded and strictly monotone. \item[(2)] $L$ is a mapping of $(S_{+})$ type, namely: $u_n\rightharpoonup u$, and $\limsup_{n\to+\infty}L(u_n) (u_n-u)\leq 0$ implies $u_n\to u$. \item[(3)] $L$ is a homeomorphism. \end{itemize} \end{proposition} \section{Main results and proofs} In this section, we study the existence and non-existence of weak solutions for problem \eqref{e1.1}. We use the letter $c_i$ in order to denote a positive constant. \begin{theorem}\label{theo3.2} Assume that $q(x),\gamma(x)\in C_{+}(\overline{\Omega})$ and $p^+0$, $\mu\in \mathbb{R}$, \eqref{e1.1} has a sequence of weak solutions $(\pm u_k)$ such that $I_{\lambda,\mu}(\pm u_k)\to+\infty$ as $k\to+\infty$. \item[(ii)] For every $\mu>0$, $\lambda\in \mathbb{R}$, \eqref{e1.1} has a sequence of weak solutions $(\pm v_k)$ such that $I_{\lambda,\mu}(\pm v_k)<0$ and $I_{\lambda,\mu}(\pm v_k)\to0$ as $k\to+\infty$. \item[(iii)] For every $\lambda<0$, $\mu<0$, \eqref{e1.1} has no nontrivial weak solution. \end{itemize} \end{theorem} We will use the following Fountain theorem to prove (i) and the Dual of the Fountain theorem to prove (ii). \begin{lemma}[\cite{Zhao}]\label{lem3.3} Let $X$ be a reflexive and separable Banach space, then there exist $\{e_j\}\subset X$ and $\{e^*_j\}\subset X^*$ such that \[ X=\overline{\operatorname{span}\{e_j:j=1,2,\dots\}},\quad X^*=\overline{\operatorname{span}\{e_j^*:j=1,2,\dots\}}, \] and $$ \langle e_i,e_j^*\rangle=\begin{cases} 1 & \text{if } i=j,\\ 0 & \text{if } i\neq j, \end{cases} $$ \end{lemma} We define \begin{equation}\label{e3.2} X_j=\operatorname{span}\{e_j\},\quad Y_k=\oplus_{j=1}^{k}X_j,\quad Z_k=\overline{\oplus_{j=k}^{\infty}X_j}. \end{equation} Then we have the following Lemma. \begin{lemma}[\cite{Amr}] \label{lem3.4} If $q(x),\gamma(x)\in C_{+}(\overline{\Omega}),~q(x)r_k>0$ such that \item[(A2)] $\inf \{I(u)~:~u\in Z_k,~\|u\|=r_k\}\to+\infty$ as $k\to+\infty$. \item[(A3)] $\max \{I(u)~:~u\in Y_k,~\|u\|=\rho_k\}\leq0$. \item[(A4)] $I$ satisfies the (PS) condition for every $c>0.$ \end{itemize} Then $I$ has an unbounded sequence of critical points. \end{lemma} \begin{lemma}[Dual Fountain Theorem \cite{Will}] \label{lem3.6} Assume {\rm (A1)} is satisfied and there is $k_0>0$ such that, for each $k\geq k_0$, there exist $\rho_k>r_k>0$ such that \begin{itemize} \item[(B1)] $a_k=\inf \{I(u):u\in Z_k,\,\|u\|=\rho_k\}\geq0$. \item[(B2)] $b_k=\max \{I(u):u\in Y_k,\,\|u\|=r_k\}<0$. \item[(B3)] $d_k=\inf \{I(u): u\in Z_k,\,\|u\|\leq\rho_k\} \to0$ as $k\to+\infty$. \item[(B4)] $I$ satisfies the $(PS)_{c}^{*}$ condition for every $c\in[d_{k_0},0)$. \end{itemize} Then $I$ has a sequence of negative critical values converging to $0$. \end{lemma} \begin{definition}\rm We say that $I_{\lambda,\mu}$ satisfies the $(PS)_{c}^{*}$ condition (with respect to $(Y_n)$), if any sequence $\{u_{n_{j}}\}\subset X$ such that $n_{j}\to+\infty$, $u_{n_{j}}\in Y_{n_{j}}$, $I_{\lambda,\mu}(u_{n_{j}})\to c$ and $(I_{\lambda,\mu}|_{Y_{n_{j}}})'(u_{n_{j}})\to 0$, contains a subsequence converging to a critical point of $I_{\lambda,\mu}$. \end{definition} \subsection*{Proof of Theorem \ref{theo3.2}} (i) First we verify $I_{\lambda,\mu}$ satisfies the (PS) condition. Suppose that $(u_n)\subset X$ is (PS) sequence, i.e., $$ |I_{\lambda,\mu}(u_n)|\leq c_9,\quad I'_{\lambda,\mu}(u_n)\to 0\quad \text{as } n\to\infty. $$ By Propositions \ref{prop2.2} and \ref{prop2.1}, we know that if we denote $$ \phi(u)=-\lambda\int_{\Omega}\frac{1}{q(x)}|u|^{q(x)},dx,\quad \psi(u)=-\mu\int_{\Omega}\frac{1}{\gamma(x)}|u|^{\gamma(x)},dx, $$ then they are both weakly continuous and their derivative operators are compact. By Proposition \ref{prop2.5}, we deduce that $I'_{\lambda,\mu}=L+\phi'+\psi'$ is also of type $(S_{+})$. Thus it is sufficient to verify that $(u_n)$ is bounded. Assume $\|u_n\|>1$ for convenience. For $n$ large enough, we have \begin{align}\label{e3.5} \begin{split} &c_9+1+\|u_n\|\\ &\geq I_{\lambda,\mu}(u_n)-\frac{1}{q^-}\langle I'_{\lambda,\mu}(u_n),u_n\rangle\\ &=\Big{[}\int_{\Omega}\frac{1}{p(x)}(|\Delta u_n|^{p(x)} +|u_n|^{p(x)})dx-\lambda\int_{\Omega}\frac{1}{q(x)}|u_n|^{q(x)}dx -\mu\int_{\Omega}\frac{1}{\gamma(x)}|u_n|^{\gamma(x)}dx\Big{]}\\ &\quad -\frac{1}{q^-}\Big{[}\int_{\Omega}(|\Delta u_n|^{p(x)} +|u_n|^{p(x)})dx-\lambda\int_{\Omega}|u_n|^{q(x)}dx -\mu\int_{\Omega}|u_n|^{\gamma(x)}dx\Big{]}\\ &\geq \Big(\frac{1}{p^+}-\frac{1}{q^-}\Big)||u_n||^{p^-} -c_{10}\|u_n\|^{\gamma^+}. \end{split} \end{align} Since $q^->p^+$ and $p^->\gamma^+$, we know that $\{u_n\}$ is bounded in $X$. In the following we will prove that if $k$ is large enough, then there exist $\rho_k>r_k>0$ such that (A2) and (A3) hold. (A2) For any $u\in Z_k$, $\|u\|=r_k>1$ ($r_k$ will be specified below), we have \begin{align*} I_{\lambda,\mu}(u) &=\int_{\Omega}\frac{1}{p(x)}(|\Delta u|^{p(x)}+|u|^{p(x)})dx -\lambda\int_{\Omega}\frac{1}{q(x)}|u|^{q(x)}dx -\mu\int_{\Omega}\frac{1}{\gamma(x)}|u|^{\gamma(x)}dx\\ &\geq \frac{1}{p^+}\|u\|^{p^-} -\frac{\lambda}{q^-}\int_{\Omega}|u|^{q(x)}dx -\frac{c_{11}|\mu|}{\gamma^-}\|u\|^{\gamma^+}. \end{align*} Since $p^->\gamma^+$, there exists $r_0>0$ large enough such that $\frac{c_{11}|\mu|}{\gamma^-}\|u\|^{\gamma^+}\leq\frac{1}{2p^+}\|u\|^{p^-}$ as $r=\|u\|\geq r_0$. If $|u|_{q(x)}\leq 1$ then $\int_{\Omega}|u|^{q(x)}dx\leq |u|_{q(x)}^{q^-}\leq 1$. However, if $|u|_{q(x)}> 1$ then $\int_{\Omega}|u|^{q(x)}dx\leq |u|_{q(x)}^{q^+} \leq(\beta_k\|u\|)^{q^+}$. So, we conclude that \begin{align*} I_{\lambda,\mu}(u) &\geq \begin{cases} \frac{1}{2p^+}\|u\|^{p^-}-\frac{\lambda c_{12}}{q^-} &\text{ if } |u|_{q(x)}\leq 1, \\ \frac{1}{2p^+}\|u\|^{p^-}-\frac{\lambda }{q^-}(\beta_k\|u\|)^{q^+} & \text{if } |u|_{q(x)}> 1. \end{cases} \\ &\geq \frac{1}{p^+}\|u\|^{p^-}-\frac{\lambda }{q^-}(\beta_k\|u\|)^{q^+} -c_{13}, \end{align*} choose $r_k=\Big(\frac{2\lambda }{q^-}q^+\beta_k^{q^+}\Big)^{\frac{1}{p^{-}-q^+}}$, we have \[ I_{\lambda,\mu}(u)=\frac{1}{2}\Big(\frac{1}{p^+}-\frac{1}{q^+} \Big)r_k^{p^-}-c_{13}\to \infty\quad \text{ as} k\to\infty, \] because of $p^+r_k>1$. Then \begin{align*} I_{\lambda,\mu}(u) &=\int_{\Omega}\frac{1}{p(x)}(|\Delta u|^{p(x)}+|u|^{p(x)})dx -\lambda\int_{\Omega}\frac{1}{q(x)}|u|^{q(x)}dx -\mu\int_{\Omega}\frac{1}{\gamma(x)}|u|^{\gamma(x)}dx\\ &\leq\frac{1}{p^-}\|u\|^{p^+}-\frac{\lambda}{q^+}\int_{\Omega}|u|^{q(x)}dx +\frac{|\mu|}{\gamma^-}\int_{\Omega}|u|^{\gamma(x)}dx. \end{align*} Since $\operatorname{dim}Y_k<\infty$, all norms are equivalent in $Y_k$, we obtain \begin{align*} I_{\lambda,\mu}(u)\leq\frac{1}{p^-}\|u\|^{p^+}-\frac{\lambda}{q^+}\|u\|^{q^-} +\frac{|\mu|}{\gamma^-}\|u\|^{\gamma^+}. \end{align*} We get that: $I_{\lambda,\mu}(u)\to -\infty$ as $\|u\|\to +\infty$ since $q^->p^+$ and $\gamma^+r_k>0$. Obviously $I_{\lambda,\mu}$ is even and the proof of (i) is complete. \smallskip (ii) We use the Dual Fountain theorem to prove conclusion (ii). Now we prove that there exist $\rho_k>r_k>0$ such that if $k$ is large enough (B1), (B2) and (B3) are satisfied. (B1) For any $u\in Z_k$ we have \begin{align*} I_{\lambda,\mu}(u)&=\int_{\Omega}\frac{1}{p(x)}(|\Delta u|^{p(x)}+|u|^{p(x)})d -\lambda\int_{\Omega}\frac{1}{q(x)}|u|^{q(x)}dx -\mu\int_{\Omega}\frac{1}{\gamma(x)}|u|^{\gamma(x)}dx\\ &\geq \frac{1}{p^+}\|u\|^{p^+}-\frac{c_{14}|\lambda|}{q^-}\|u\|^{q^-} -\frac{\mu}{\gamma^-}\int_{\Omega}|u|^{\gamma(x)}dx. \end{align*} Since $q^->p^+$, there exists $\rho_0>0$ small enough such that $\frac{c_{14}|\lambda|}{q^-}\|u\|^{q^-}\leq \frac{1}{2p^+}\|u\|^{p^+}$ as $0<\rho=\|u\|\leq \rho_0$. Then from the proof above, we have \begin{equation}\label{e3.4} I_{\lambda,\mu}(u) \geq\begin{cases} \frac{1}{2p^+}\|u\|^{p^+}-\frac{\mu c_{15}}{\gamma^-} & \text{if } |u|_{\gamma(x)}\leq 1, \\ \frac{1}{2p^+}\|u\|^{p^+}-\frac{\mu}{\gamma^-}(\theta_k\|u\|)^{\gamma^+} & \text{if } |u|_{\gamma(x)}> 1. \end{cases} \end{equation} Choose $\rho_k=\big(\frac{2p^+\mu\theta_k^{\gamma^+}}{\gamma^-} \big)^{\frac{1}{p^+-\gamma^+}}$, then \[ I_{\lambda,\mu}(u)=\frac{1}{2p^+}(\rho_k)^{p^+} -\frac{1}{2p^+}(\rho_k)^{p^+}=0. \] Since $p^->\gamma^+$, $\theta_k\to 0$, we know $\rho_k\to 0$ as $k\to\infty$. (B2) For $u\in Y_k$ with $\|u\|\leq 1$, we have \begin{align*} I_{\lambda,\mu}(u) &=\int_{\Omega}\frac{1}{p(x)}(|\Delta u|^{p(x)}+|u|^{p(x)})dx -\lambda\int_{\Omega}\frac{1}{q(x)}|u|^{q(x)}dx -\mu\int_{\Omega}\frac{1}{\gamma(x)}|u|^{\gamma(x)}dx\\ &\leq \frac{1}{p^-}\|u\|^{p^-}+\frac{|\lambda|}{q^-}\int_{\Omega}|u|^{q(x)}dx -\frac{\mu}{\gamma^+}\int_{\Omega}|u|^{\gamma(x)}dx. \end{align*} Since dim$Y_k=k$, conditions $\gamma^+0$ large enough, we have \begin{align*} c_{16}+1+\|u_{n_{j}}\| &\geq I_{\lambda,\mu}(u_{n_{j}})-\frac{1}{q^+} \langle I'_{\lambda,\mu}(u_{n_{j}}),u_{n_{j}}\rangle\\ &=\Big[\int_{\Omega}\frac{1}{p(x)}(|\Delta u_{n_{j}}|^{p(x)}+|u_{n_{j}}|^{p(x)})dx -\lambda\int_{\Omega}\frac{1}{q(x)}|u_{n_{j}}|^{q(x)}dx\\ &\quad -\mu\int_{\Omega}\frac{1}{\gamma(x)}|u_{n_{j}}|^{\gamma(x)}dx\Big{]} -\frac{1}{q^+}\Big{[}\int_{\Omega}(|\Delta u_{n_{j}}|^{p(x)} +|u_{n_{j}}|^{p(x)})dx\\ &\quad -\lambda\int_{\Omega}|u_{n_{j}}|^{q(x)}dx -\mu\int_{\Omega}|u_{n_{j}}|^{\gamma(x)}dx\Big]\\ &\geq \Big(\frac{1}{p^+}-\frac{1}{q^+}\Big)\|u_{n_{j}}\|^{p^-} -c_{17}\|u_{n_{j}}\|^{\gamma^+}. \end{align*} Since $p^->\gamma^+$ and $q^+>p^+$, we know that $\{u_{n_{j}}\}$ is bounded in $X$. Hence there exists $u\in X$ such that $u_{n_{j}}\to u$ in $x$. Observe now that $X=\overline{\cup_{n_j}Y_{n_{j}}}$, then we can find $v_{n_{j}}\in Y_{n_{j}}$ such that $v_{n_{j}}\to u$. We have \begin{align*} \langle I'_{\lambda,\mu}(u_{n_{j}}),u_{n_{j}}-u\rangle =\langle I'_{\lambda,\mu}(u_{n_{j}}),u_{n_{j}}-v_{n_{j}}\rangle +\langle I'_{\lambda,\mu}(u_{n_{j}}),v_{n_{j}}-u\rangle. \end{align*} Having in mind that $(u_{n_{j}}-v_{n_{j}})\in Y_{n_{j}}$, it yields \begin{equation}\label{e3.6} \langle I'_{\lambda,\mu}(u_{n_{j}}),u_{n_{j}}-u\rangle =\langle (I_{\lambda,\mu}|_{Y_{n_{j}}})'(u_{n_{j}}),u_{n_{j}}-v_{n_{j}}\rangle +\langle I'_{\lambda,\mu}(u_{n_{j}}),v_{n_{j}}-u\rangle \to 0 \end{equation} as $n\to\infty$. By Proposition \ref{prop2.5}, the operator $I'_{\lambda,\mu}$ is obviously of $(S_+)$ type. Using this fact with \eqref{e3.6}, we deduce that $u_{n_{j}}\to u$ in $X$, furthermore $I'_{\lambda,\mu}(u_{n_{j}})\to I'_{\lambda,\mu}(u)$. We claim now that $u$ is in fact a critical point of $I_{\lambda,\mu}$. Taking $\omega_k\in Y_k$, notice that when $n_j\geq k$ we have \begin{align*} \langle I'_{\lambda,\mu}(u),\omega_k\rangle &=\langle I'_{\lambda,\mu}(u)-I'_{\lambda,\mu}(u_{n_{j}}),\omega_k\rangle +\langle I'_{\lambda,\mu}(u_{n_{j}}),\omega_k\rangle\\ &=\langle I'_{\lambda,\mu}(u)-I'_{\lambda,\mu}(u_{n_{j}}),\omega_k\rangle +\Big{\langle}(I_{\lambda,\mu}|_{Y_{n_{j}}})'(u_{n_{j}}),\omega_k\Big{\rangle}. \end{align*} Going to the limit on the right side of the above equation reaches \[ \langle I'_{\lambda,\mu}(u),\omega_k\rangle=0,\quad \forall \omega_k\in Y_k, \] so $I'_{\lambda,\mu}(u)=0$, this show that $I_{\lambda,\mu}$ satisfies the $(PS)_{c}^{*}$ condition for every $c\in \mathbb{R}$. (iii) Assume for the sake of contradiction, $u\in X\backslash\{0\}$ is a weak solution of problem \eqref{e1.1}. Then multiplying the equation in \eqref{e1.1} by $u$, integrating by parts we obtain \[ \int_{\Omega}(|\Delta u|^{p(x)}+|u|^{p(x)})dx =\lambda \int_{\Omega}|u|^{q(x)}+\mu\int_{\Omega}|u|^{\gamma(x)}. \] This leads to contradiction and the proof is complete. \begin{thebibliography}{00} \bibitem{Amr} A. El Amrouss, F. Moradi, M. Moussaoui; {Existence of solutions for fourth-order PDEs with variable exponentsns}, {\it Electron. J. Differ. Equ.}, \textbf{2009} (2009), no. 153, 1-13. \bibitem{Hamidi} A. El Hamidi; {Existence Results to Elliptic Systems with Nonstandard Growth Conditions} {\it J. Math. Anal. Appl.}, \textbf{300} (2004), 30-42. \bibitem{Fan} X. L. Fan, X. Fan; {A Knobloch-type result for p(t) Laplacian systems}, {\it J. Math. Anal. Appl.}, \textbf{282} (2003), 453-464. \bibitem{Fan4} X. L. Fan, X. Y. Han; {Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb{R}^{N}$}, {\it Nonlinear Anal. T.M.A.}, \textbf{59} (2004), 173-188. \bibitem{Fan5} X. L. Fan, Q. H. Zhang; {Existence of solutions for $p(x)$-Laplacian Dirichlet problems}, {\it Nonlinear Anal. T.M.A.}, \textbf{52} (2003), 1843-1852. \bibitem{Fan2} X. L. Fan, D. Zhao; {On the spaces $L^{p(x)}$ and $W^{m,p(x)}$}, {\it J. Math. Anal. Appl.}, \textbf{263} (2001), 424-446. \bibitem{Fan6} X. L. Fan; {Solutions for $p(x)$-Laplacian Dirichlet problems with singular coefficients}, {\it J. Math. Anal. Appl.}, \textbf{312} (2005), 464-477. \bibitem{Fer} A. Ferrero, G. Warnault; {On a solutions of second and fourth order elliptic with power type nonlinearities}, {\it Nonlinear Anal. T.M.A.}, \textbf{70} (2009), 2889-2902. \bibitem{Lin} L. Li, C. L. Tang; {Existence and multiplicity of solutions for a class of $p(x)$-Biharmonic equations}, {\it Acta Mathematica Scientia}, \textbf{33} (2013), 155-170. \bibitem{Mih1} M. Mih\u{a}ilescu; {Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator}, {\it Nonlinear Anal. T.M.A.}, \textbf{67} (2007), 1419-1425. \bibitem{Ru} M. Ruzicka; {Electrorheological fluids: modeling and mathematical theory}, {\it Lecture Notes in Mathematics 1748, Springer-Verlag, Berlin}, 2000. \bibitem{Will} M. Willem; {\it Minimax Theorems}, Birkh\"auser, Boston, 1996. \bibitem{Yao} J. Yao; {Solutions for Neumann boundary value problems involving $p(x)$-Laplace operators}, {\it Nonlinear Anal. T.M.A.}, \textbf{68} (2008), 1271-1283. \bibitem{Fu} A. Zang, Y. Fu; {Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces}, {\it Nonlinear Anal. T.M.A.}, \textbf{69} (2008), 3629-3636. \bibitem{Zhao} J. F. Zhao; {Structure Theory of Banach Spaces}, {\it Wuhan University Press, Wuhan }, (1991) (in Chinese). \bibitem{Zhikov1} V. V. Zhikov; {Averaging of functionals of the calculus of variations and elasticity theory}, {\it Math. USSR. Izv.}, \textbf{9} (1987), 33-66. \end{thebibliography} \end{document}