\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 166, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/166\hfil Existence of local and global solutions] {Existence of local and global solutions for Hadamard fractional differential equations} \author[M. Li, J. Wang \hfil EJDE-2015/166\hfilneg] {Mengmeng Li, Jinrong Wang} \address{Mengmeng Li \newline Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, China} \email{Lmm0424@126.com} \address{Jinrong Wang (corresponding author)\newline Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, China} \email{sci.jrwang@gzu.edu.cn} \thanks{Submitted February 2, 2015. Published June 17, 2015.} \subjclass[2010]{26A33, 34A12} \keywords{Hadamard fractional differential equation; local solution; \hfill\break\indent global solution} \begin{abstract} In this article, we study a class of Hadamard fractional differential equations and give sufficient conditions on the existence of local and global of solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} Let $0\leq\gamma<1$, $10$ or $[a+\infty)$ and the symbol $_{H}D^{\alpha}_{a,x}y(x)$ is defined by \[ {}_{H}D_{a,x}^{\alpha}y(x) =\frac{1}{\Gamma(1-\alpha)}\big(x\frac{d}{dx}\big) \int_{a}^{x} (\ln \frac{x}{\tau})^{-\alpha}y(\tau)\frac{d\tau}{\tau}. \] We use the notation ${}_{H}D_{a,x}^{\alpha-1}y(a^+)=\lim_{x\to a^+} \mathcal{J}_{a,x}^{\alpha-1}y(x)$ and \[ \mathcal{J}_{a,x}^{\alpha-1}y(x) =\frac{1}{\Gamma(\alpha)} \int_1^x (\ln \frac{x}{t})^{\alpha-1} y(t))\frac{dt}{t}\,. \] Following \cite[Theorem 3.28]{Kilbas}, the solution $y\in C_{1-\gamma,\ln}[a,a+h]$ of \eqref{2-1} satisfies \begin{equation}\label{2-2} y(x)=y_0(x)+\frac{1}{\Gamma(\alpha)}\int_{a}^{x} (\ln \frac{x}{\tau})^{\alpha-1}f(\tau,y(\tau))\frac{d\tau}{\tau},\quad x\in(a,a+h] \end{equation} where $y_0(x)=\frac{c}{\Gamma(\alpha)}(\ln \frac{x}{a})^{\alpha-1}$, if $f:(a,a+h]\times \mathbb{G}\to \mathbb{R}$ and $f(x,y)\in C_{\gamma,\ln}[a,a+h]$ for any $y\in \mathbb{G}$. Inspired by the work in \cite{Kilbas,Lin,TMNA-WZM}, we examine other explicit sufficient conditions on the nonlinear term $f$ to guarantee the local existence of solutions in $C_{\gamma,\ln}[a,a+h]$ and global existence of solutions in $C_{\gamma,\ln}[a,+\infty)$. \section{Main results} The following equality will be used in the sequel. \begin{lemma}[{\cite[p.296]{PBM-book}}] \label{lem4} Let $\alpha,\beta,\gamma,p>0$, then \[ \int_{0}^{x}(x^{\alpha}-s^{\alpha})^{p(\beta-1)}s^{p(\gamma-1)}ds =\frac{x^{\theta}}{\alpha}B\big[\frac{p(\gamma-1)+1}{\alpha}, p(\beta-1)+1\big],\quad x>0, \] where $\theta=p[\alpha(\beta-1)+\gamma-1]+1$ and $B[\xi,\eta]=\int_{0}^{1}s^{\xi-1}(1-s)^{\eta-1}ds$. \end{lemma} Let $\mathbb{B}=\{y\in \mathbb{R}: \| y-y_{0}(x)\|_{C_{\gamma,\ln}}\leq b\}$ where $b$ will be chosen latter. Define $\mathbb{D}=\{ (x,y)\in R\times R: x\in \mathbb{J},\, y\in \mathbb{B} \}$. We assume that $f:\mathbb{D}\to \mathbb{R}$ satisfies the following conditions: \begin{itemize} \item[(H1)] $f(x,y)$ is Lebesgue measurable with regard to $x$ on $\mathbb{J}$ and $f(x,y)$ is continuous with respect to $y$ on $\mathbb{B}$. \item[(H2)] there exists $m(\cdot)\in L^{q}(\mathbb{J})$, $q>1$ such that $ |f(x,y)|\leq m(x), $ for arbitrary $x\in \mathbb{J}$, $y\in \mathbb{B}$. \end{itemize} Now we use Picard iterative approach to derive the existence of a local solutions to \eqref{2-1}. \begin{theorem}\label{thm1} Assume that {\rm (H1)--(H2)} hold for $\mathbb{J}=[a,a+h]$ and $p,q,\alpha$ satisfy $p(\alpha-1)+1>0,\frac{1}{p}+\frac{1}{q}=1$. Then \eqref{2-1} has a solution in $C_{\gamma,\ln}[a,a+h]$ for some $h>0$. \end{theorem} \begin{proof} To achieve our aim, we divide our proof into three steps. \smallskip \noindent\textbf{Step 1.} Linking our assumptions and using H\"{o}lder inequality via $p(\alpha-1)+1>0$ and $\frac{1}{p}+\frac{1}{q}=1$, one can obtain \begin{equation}\label{2-3} \int_{a}^{x}|(\ln x-\ln \tau)^{\alpha-1}f(\tau,y(\tau))|\frac{dt}{\tau} \leq\sqrt[1/p]{\frac{a^{1-p}h^{p(\alpha-1)+1}}{p(\alpha-1)+1}}\| m(\cdot)\|_{L^{q}[a,a+h]}, \end{equation} where we use basic inequalities: $\ln u-\ln v\leq u-v$ for $u\geq v>1$ and \cite[Lemma 2.2]{MWWK}, \begin{equation}\label{1-3} \int_{a}^{x}(\ln x-\ln \tau)^{p(\alpha-1)}\tau^{-p}d\tau \leq\frac{a^{1-p}(\ln x-\ln a)^{p(\alpha-1)+1}}{p(\alpha-1)+1}. \end{equation} This proves that $(\ln x-\ln \tau)f(\tau,y(\tau))$ is Lebesgue integrable with respect to $\tau\in[a,x]$ for arbitrary $x$ on $\mathbb{J}$, provided that $y(\tau)$ is Lebesgue measurable on the interval $[a,a+h]$. \smallskip \noindent\textbf{Step 2.} For a given $M>0$, there exists a $h'>0$ satisfying \begin{equation}\label{2-4} \int_{a}^{a+h'}m^{q}(\tau)d\tau\leq M^{q}, \end{equation} whenever $h=\min\{h',T,[\frac{b\Gamma(\alpha)(p(\alpha-1)+1)}{Ma^{p-1}(\ln T-\ln a)^{\gamma}}]^{\frac{1}{p(\alpha-1)+1}}\}$. For $\delta$ to be chosen latter, define \[ y_{n}(x)=\begin{cases} 0, \quad\text{if } a\leq x0$, there exists $0<\delta_{1}<[\frac{a\varepsilon\Gamma(\alpha) \delta^{2-\alpha}} {2|c|(1-\alpha)}]$ such that for all $x_{2}-x_{1}\leq\delta_{1}$ and for all $n$, we derive that \begin{align*} I_{1} &=\frac{|c|}{\Gamma(\alpha)}|\chi(\frac{x_2}{a}) -\chi(\frac{x_1}{a})| \leq\frac{|c|}{\Gamma(\alpha)} |\chi'(\xi)||\frac{x_{2}}{a}-\frac{x_{1}}{a}|,~\xi\in(\frac{x_1}{a},\frac{x_2}{a})\\ &\leq \frac{|c|(1-\alpha)(x_{2}-x_{1})}{\Gamma(\alpha)(a+\delta)(\ln (a+\delta)-\ln a)^{2-\alpha}}\\ &<\frac{|c|(1-\alpha)(x_{2}-x_{1})}{\Gamma(\alpha)a(\ln (a+\delta)-\ln a)^{2-\alpha}}<\varepsilon/2, \end{align*} where $\chi(x)=(\ln x-\ln a)^{\alpha-1}$ and $\chi'(x)=(\alpha-1)(\ln x-\ln a)^{\alpha-2}\frac{a}{x}$. For any $\varepsilon>0$, there exists $0<\delta_{2}<[\frac{\varepsilon^{p}\Gamma^{p}(\alpha) (p(\alpha-1)+1)}{2^{p}a^{1-p} M^{p}}]^{\frac{1}{p(\alpha-1)+1}}$ such that for all $x_{2}-\frac{h}{n}-a\leq x_{2}-x_{1}\leq\delta_{2}$ and for all $n$, we use \eqref{1-3} and \eqref{2-4} to obtain \begin{align*} I_{2} &=\frac{1}{\Gamma(\alpha)}\int_{a}^{x_{2}-\frac{h}{n}} (\ln\frac{x_{2}}{\tau})^{\alpha-1}|f(\tau,y_{n}(\tau))|\frac{d\tau}{\tau}\\ &\leq \frac{1}{\Gamma(\alpha)}\int_{a}^{x_{2}-\frac{h}{n}}(\ln\frac{x_{2}}{\tau})^{\alpha-1}m(\tau)\frac{d\tau}{\tau} \\ &\leq \frac{M}{\Gamma(\alpha)}\big[\frac{a^{1-p}(\ln (x_{2}-\frac{h}{n})-\ln a)^{p(\alpha-1)+1}} {p(\alpha-1)+1}\big]^{1/p}\\ &\leq\frac{M}{\Gamma(\alpha)} \big[\frac{a^{1-p}(x_{2}-\frac{h}{n}-a)^{p(\alpha-1)+1}}{p(\alpha-1)+1} \big]^{1/p} <\varepsilon/2, \end{align*} where we use that $ \ln u-\ln v\leq u-v$, $u>v>1$ again in the last inequality. From above, we can choose $\bar{\delta}=$min$\{\delta_{1},\delta_{2},h/n\}$ such that for all $x_{2}-x_{1}\leq\bar{\delta}$ and for all $n$, such that $|y_{n}(x_{2})-y_{n}(x_{1})|\leq I_{1}+I_{2}<\varepsilon$. \smallskip \noindent\textbf{Case 2.} For $a+\frac{h}{n}\leq x_{1}0$, there exists $0<\bar{\delta_{1}}<\left[\frac{a\varepsilon\Gamma(\alpha) (\frac{h}{n})^{2-\alpha}} {3|c|(1-\alpha)}\right]$ such that for all $x_{2}-x_{1}\leq\bar{\delta_{1}}$, we have \[ S_{1} \leq\frac{|c|(1-\alpha)(x_{2}-x_{1})}{\Gamma(\alpha)a(\ln (a+\frac{h}{n})-\ln a)^{2-\alpha}}<\varepsilon/3. \] For each $\varepsilon>0$, there exists $0<\bar{\delta_{2}}<\left[\frac{\varepsilon^{p}\Gamma(\alpha)^{p} (p(\alpha-1)+1)}{3^{p}M^{p}a^{1-p}}\right]^{\frac{1}{p(\alpha-1)+1}}$ such that for all $x_{2}-x_{1}\leq\bar{\delta_{2}}$, by using the similar estimation methods of $I_2$ we have \begin{align*} S_{2}&=\frac{1}{\Gamma(\alpha)}\int_{a}^{x_{1}-\frac{h}{n}} \Big((\ln\frac{x_{2}}{\tau})^{\alpha-1}- (\ln\frac{x_{1}}{\tau})^{\alpha-1}\Big) |f(\tau,y_n(\tau))|\frac{d\tau}{\tau} \\ &\leq \frac{1}{\Gamma(\alpha)}\int_{a}^{x_{1}-\frac{h}{n}} \Big((\ln\frac{x_{2}}{\tau})^{\alpha-1}- (\ln\frac{x_{1}}{\tau})^{\alpha-1}\Big) m(\tau)\frac{d\tau}{\tau} \\ &\leq \frac{M}{\Gamma(\alpha)}\Big[\Big(\int_{a}^{x_{1}-\frac{h}{n}}(\ln\frac{x_{2}}{\tau})^{p(\alpha-1)} \tau^{-p}d\tau\Big)^{1/p} -\Big(\int_{a}^{x_{1}-\frac{h}{n}}(\ln\frac{x_{1}}{\tau})^{p(\alpha-1)}\tau^{-p}d\tau \Big)^{1/p}\Big] \\ &\leq \frac{M}{\Gamma(\alpha)} \Big[\frac{(\ln x_{2}-\ln x_{1})^{p(\alpha-1)+1}}{a^{p-1}(p(\alpha-1)+1)} \Big]^{1/p}\\ &\leq \frac{M}{\Gamma(\alpha)} \Big[\frac{(x_{2}-x_{1})^{p(\alpha-1)+1}}{a^{p-1}(p(\alpha-1)+1)}\Big]^{1/p}< \varepsilon/3. \end{align*} For each $\varepsilon>0$, there exists $0<\bar{\delta_{3}}<[\frac{\varepsilon^{p}\Gamma(\alpha)^{p}(p(\alpha-1)+1)} {3^{p}M^{p}a^{1-p}}]^{\frac{1}{p(\alpha-1)+1}}$, such that for all $x_{2}-x_{1}\leq\bar{\delta_{3}}$, by using the similar estimation methods of $I_2$ we have \begin{align*} S_{3}&= \frac{1}{\Gamma(\alpha)}\int_{x_{1}-\frac{h}{n}}^{x_{2} -\frac{h}{n}}(\ln\frac{x_{2}}{\tau})^{\alpha-1}|f(\tau,y_n(\tau)) |\frac{d\tau}{\tau}\\ &\leq\frac{1}{\Gamma(\alpha)}\int_{x_{1} -\frac{h}{n}}^{x_{2}-\frac{h}{n}}(\ln\frac{x_{2}}{\tau})^{\alpha-1}m(\tau) \frac{d\tau}{\tau} \\ &\leq \frac{M}{\Gamma(\alpha)} \big[\frac{a^{1-p}(x_{2}-x_{1})^{p(\alpha-1)+1}}{p(\alpha-1)+1}\big]^{1/p} <\varepsilon/3. \end{align*} From the above, we choose $\bar{\bar{\delta}}=\min\{\bar{\delta_{1}}, \bar{\delta_{2}},\bar{\delta_{3}},h/n\}$ such that $x_{2}-x_{1}\leq\bar{\bar{\delta}}$, then $|y_{n}(x_{2})-y_{n}(x_{1})|\leq S_{1}+S_{2}+S_{3}<\varepsilon$. Therefore, we choose $\delta=\min \{\bar{\delta},\bar{\bar{\delta}}\}$ will lead to $y_{n}(x)$ is continuous with regard to $x$ on $[a,a+\frac{2h}{n}]$ for all positive integers $n$. Note that $(\ln x-\ln a)^{\gamma}$ is continuous function, so $y_{n}(x)(\ln x-\ln a)^{\gamma}$ is also continuous. Nevertheless, for all $x\in[a+\delta,a+\frac{h}{n}]$, one has $ |y_{n}(x)-\frac{c}{\Gamma(\alpha)}(\ln\frac{x}{a})^{\alpha-1}|=0, $ and for all $x\in[a+\frac{h}{n},a+h]$, using H\"{o}lder inequality again, \begin{equation}\label{b-value} \begin{aligned} &(\ln\frac{x}{a})^{\gamma}|y_{n}(x) -\frac{c}{\Gamma(\alpha)}(\ln\frac{x}{a})^{\alpha-1}|\\ &\leq \frac{1}{\Gamma(\alpha)}\int_{a}^{x-\frac{h}{n}} (\ln\frac{x}{a})^{\gamma}(\ln\frac{x}{\tau})^{\alpha-1} |f(\tau,y_n(\tau))|\frac{d\tau}{\tau} \\ &\leq \frac{(\ln (a+h)-\ln a)^{\gamma}a^{1-p}Mh^{p(\alpha-1)+1}} {\Gamma(\alpha)(p(\alpha-1)+1)}\leq b, \end{aligned} \end{equation} which implies that $(x,y_{n}(x))\in \mathbb{D}$ for all $n$. Therefore, $\{y_{n}(x)\}_{n=1}^{\infty}$ defined on $[a,a+h]$ is equicontinuous and uniformly bounded. \smallskip \noindent\textbf{Step 3.} By using Arzel\`{o}-Ascoli lemma and Step 2, there must exist $\{y_{n_{k}}(x)\}_{k=1}^{\infty}:=\{y_{k}(x)\}_{k=1}^{\infty}$ contained in $\{{y_{n}(x)\}_{n=1}^{\infty}}$, such that $\{{y_{k}(x)\}_{k=1}^{\infty}}$ is uniformly convergent to $y(x)$ which is continuous with regard to $x$ on $[a,a+h]$. Now we only need to prove that this limit function $y(x)$ is a solution of \eqref{2-2}. For each $\varepsilon>0$, there exists $K_{1}>0$, such that for all $k>K_{1}$, and $x\in[a,a+h]$, we have \begin{equation}\label{2-5} |f(x,y_{k}(x))-f(x,y(x))|<\frac{\Gamma(\alpha+1)\varepsilon}{2(\ln (a+h)-\ln a)^{\gamma}h^{\alpha}}. \end{equation} Note that \begin{align*} &(\ln x-\ln a)^{\gamma}|y_{k}(x)-y(x)|\\ &\leq \frac{1}{\Gamma(\alpha)}\int_{a}^{x}(\ln\frac{x}{a})^{\gamma}(\ln \frac{x}{\tau})^{\alpha-1}|f(\tau,y_{k}(\tau))-f(\tau,y(\tau)) |\frac{d\tau}{\tau}\\ &\quad +\frac{1}{\Gamma(\alpha)} \int_{x-\frac{h}{k}}^{x}(\ln\frac{x}{a})^{\gamma}(\ln \frac{x}{\tau})^{\alpha-1}|f(\tau,y_{k}(\tau))|\frac{d\tau}{\tau} \\ &:= S_{4}+S_{5}. \end{align*} Using \eqref{2-5} one obtains, \begin{align*} S_{4}&=\frac{1}{\Gamma(\alpha)}\int_{a}^{x}(\ln\frac{x}{a})^{\gamma} (\ln \frac{x}{\tau})^{\alpha-1} |f(\tau,y_{k}(\tau))-f(\tau,y(\tau))|\frac{d\tau}{\tau} \\ &\leq \frac{(\ln (a+h)-\ln a)^{\gamma}}{\Gamma(\alpha)} \int_{x}^{a}(\ln \frac{x}{\tau})^{\alpha-1}|f(\tau,y_{k}(\tau))-f(\tau,y(\tau))|d(\ln x-\ln \tau) \\ &\leq \frac{(\ln (a+h)-\ln a)^{\gamma}h^{\alpha}}{a\Gamma(\alpha)}\frac{\Gamma(\alpha+1)\varepsilon}{2(\ln (a+h)-\ln a)^{\gamma}h^{\alpha}}<\varepsilon/2. \end{align*} Also there exists \[ 0K_{2}$, \begin{align*} S_{5}&=\frac{1}{\Gamma(\alpha)}\int_{x-\frac{h}{k}}^{x} (\ln\frac{x}{a})^{\gamma}(\ln \frac{x}{\tau})^{\alpha-1} |f(\tau,y_{k}(\tau))|\frac{d\tau}{\tau} \\ &\leq \frac{(\ln (a+h)-\ln a)^{\gamma}M}{\Gamma(\alpha)} \Big(\int_{x-\frac{h}{k}}^{x}(\ln \frac{x}{\tau})^{p(\alpha-1)}\tau^{-p}dt\Big)^{1/p} \\ &\leq \frac{(\ln (a+h)-\ln a)^{\gamma}M}{\Gamma(\alpha)} \Big(\frac{(\frac{h}{k})^{p(\alpha-1)+1}}{a^{p-1}(p(\alpha-1)+1)}\Big)^{1/p} <\varepsilon/2. \end{align*} Hence, taking $K=\max\{K_{1},K_{2}\}$ and for all $k>K$, one arrives at $\|y_{k}(x)-y(x)\|_{C_{\gamma,\ln}}<\varepsilon$. Consequently, $y(x)$ satisfies \eqref{2-2} which means that there at least exists a solution of \eqref{2-1}. \end{proof} Next, we give an existence and uniqueness theorem, using the assumption \begin{itemize} \item[(H3)] there exists a $\mu(\cdot)\in L^{q}(\mathbb{J})$, $\frac{1}{q}=1-\frac{1}{p}$, $p>1$ such that $|f(x,y)-f(x,z)|\leq \mu(x)|y-z| $ for $x\in \mathbb{J}$ and $y,z\in \mathbb{B}$, \end{itemize} \begin{theorem}\label{thm2} Let $0\leq\gamma\leq \min\{\alpha-1+\frac{1}{p},\frac{1}{2p}\}$, $p>1$. Assume that {\rm (H1)--(H3)} are satisfied for $\mathbb{J}=[a,a+h]$. Then \eqref{2-1} has a unique solution in $C_{\gamma,\ln}[a,a+h]$ for some $h>0$. \end{theorem} \begin{proof} There exits $h^{*}>0$, such that for all $x\in[a,a+h^{*}]$, \begin{equation}\label{ineq-2} \int_{a}^{x}\mu^{q}(\tau)d\tau\leq\int_{a}^{a+h^{*}}\mu^{q}(\tau)d\tau1$ implies that $p(\alpha-1-\gamma)+1>0$, $0\leq\gamma<\frac{1}{2p}$. For any $y_{1},y_{2}\in \Psi_{h}$, then using H\"{o}lder inequality, \eqref{ineq-2} and Lemma \ref{lem4}, we have \begin{align*} &(\ln x-\ln a)^{\gamma}|\psi(y_{2})-\psi (y_{1})|\\ &\leq \frac{(\ln x-\ln a)^{\gamma}}{\Gamma(\alpha)}\int_{a}^{x}(\ln \frac{x}{\tau})^{\alpha-1}\mu(\tau) |y_{1}(\tau)-y_{2}(\tau)|\frac{d\tau}{\tau} \\ &\leq \frac{(\ln (a+h)-\ln a)^{\gamma}}{\Gamma(\alpha)}\int_{a}^{x}(\ln \frac{x}{\tau})^{\alpha-1} (\ln \frac{\tau}{a} )^{-\gamma}\mu(\tau)\frac{d\tau}{\tau} \| y_{1}-y_{2}\|_{C_{r\ln}}\\ &\leq \frac{(\ln (a+h)-\ln a)^{\gamma}ga^{1-p}}{\Gamma(\alpha)} \Big(\int_{0}^{\ln x-\ln a}(\ln\frac{x}{a}-t)^{p(\alpha-1)} t^{-p\gamma}dt\Big)^{1/p} \| y_{1}-y_{2}\|_{C_{\gamma\ln}}\\ &\leq \frac{(\ln (a+h)-\ln a)^{\gamma}ga^{1-p}}{\Gamma(\alpha)} \Big((\ln\frac{x}{a})^{p(\alpha-1-\gamma)+1} B[1-p\gamma,p(\alpha-1)+1]\Big)^{1/p}\\ &\quad\times \| y_{1}-y_{2}\|_{C_{\gamma\ln}}\\ &\leq a^{1-p}\frac{h^{\gamma}g}{\Gamma(\alpha)}(h^{p(\alpha-1-\gamma)+1}B[\frac{1}{2},p(\alpha-1)+1])^{1/p} \| y_{1}-y_{2}\|_{C_{\gamma\ln}}\\ &=a^{1-p}\Big[\frac{h^{\alpha-1+\frac{1}{p}}g}{\Gamma(\alpha)} \Big(B[\frac{1}{2},p(\alpha-1)+1]\Big)^{1/p}\Big] \| y_{1}-y_{2}\|_{C_{\gamma\ln}}, \end{align*} where we use that \begin{gather*} \gamma<\frac{1}{2p}\Rightarrow1-p\gamma>\frac{1}{2} \Rightarrow t^{1-pr}\leq t^{\frac{1}{2}}~(0\leq t\leq1),\\ \begin{aligned} B[1-p\gamma,p(\alpha-1)+1] &=\int_{0}^{1}t^{-p\gamma}(1-t)^{p(\alpha-1)}dt \\ &\leq\int_{0}^{1}t^{-\frac{1}{2}}(1-t)^{p(\alpha-1)}dt =B[\frac{1}{2},p(\alpha-1)+1]. \end{aligned} \end{gather*} Obviously, one can choose \[ h\leq\Big(\frac{\Gamma(\alpha)}{g(B[\frac{1}{2},p(\alpha-1)+1])^{1/p}} \Big)^{\frac{p}{p(\alpha-1)+1}}, \] then $$ \frac{h^{\alpha-1+\frac{1}{p}}g}{\Gamma(\alpha)} \Big(B[\frac{1}{2},p(\alpha-1)+1]\Big)^{1/p}\leq 1. $$ Therefore, \[ \|\psi(y_{2})-\psi (y_{1})\|_{C_{\gamma\ln}} \leq a^{1-p}\| y_{1}-y_{2}\|_{C_{\gamma\ln}}. \] Obviously, $a^{1-p}<1$ due to $a,p>1$, applying the Banach Contractive Mapping Principle, one concludes that there exists a unique $y^{*}(x)\in \Psi_{h}$, such that \eqref{2-2}. The proof is compete. \end{proof} Next, we give the existence of a global solution, using the assumption \begin{itemize} \item[(H2')] there exist $\omega,\nu>0$ such that $ |f(x,y)|\leq \omega+\nu|y| $ for $x\in (a,+\infty)$ and $y\in \mathbb{R}$. \end{itemize} \begin{theorem}\label{thm3} Assume that {\rm (H1), (H2'), (H3)} hold for $\mathbb{J}=(a,+\infty)$. Further, choose $\gamma= 1-\alpha\leq \min\{\alpha-1+\frac{1}{p},\frac{1}{2p}\}$, $p>1$. Then \eqref{2-1} has a unique solution in $C_{\gamma,\ln}[a,+\infty)$. \end{theorem} \begin{proof} It follows (H2') that $f$ is locally bounded in the domain $\mathbb{D}$. By Theorem \ref{thm2}, \eqref{2-1} has a unique solution in $C_{\gamma,\ln}[a,a+h]$. Next, we present proof by contradiction. Assume that the solution $y(x)$ admits a maximal existence interval, denoted by $(a,T)\subset (a,+\infty)$. To achieve our aim, it is sufficient to verify that $\|y\|_{C_{\gamma,\ln}}$ is bounded. In fact, \begin{align*} &(\ln x-\ln a)^{\gamma}|y(x)|\\ &\leq \frac{|c|}{\Gamma(\alpha)}+\frac{1}{\Gamma(\alpha)}\int_{a}^{x}(\ln\frac{x}{a})^{\gamma} (\ln \frac{x}{\tau})^{\alpha-1}|f(\tau,y(\tau))|\frac{d\tau}{\tau} \\ &\leq \frac{|c|}{\Gamma(\alpha)}+\frac{1}{\Gamma(\alpha)}\int_{a}^{x}(\ln \frac{x}{a})^{\gamma} (\ln \frac{x}{\tau})^{\alpha-1}(\omega+\nu|y(\tau)|)\frac{d\tau}{\tau} \\ &\leq \frac{|c|}{\Gamma(\alpha)}+\frac{\omega(\ln T-\ln a)^{1-\alpha}(T-a)^{\alpha}}{\Gamma(a+1)}\\ &\quad +\frac{\nu}{\Gamma(\alpha)}\int_{a}^{x}(\ln \frac{x}{\tau})^{\alpha-1}(\ln x-\ln a)^{\gamma}|y(\tau)|\frac{d\tau}{\tau}\\ &\leq \frac{|c|}{\Gamma(\alpha)}+\frac{\omega(T-a)}{\Gamma(\alpha+1)} +\frac{\nu}{\Gamma(\alpha)}\int_{a}^{x}(\ln \frac{x}{\tau})^{\alpha-1} (\ln x-\ln a)^{\gamma}|y(\tau)|\frac{d\tau}{\tau}. \end{align*} By applying the generalized Gronwall inequality from \cite[Corollary 3.4]{TMNA-WZM}, one can conclude that there exists $l:=\mathbb{E}_{\alpha}(\nu (\ln T)^\alpha)>0$ ($\mathbb{E}_{\alpha}$ denotes Mittag-Leffler function) such that \[ (\ln x-\ln a)^{\gamma}|y(x)| \leq l(\frac{|c|}{\Gamma(\alpha)} +\frac{\omega(T-a)}{\Gamma(\alpha+1)}):=\rho<+\infty. \] This implies that $\|y\|_{C_{\gamma,\ln}}< b$ on $[a,T)$ when $b$ is chosen as a larger number than \begin{equation}\label{b-chose} b=\rho+\frac{|c|}{\Gamma(\alpha)}. \end{equation} This contradicts the assumption that $(a,T)$ is the maximal existence interval. The proof is complete. \end{proof} To finish this article, we give an example that illustrates our theoretical results. Consider \begin{equation}\label{ex-2} \begin{gathered} {}_{H}D^{3/4}_{e,x}y(x)=x^{2}+\frac{4|y|}{1+|y|}\sin x,\quad x\in \mathbb{J}=(e,e^{2}]\mbox{ or } (e,+\infty),\\ _{H}D^{-1/4}_{e,x}y(e^{+})=1, \end{gathered} \end{equation} where $\alpha=3/4$, $T=e^2$, $\gamma=1/4$, $a=e$, $c=1$, and $p=q=2$. Define $f(x,y)=x^{2}+\frac{4|y|}{1+|y|}\sin x$, $\mu(x)=4$ and $\omega=e^{2}+4$ and $\nu=0$. Thus $|f(x,y)-f(x,z)|\leq\mu(x) |y-z|$ and $|f(x,y)|\leq \omega$. Then $l:=\mathbb{E}_{\alpha}(0)=1$ (see \cite[Lemma 2]{Wang-EPJ}) and $b=\frac{2}{\Gamma(3/4)}+\frac{(e^{2}+4)(e^2-e)}{\Gamma(7/4)}$ (see \eqref{b-chose}). Let $h'=h^{*}=e$. Set $M^{2}=\int_{e}^{2e}(e^{4}+4)^2dx=e(e^{4}+4)^2$ (see \eqref{2-4}) and $g^{2}=\int_{e}^{2e}16dx=16e$ (see \eqref{ineq-2}). Moreover, one can find $\gamma=1-\alpha= \min\{\alpha-1+\frac{1}{p},\frac{1}{2p}\}$. $\bullet$ According to Theorem \ref{thm2}, \eqref{ex-2} admits a unique solution $y\in C_{\frac{1}{4},\ln}(e,e+h]$ where \begin{align*} h&=\min\Big\{h',T,\Big[\frac{b\Gamma(\alpha)(p(\alpha-1)+1)}{Ma^{p-1}} \Big]^{\frac{1}{p(\alpha-1)+1}}, \\ &\qquad \Big(\frac{\Gamma(\alpha)}{g(B[\frac{1}{2},p(\alpha-1)+1])^{1/p}} \Big)^{\frac{p}{p(\alpha-1)+1}}\Big\}\\ \\ &=\Big\{e,e^2, \Big[\frac{(\frac{2}{\Gamma(3/4)} +\frac{(e^{2}+4)(e^2-e)}{\Gamma(7/4)})\Gamma(3/4)} {2\sqrt{e}(e^4+e)e}\Big]^{2}, \Big[\frac{\Gamma(3/4)}{4\sqrt{e}\sqrt{B[\frac{1}{2}, \frac{1}{2}]}}\Big]^4\Big\}. \end{align*} $\bullet$ According to Theorem \ref{thm3}, \eqref{ex-2} has a unique solution $y\in C_{\frac{1}{4},\ln}(e,+\infty)$. \subsection*{Acknowledgments} This work is supported by the National Natural Science Foundation of China (11201091) and by the Outstanding Scientific and Technological Innovation Talent Award of Education Department of Guizhou Province ([2014]240). \begin{thebibliography}{0} \bibitem{Kilbas} A. A. Kilbas, H. M. Srivastava, J. J. Trujillo; \emph{Theory and applications of fractional differential equations}, Mathematics Studies, vol. 204, North-Holland, Elsevier Science B. V., Amsterdam, 2006. \bibitem{Lin} W. Lin; \emph{Global existence theory and chaos control of fractional differential equations}, J. Math. Anal. Appl., 332(2007), 709-726. \bibitem{TMNA-WZM} J. Wang, Y. Zhou, M. Medve\v{d}; \emph{Existence and stability of fractional differential equations with Hadamard derivative}, Topol. Meth. Nonlinear Anal., 41(2013), 113-133. \bibitem{PBM-book} A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev; \emph{Integrals and series, elementary functions}, vol. 1, Nauka, Moscow, 1981 (in Russian). \bibitem{MWWK} Q. Ma, J. Wang, R. Wang, X. Ke; \emph{Study on some qualitative properties for solutions of a certain two-dimensional fractional differential system with Hadamard derivative}, Appl. Math. Lett., 36(2014), 7-13. \bibitem{Wang-EPJ} J. Wang, M. Fe\v{c}kan, Y. Zhou; \emph{Presentation of solutions of impulsive fractional Langevin equations and existence results}, Eur. Phys. J. Special Topics., 222(2013), 1855-1872. \end{thebibliography} \end{document}