\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 185, pp. 1--18.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/185\hfil Pseudo almost periodic solutions] {Piecewise weighted pseudo almost periodic solutions of impulsive integro-differential equations via fractional operators} \author[Z. Xia, D. Wang \hfil EJDE-2015/185\hfilneg] {Zhinan Xia, Dingjiang Wang} \address{Zhinan Xia \newline Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China} \email{xiazn299@zjut.edu.cn} \address{Dingjiang Wang (corresponding author) \newline Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China} \email{wangdingj@126.com} \thanks{Submitted October 7, 2014. Published July 10, 2015.} \subjclass[2010]{35R12, 35B15} \keywords{Impulsive integro-differential equation; pseudo almost periodicity; \hfill\break\indent fractional powers of operators; classical solution} \begin{abstract} In this article, we show sufficient conditions for the existence, uniqueness and attractivity of piecewise weighted pseudo almost periodic classical solution of nonlinear impulsive integro-differential equations. The working tools are based on the fixed point theorem and fractional powers of operators. An application to impulsive integro-differential equations is presented. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} It is well known that impulsive integro-differential equations or impulsive differential equations create an important subject of numerous mathematical investigations and constitute a significant branch of differential equations. It has great applications in actual modeling such as population dynamics, epidemic, engineering, optimal control, neural networks, economics, etc. With the help of several tools of functional analysis, topology and fixed point theorems, many authors have made important contributions to this theory \cite{baisimbook95,che13,hendearab11,liuzha12,liuzha13-2,stabook12}. The concept of pseudo almost periodic function, which was introduced by Zhang \cite{zhang94,zhang95}, is a natural and good generalization of the classical almost periodic functions in the sense of Bohr. Recently, weighted pseudo almost periodic function is investigated in \cite{diagana2006} by the weighted function, which was more tricky and changeable than those of the classical functions. Many authors have made important contributions to this function. For more details on weighted pseudo almost periodic function and related topics, one can see \cite{ab11,chazhagmn12,dia08,diligmnxi07,liwan12} and the references therein. For the integro-differential equations, the asymptotic properties of mild solutions have been studied from differential points, such as almost periodicity, almost automorphy, asymptotic stability, oscillation and so on. However, for the weighted pseudo almost periodicity of classical solutions, it is rarely investigated, particularly for the integro-differential equations with impulsive effects. The existence, uniqueness and attractivity of piecewise weighted pseudo almost periodic classical solutions for impulsive integro-differential equations is an untreated topic in the literature and this fact is the motivation of the present work. This article is organized as follows. In Section 2, we recall some fundamental results about the notion of piecewise almost periodic function. In Section 3, we introduce the concept of piecewise weighted pseudo almost periodic function and explore its properties. Sections 4 is devoted to the existence, uniqueness and attractivity of classical solution of \eqref{nonimpulsiveintegro} by fixed point theorem and fractional powers of operators. In Section 5, an application to impulsive integro-differential equations is presented to illustrate the main findings. \section{Preliminaries} Let $(X, \|\cdot\|)$, $(Y, \|\cdot\|)$ be Banach spaces, $\Omega$ be a subset of $X$ and $\mathbb{N}$, $\mathbb{Z}$ and $\mathbb{R}$ stand for the set of natural numbers, integers and real numbers, respectively. For $A$ being a linear operator on $X$, $\mathcal{D}(A)$ stands for the domain of $A$. Let $T$ be the set consisting of all real sequences $\{t_i\}_{i\in\mathbb{Z}}$ such that $\kappa=\inf_{i\in\mathbb{Z}}(t_{i+1}-t_i)>0$. It is immediate that this condition implies that $\lim_{i\to \infty}t_i=\infty$ and $\lim_{i\to -\infty}t_i= -\infty$. To facilitate the discussion below, we further introduce the following notation: \begin{itemize} \item $C(\mathbb{R},X)$:~the set of continuous functions from $\mathbb{R}$ to $X$. \item $PC(\mathbb{R},X)$ :~the space formed by all piecewise continuous functions $f:\mathbb{R}\to X$ such that $f(\cdot)$ is continuous at $t$ for any $t\notin \{t_i\}_{i\in\mathbb{Z}}$, $f(t^{+}_i)$, $f(t^{-}_i)$ exist, and $f(t^{-}_i)=f(t_i)$ for all $i\in \mathbb{Z}$. \item $PC(\mathbb{R}\times\Omega, X)$ :~the space formed by all piecewise continuous functions $f:\mathbb{R}\times\Omega \to X$ such that for any $x\in \Omega$, $f(\cdot, x)\in PC(\mathbb{R}, X)$ and for any $t\in\mathbb{R}$, $f(t,\cdot)$ is continuous at $x\in \Omega$. \end{itemize} It is possible to define fractional powers of $A$ if $-A$ is the infinitesimal generator of an analytic semigroup $T(t)$ in a Banach space and $0\in \rho(A)$. For $\alpha>0$, define the fractional power $A^{-\alpha}$ of $A$ by $$ A^{-\alpha}=\frac{1}{\Gamma(\alpha)} \int_{0}^{\infty}t^{\alpha-1}T(t)dt. $$ Operator $A^{-\alpha}$ is bounded, bijective and $A^{\alpha}=(A^{-\alpha})^{-1}$ is a closed linear operator, $\mathcal{D}(A^{\alpha})=\mathcal{R}(A^{-\alpha})$, $A^{0}$ is the identity operator in $X$. For $0\leq\alpha\leq 1$, $X_{\alpha}= \mathcal{D}(A^{\alpha})$ with norm $\|x\|_{\alpha}=\|A^{\alpha}x\|$ is a Banach space. \begin{lemma}[\cite{pazbook83}] \label{fundalemma} Let $-A$ be an infinitesimal operator of an analytic semigroup $T(t)$, then \begin{itemize} \item [(i)] $T(t): X\to \mathcal{D}(A^{\alpha})$ for every $t>0$ and $\alpha\geq 0$. \item [(ii)] For every $x\in \mathcal{D}(A^{\alpha})$, it follows that $T(t)A^{\alpha} x= A^{\alpha} T(t)x$. \item [(iii)] For every $t>0$, the operator $A^{\alpha} T(t)$ is bounded and \begin{equation} \|A^{\alpha}T(t)\|\leq M_{\alpha}t^{-\alpha}e^{-\lambda t},\quad M_{\alpha}>0, ~\lambda>0. \end{equation} \item [(iv)] For $0<\alpha\leq 1$ and $x\in \mathcal{D}(A^{\alpha})$, we have $$ \|T(t)x-x\|\leq C_{\alpha}t^{\alpha}\|A^{\alpha}x\|,\quad C_{\alpha}>0. $$ \end{itemize} \end{lemma} Now, we recall the concepts of discrete almost periodic function, discrete weighted pseudo almost periodic function, piecewise almost periodic function. \begin{definition}[\cite{finkbook74}] \rm A function $f\in C(\mathbb{R}, X)$ is said to be almost periodic if for each $\varepsilon>0$, there exists an $l(\varepsilon)>0$, such that every interval $J$ of length $l(\varepsilon)$ contains a number $\tau$ with the property that $\|f(t+\tau)-f(t)\|<\varepsilon$ for all $t\in\mathbb{R}$. Denote by $AP(\mathbb{R}, X)$ the set of such functions. \end{definition} \begin{definition}[\cite{samperbook95}] \rm A sequence $\{ x_n\}$ is called almost periodic if for any $\varepsilon>0$, there exists a relatively dense set of its $\varepsilon$-periods, i.e.\ there exists a natural number $l=l(\varepsilon)$, such that for $k\in\mathbb{Z}$, there is at least one number $p$ in $[k, k+l]$, for which inequality $\|x_{n+p}-x_n\|< \varepsilon$ holds for all $n\in\mathbb{N}$. Denote by $AP(\mathbb{Z}, X)$ the set of such sequences. \end{definition} Let $U_{d}$ denote the collection of functions (weights) $\rho: \mathbb{Z}\to (0, +\infty)$. For $\rho\in U_{d}$ and $m\in \mathbb{Z}^{+}=\{ n\in\mathbb{Z}, n\geq 0 \}$, set $\mu(m,\rho):=\sum_{k=-m}^{m} \rho_{k}$. Denote $ U_{d,\infty}:=\{ \rho \in U_{d}: \lim_{m\to \infty}\mu(m,\rho)= \infty \}$. For $\rho\in U_{d,\infty}$, define \begin{gather*} AAP_{0}(\mathbb{Z}, X)= \{ x_n\in l^{\infty}(\mathbb{Z}, X): \lim_{n\to \infty}\|x_n\|=0 \}.\\ WPAP_{0}(\mathbb{Z}, X,\rho):=\{x_n\in l^{\infty}(\mathbb{Z}, X),~ \lim_{m\to \infty}\frac{1}{\mu(m,\rho)}\sum_{k=-m}^{m} \|x_{k}\|\rho_{k} =0 \}. \end{gather*} \begin{definition}[\cite{ruepho95}]\rm A sequence $\{ x_n\}_{n\in\mathbb{Z}} \in l^{\infty}(\mathbb{Z},X)$ is called discrete asymptotically almost periodic if $x_n=x^{1}_n+x^{2}_n$, where $x^{1}_n\in AP(\mathbb{Z}, X)$, $x^{2}_n\in AAP_{0}(\mathbb{Z}, X)$. Denote by $AAP(\mathbb{Z}, X)$ the set of such sequences. \end{definition} \begin{definition}[\cite{dingmnnie13}] \rm Let $\rho\in U_{d,\infty}$. A sequence $\{ x_n\}_{n\in\mathbb{Z}} \in l^{\infty}(\mathbb{Z}, X)$ is called discrete weighted pseudo almost periodic if it can be expressed as $x_n=x^{1}_n+x^{2}_n$, where $x^{1}_n\in AP(\mathbb{Z}, X)$ and $x^{2}_n\in WPAP_{0}(\mathbb{Z}, X, \rho)$. The set of such functions denoted by $WPAP(\mathbb{Z}, X,\rho)$. \end{definition} For $\{t_i\}_{i\in\mathbb{Z}}\in T$, $\{t^{j}_i\}$ defined by $\{t^{j}_i=t_{i+j}-t_i\}, i\in \mathbb{Z}, j\in\mathbb{Z}$. \begin{definition}[\cite{samperbook95}] \label{defpcaa} \rm A function $f\in PC(\mathbb{R}, X)$ is said to be piecewise almost periodic if the following conditions are fulfilled: \begin{itemize} \item[(1)] $\{t^{j}_i=t_{i+j}-t_i\}$, $i, j\in\mathbb{Z}$ are equipotentially almost periodic, that is, for any $\varepsilon>0$, there exists a relatively dense set in $\mathbb{R}$ of $\varepsilon$-almost periods common for all of the sequences $\{t^{j}_i\}$. \item[(2)] For any $\varepsilon>0$, there exists a positive number $\delta=\delta(\varepsilon)$ such that if the points $t'$ and $t''$ belong to the same interval of continuity of $f$ and $|t'-t''|<\delta$, then $\|f(t')-f(t'')\|<\varepsilon$. \item[(3)] For any $\varepsilon>0$, there exists a relatively dense set $\Omega_{\varepsilon}$ in $\mathbb{R}$ such that if $\tau\in \Omega_{\varepsilon}$, then $$ \|f(t+\tau)-f(t)\|<\varepsilon $$ for all $t\in\mathbb{R}$ which satisfy the condition $|t-t_i|>\varepsilon, i\in\mathbb{Z}$. \end{itemize} \end{definition} We denote by $AP_{p}(\mathbb{R},X)$ the space of all piecewise almost periodic functions. Throughout the rest of this paper, we always assume that $\{t^{j}_i\}$ are equipotentially almost periodic. Let $\mathcal{U}PC(\mathbb{R}, X)$ be the space of all functions $f\in PC(\mathbb{R}, X)$ such that $f$ satisfies the condition $(2)$ in Definition \ref{defpcaa}. \begin{definition} \rm $f\in PC(\mathbb{R}\times\Omega, X)$ is said to be piecewise almost periodic in $t$ uniformly in $x\in \Omega$ if for each compact set $K\subseteq \Omega$, $\{f(\cdot,x): x\in K \}$ is uniformly bounded, and given $\varepsilon>0$, there exists a relatively dense set $\Omega_{\varepsilon}$ such that $\|f(t+\tau,x)-f(t,x)\|\leq \varepsilon$ for all $x\in K, \tau\in \Omega_{\varepsilon}$ and $t\in \mathbb{R}$, $|t-t_i|>\varepsilon$. Denote by $AP_{p}(\mathbb{R}\times\Omega, X)$ the set of all such functions. \end{definition} \begin{lemma}[\cite{samperbook95}]\label{lemmapoints} If the sequences $\{t_i^{j}\}$ are equipotentially almost periodic, then for each $j>0$, there exists a positive integer $N$ such that on each interval of length $j$, there are no more than $N$ elements of the sequence $\{t_i\}$, $i.e.$, $$i(s,t)\leq N(t-s)+N,$$ where $i(s,t)$ is the number of the points $\{t_i\}$ in the interval $[s, t]$. \end{lemma} \begin{lemma}[\cite{samperbook95}] \label{lemmarz} Assume that $f\in AP_{p}(\mathbb{R}, X)$, $\{x_i\}_{i\in\mathbb{Z}} \in AP (\mathbb{Z}, X)$, and $\{t_i^{j}\}$, $j\in\mathbb{Z}$ are equipotentially almost periodic. Then for each $\varepsilon>0$, there exist relatively dense sets $\Omega_{\varepsilon}$ of $\mathbb{R}$ and $Q_{\varepsilon}$ of $\mathbb{Z}$ such that \begin{itemize} \item [(i)] $\|f(t+\tau)-f(t)\|<\varepsilon$ for all $t\in\mathbb{R}$, $|t-t_i|>\varepsilon$, $\tau\in \Omega_{\varepsilon}$ and $i\in\mathbb{Z}$. \item [(ii)] $\|x_{i+q}-x_i\|<\varepsilon$ for all $q\in Q_{\varepsilon}$ and $i\in\mathbb{Z}$. \item [(iii)] $|t_i^{q}-\tau|<\varepsilon$ for all $q\in Q_{\varepsilon}$, $\tau\in \Omega_{\varepsilon}$ and $i\in\mathbb{Z}$. \end{itemize} \end{lemma} Now, we give the generalized Gronwall-Bellman inequality which will be used later, one can see \cite[Theorem 2.1]{iov07} for more details. \begin{lemma}[generalized Gronwall-Bellman inequality] \label{gronwall} Let a nonnegative function $u(t)\in PC(\mathbb{R}, X)$ satisfy for $t\geq t_{0}$ $$ u(t)\leq n(t)+\int_{t_{0}}^{t}v(\tau)u(\tau)d\tau + \sum_{t_{0}0$ and each $\rho\in U$, set $$ \mu(r,\rho):=\int^{r}_{-r}\rho(t)dt. $$ Define \begin{gather*} U_{\infty}:=\{\rho\in U:\lim_{r\to \infty}\mu(r,\rho)=\infty\},\\ U_{B}:=\{\rho\in U_{\infty}:\rho \text{ is bounded and } \inf_{x\in\mathbb{R}}\rho(x)>0\}. \end{gather*} It is clear that $U_{B}\subset U_{\infty}\subset U$. \begin{definition} \rm Let $\rho_{1}, \rho_{2}\in U_{\infty}$, $\rho_{1}$ is said to be equivalent to $\rho_{2}$ (i.e.\ $\rho_{1} \sim \rho_{2}$) if $\frac{\rho_{1}}{\rho_{2}}\in U_{B}$ \end{definition} It is trivial to show that ``$\sim$'' is a binary equivalence relation on $U_{\infty}$. The equivalence class of a given weight $\rho\in U_{\infty}$ is denoted by $cl(\rho)=\{ \varrho\in U_{\infty}:\rho\sim \varrho \}$. It is clear that $U_{\infty}=\bigcup_{\rho\in U_{\infty}}cl(\rho)$. For $\rho\in U_{\infty}$, define \begin{gather*} PC_{p}^{0}(\mathbb{R}, X) = \{ f\in PC(\mathbb{R}, X): \lim_{t\to \infty}\|f(t)\|=0 \}, \\ WPAP_{p}^{0}(\mathbb{R},X,\rho):=\{f\in PC(\mathbb{R},X): \lim_{r\to \infty}\frac{1}{\mu(r,\rho)}\int^{r}_{-r}\rho(t)\|f(t)\|dt=0\}, \\ \begin{aligned} & WPAP^{0}_{p}(\mathbb{R}\times \Omega, X,\rho)\\ &= \Big\{ f\in PC(\mathbb{R}\times\Omega, X): \lim_{r\to \infty}\frac{1}{\mu(r,\rho)}\int^{r}_{-r}\rho(t)\|f(t, x)\|dt=0 \text{ uniformly with }\\ &\quad \text{respect to } x\in K, \text{ where } K \text{ is an arbitrary compact subset of } \Omega \Big\}. \end{aligned} \end{gather*} \begin{definition} \rm A function $f\in PC(\mathbb{R}, X)$ is said to be piecewise asymptotically almost periodic if it can be decomposed as $f=g+\varphi$, where $g\in AP_{p}(\mathbb{R}, X)$ and $\varphi\in PC_{p}^{0}(\mathbb{R}, X)$. Denote by $AAP_{p}(\mathbb{R}, X)$ the set of all such functions. \end{definition} \begin{definition} \rm A function $f\in PC(\mathbb{R}, X)$ is said to be piecewise weighted pseudo almost periodic if it can be decomposed as $f=g+\varphi$, where $g\in AP_{p}(\mathbb{R}, X)$ and $\varphi\in WPAP^{0}_{p}(\mathbb{R}, X,\rho)$. Denote by $WPAP_{p}(\mathbb{R}, X,\rho)$ the set of all such functions. \end{definition} \begin{definition} \label{paptwo} \rm Let $WPAP_{p}(\mathbb{R}\times\Omega, X,\rho)$ consist of all functions $f\in PC(\mathbb{R}\times\Omega, X)$ such that $f=g+\varphi$, where $g\in AP_{p}(\mathbb{R}\times\Omega, X)$ and $\varphi\in WPAP^{0}_{p}(\mathbb{R}\times \Omega, X,\rho)$. \end{definition} Let $\rho\in U_{\infty}, \tau\in \mathbb{R}$, and defined $\rho^{\tau}$ by $\rho^{\tau}(t)=\rho(t+\tau)$ for $t\in \mathbb{R}$. Define \cite{zhli10} $$ U_{T}=\{\rho\in U_{\infty}: \rho \sim \rho^{\tau} \text{ for each } \tau\in \mathbb{R}\}. $$ It is easy to see that $U_{T}$ contains many of weights, such as $1, (1+t^{2})/(2+t^{2}), e^{t}$, and $1+|t|^{n}$ with $n\in \mathbb{N}$ et al. It is obvious that $(WPAP_{p}(\mathbb{R}, X,\rho),\|\cdot\|_{\infty})$ (resp. $(WPAP_{p}(\mathbb{R}\times Y, X,\rho),\|\cdot\|_{\infty})$), $\rho\in U_{T}$ is a Banach space when endowed with the sup norm. \begin{remark}\label{remarktrans} \rm \begin{itemize} \item [(i)] For $\rho\in U_{T}$, $WPAP_{p}^{0}(\mathbb{R}, X,\rho)$ is a translation invariant set of $PC(\mathbb{R}, X)$. \item [(ii)] $PC_{p}^{0}(\mathbb{R}, X) \subset WPAP^{0}_{p}(\mathbb{R}, X,\rho)$ and $AAP_{p}(\mathbb{R}, X)\subset WPAP_{p}(\mathbb{R}, X,\rho)$ \end{itemize} \end{remark} Similarly as the proof of \cite[Lemma 2.5]{dia08}, one has the following lemma. \begin{lemma}\label{lemmauniform} Let $\{f_n\}_{n\in\mathbb{N}} \subset WPAP^{0}_{p}(\mathbb{R}, X,\rho)$ be a sequence of functions. If $f_n$ converges uniformly to $f$, then $f\in WPAP^{0}_{p}(\mathbb{R}, X,\rho)$. \end{lemma} Similarly as the proof of \cite{liuzha13}, the following results and the composition theorems are hold for piecewise weighted pseudo almost periodic function. \begin{theorem}\label{papiu} Suppose the sequence of vector-valued functions $\{I_i\}_{i\in \mathbb{Z}}$ is weighted pseudo almost periodic, i.e, for any $x\in\Omega$, $\{I_i(x), i\in\mathbb{Z} \}$ is a weighted pseudo almost periodic sequence. Assume that the following conditions hold: \begin{itemize} \item[(i)] $\{I_i(x), i\in\mathbb{Z}, x\in K \}$ is bounded for every bounded subset $K\subset \Omega$. \item[(ii)] $I_i(x)$ is uniformly continuous in $x\in \Omega$ uniformly in $i\in \mathbb{Z}$. \end{itemize} If $\phi\in WPAP_{p}(\mathbb{R}, X,\rho)\cap UPC(\mathbb{R}, X)$ such that $\mathcal{R}(\phi)\subset \Omega$, then $I_i(\phi(t_i))$ is weighted pseudo almost periodic. \end{theorem} \begin{corollary}\label{corollaryi} Assume that the sequence of vector-valued functions $\{I_i\}_{i\in \mathbb{Z}}$ is weighted pseudo almost periodic, and there exists a constant $L_{1}>0$ such that $$ \|I_i(u)-I_i(v)\|\leq L_{1}\|u-v\|,\quad \text{for all }u,v\in\Omega,~i\in\mathbb{Z}. $$ if $\phi\in WPAP_{p}(\mathbb{R}, X,\rho)\cap UPC(\mathbb{R}, X)$ such that $\mathcal{R}(\phi)\subset \Omega$, then $I_i(\phi(t_i))$ is weighted pseudo almost periodic. \end{corollary} \begin{theorem}\label{compopap} Suppose $f\in WPAP_{p}(\mathbb{R}\times\Omega, X,\rho)$. Assume that the following conditions hold: \begin{itemize} \item [(i)] $\{f(t, u): t\in\mathbb{R}, u\in K\}$ is bounded for every bounded subset $K\subseteq \Omega$. \item [(ii)] $f(t,\cdot)$ is uniformly continuous in each bounded subset of $\Omega$ uniformly in $t\in \mathbb{R}$. \end{itemize} If $\varphi\in WPAP_{p}(\mathbb{R}, X,\rho)$ such that $\mathcal{R}(\varphi)\subset \Omega$, then $f(\cdot,\varphi(\cdot))\in WPAP_{p}(\mathbb{R}, X,\rho)$. \end{theorem} \begin{corollary}\label{compolip} Let $f\in WPAP_{p}(\mathbb{R}\times\Omega, X,\rho)$, $\varphi\in WPAP_{p}(\mathbb{R}, X,\rho)$ and $\mathcal{R}(\varphi)\subset \Omega$. Assume that there exists a constant $L_{f}>0$ such that $$ \|f(t, u)-f(t, v) \| \leq L_{f}\|u-v\|, \quad t\in\mathbb{R},\; u, v\in \Omega, $$ then $f(\cdot,\varphi)\in WPAP_{p}(\mathbb{R}, X,\rho)$. \end{corollary} \section{Impulsive integro-differential equations} In this section, we investigate the existence, uniqueness and attractivity of piecewise weighted pseudo almost periodic classical solution of nonlinear impulsive integro-differential equations: \begin{equation}\label{nonimpulsiveintegro} \begin{gathered} \frac{du(t)}{dt}+Au(t)=f(t, u(t), (Ku)(t)), \quad t\in\mathbb{R},\; t\neq t_i, \; i\in\mathbb{Z}, \\ (Ku)(t)=\int^{t}_{-\infty}k(t-s)g(s,u(s))ds,\\ \Delta u(t_i):=u(t^{+}_i)-u(t^{-}_i)=I_i(u(t_i)), \end{gathered} \end{equation} First, we make the following assumptions: \begin{itemize} \item [(H1)] $-A$ is the infinitesimal generator of an analytic semigroup $T(t)$ such that $\|T(t)\|\leq Me^{-\omega t}$ for $t\geq 0$ and $0\in \rho(A)$. \item [(H2)] $k\in C(\mathbb{R}^{+}, \mathbb{R})$ and $|k(t)|\leq C_{k} e^{-\eta t}$ for some positive constants $C_{k}, \eta$. \item [(H3)] $g\in WPAP_{p}(\mathbb{R}\times X_{\alpha}, X,\rho)$, $\rho\in U_{T}$ and there exists a constant $L_{g}>0$ such that $$\|g(t,u)-g(t,v)\| \leq L_{g}\|u-v\|_{\alpha}, \quad t\in\mathbb{R},~~u ,v\in X_{\alpha}.$$ \item [(H4)] $f\in WPAP_{p}(\mathbb{R}\times X_{\alpha}\times X_{\alpha}, X,\rho)$, $\rho\in U_{T}$ and there exists constants $L_{f}>0$, $0<\theta<1$ such that $$\|f(t_{1}, u_{1},v_{1})-f(t_{2}, u_{2},v_{2}) \| \leq L_{f}(|t_{1}-t_{2}|^{\theta}+\|u_{1}-u_{2}\|_{\alpha}+\|v_{1}-v_{2}\|_{\alpha}), $$ for each $(t_i,u_i,v_i)\in \mathbb{R}\times X_{\alpha}\times X_{\alpha},~~ i=1,2$. \item [(H5)] $I_i\in WPAP (\mathbb{Z}, X,\rho)$ and there exists a constant $L_{1}>0$ such that $$\|I_i(u)-I_i(v)\|\leq L_{1}\|u-v\|_{\alpha}, \quad t\in\mathbb{R},~~u ,v\in X_{\alpha}, ~i\in\mathbb{Z}.$$ \end{itemize} Before starting our main results, we recall the definition of the mild solution of \eqref{nonimpulsiveintegro}. \begin{definition}[\cite{samperbook95}] \rm A function $u:\mathbb{R}\to X$ is called a mild solution of \eqref{nonimpulsiveintegro} if for any $t\in\mathbb{R}$, $t>\sigma$, $\sigma\neq t_i$, $i\in\mathbb{Z}$, \begin{equation} \label{mild} u(t)=T(t-\sigma)u(\sigma)+\int^{t}_{\sigma}T(t-s)f(s,u(s),(Ku)(s))ds +\sum_{\sigma0$, let $\Omega_{\varepsilon}$ be a relatively dense set of $\mathbb{R}$ formed by $\varepsilon$-periods of $\phi_{1}$. If $\tau\in \Omega_{\varepsilon}$, $t\in\mathbb{R}$, $|t-t_i|>\varepsilon$, $i\in\mathbb{Z}$, then $$ \|\phi_{1}(t+\tau)-\phi_{1}(t) \| <\varepsilon. $$ Hence, by (H2), for $t\in\mathbb{R}$, $|t-t_i|>\varepsilon$, $i\in\mathbb{Z}$, one has \begin{align*} \|\Psi_{1}(t+\tau)-\Psi_{1}(t)\| &=\|\int^{t+\tau}_{-\infty}k(t+\tau-s)\phi_{1}(s)ds-\int^{t}_{-\infty}k(t-s)\phi_{1}(s) ds \| \\ &=\|\int^{t}_{-\infty}k(t-s)(\phi_{1}(s+\tau)-\phi_{1}(s))ds \| \\ & \leq \int^{t}_{-\infty} C_{k}e^{-\eta(t-s)} \| \phi_{1}(s+\tau)-\phi_{1}(s) \|ds \\ &< \frac{C_{k}}{\eta} \varepsilon, \end{align*} which implies that $\Psi_{1}\in AP_{p}(\mathbb{R}, X)$. (ii) $\Psi_{2}\in WPAP_{p}^{0}(\mathbb{R}, X,\rho)$. In fact, for $r>0$, one has \begin{align*} \frac{1}{\mu(r,\rho)}\int^{r}_{-r}\rho(t)\|\Psi_{2}(t)\|dt &=\frac{1}{\mu(r,\rho)}\int^{r}_{-r}\rho(t)\|\int^{t}_{-\infty}k(t-s)\phi_{2}(s)ds\|dt \\ &=\frac{1}{\mu(r,\rho)}\int^{r}_{-r}\rho(t)\|\int^{\infty}_{0}k(s)\phi_{2}(t-s)ds\|dt\\ &\leq \frac{1}{\mu(r,\rho)}\int^{r}_{-r}\int^{\infty}_{0}C_{k}e^{-\eta s}\rho(t) \|\phi_{2}(t-s)\|dsdt\\ &\leq \int^{\infty}_{0}C_{k}e^{-\eta s}\Phi_{r}(s)ds, \end{align*} where $$ \Phi_{r}(s)=\frac{1}{\mu(r,\rho)} \int^{r}_{-r}\rho(t)\|\phi_{2}(t-s)\|dt. $$ Since $\phi_{2}\in WPAP_{p}^{0}(\mathbb{R}, X,\rho)$, $\rho\in U_{T}$ it follows that $\phi_{2}(\cdot-s)\in WPAP_{p}^{0}(\mathbb{R}, X,\rho)$ for each $s\in\mathbb{R}$ by Remark \ref{remarktrans}, hence $\lim_{r\to \infty}\Phi_{r}(s) =0$ for all $s\in \mathbb{R}$. By using the Lebesgue dominated convergence theorem, we have $\Psi_{2}\in WPAP_{p}^{0}(\mathbb{R}, X,\rho)$. This completes the proof. \end{proof} \begin{lemma}\label{lemmatwo} Assume that {\rm (H1)--(H4)} hold, if $u\in WPAP_{p}(\mathbb{R},X,\rho)$, then $$ (\Lambda u)(t):=\int^{t}_{-\infty}A^{\alpha}T(t-s)f(s,A^{-\alpha}u(s), K(A^{-\alpha}u(s)))ds\in WPAA_{p}(\mathbb{R}, X,\rho). $$ \end{lemma} \begin{proof} We first show that $\Lambda u$ is well defined. In fact, if $u\in WPAA_{p}(\mathbb{R}, X,\rho)$, one has $K(A^{-\alpha}u) \in WPAA_{p}(\mathbb{R}, X,\rho)$ by Lemma \ref{papku}, and $f(\cdot,A^{-\alpha}u(\cdot), K(A^{-\alpha}u(\cdot)))\in WPAA_{p}(\mathbb{R}, X,\rho)$ by Corollary \ref{compolip}. Hence $h(\cdot)=f(\cdot,A^{-\alpha}u(\cdot), K(A^{-\alpha}u(\cdot)))\in WPAA_{p}(\mathbb{R}, X,\rho)$, then $\|h\|:=\sup_{t\in \mathbb{R}}\|h(t)\|<\infty$. By Lemma \ref{fundalemma}, one has \begin{align*} \|A^{\alpha}T(t-s)f(s,A^{-\alpha}u(s), K(A^{-\alpha}u(s)))\| &\leq M_{\alpha}(t-s)^{-\alpha}e^{-\lambda (t-s)} \|h(s)\| \\ &\leq M_{\alpha}(t-s)^{-\alpha}e^{-\lambda (t-s)}\|h\|, \end{align*} since $$ \int^{t}_{-\infty}(t-s)^{-\alpha}e^{-\lambda (t-s)} ds =\lambda^{\alpha-1}\Gamma(1-\alpha), $$ where $\Gamma$ is the classical Gamma function. Hence \[ A^{\alpha}T(t-s)f(s,A^{-\alpha}u(s), K(A^{-\alpha}u(s))) \] is integrable over $(-\infty, t)$ for $t\in \mathbb{R}$. Now, let $h=h_{1}+h_{2}$, where $h_{1}\in AP_{p}(\mathbb{R}, X)$, $h_{2}\in WPAP_{p}^{0}(\mathbb{R}, X,\rho)$, then \begin{align*} (\Lambda u)(t) &= \int^{t}_{-\infty}A^{\alpha}T(t-s)h_{1}(s)ds +\int^{t}_{-\infty}A^{\alpha}T(t-s)h_{2}(s)ds\\ &:=\Lambda_{1}(t)+\Lambda_{2}(t), \end{align*} where \[ \Lambda_{1}(t)=\int^{t}_{-\infty}A^{\alpha}T(t-s)h_{1}(s)ds,\quad \Lambda_{2}(t)=\int^{t}_{-\infty}A^{\alpha}T(t-s)h_{2}(s)ds. \] (i) $\Lambda_{1}\in \mathcal{U}PC(\mathbb{R}, X)$. Let $t', t''\in (t_i, t_{i+1})$, $i\in\mathbb{Z}$, $t''0$, there exists \[ 0<\delta< \Big( \frac{(1-\alpha)\varepsilon}{2M_{\alpha}\|h_{1}\|} \Big)^{1/(1-\alpha)} \] such that if $t', t''$ belongs to a same continuity and $00$, there exists a relatively dense set $\Omega_{\varepsilon}$ such that for $\tau\in \Omega_{\varepsilon}$, $t\in\mathbb{R}$, $|t-t_i|>\varepsilon$, $i\in\mathbb{Z}$, $$ \|h_{1}(t+\tau)-h_{1}(t) \| <\varepsilon. $$ Hence, by Lemma \ref{fundalemma}, for $t\in\mathbb{R}$, $|t-t_i|>\varepsilon$, $i\in\mathbb{Z}$, one has \begin{align*} &\|\Lambda_{1}(t+\tau)-\Lambda_{1}(t)\|\\ &=\|\int^{t+\tau}_{-\infty}A^{\alpha}T(t+\tau-s)h_{1}(s)ds -\int^{t}_{-\infty}A^{\alpha}T(t-s)h_{1}(s)ds \| \\ &=\|\int^{t}_{-\infty}A^{\alpha}T(t-s)(h_{1}(s+\tau)-h_{1}(s))ds\| \\ & \leq\int^{t}_{-\infty}\|A^{\alpha}T(t-s)(h_{1}(s+\tau)-h_{1}(s))\| ds\\ & \leq \int^{t}_{-\infty} M_{\alpha}(t-s)^{-\alpha}e^{-\lambda(t-s)} \| h_{1}(s+\tau)-h_{1}(s) \|ds \\ &< M_{\alpha}\lambda^{\alpha-1}\Gamma(1-\alpha) \varepsilon, \end{align*} that is $\Lambda_{1}\in AP_{p}(\mathbb{R}, X)$. (iii) $\Lambda_{2}\in WPAP_{p}^{0}(\mathbb{R}, X)$. In fact, for $r>0$, one has \begin{align*} \frac{1}{\mu(r,\rho)}\int^{r}_{-r}\rho(t)\|\Lambda_{2}(t)\|dt &=\frac{1}{\mu(r,\rho)}\int^{r}_{-r}\rho(t)\|\int^{t}_{-\infty} A^{\alpha}T(t-s)h_{2}(s)ds\|dt \\ &=\frac{1}{\mu(r,\rho)}\int^{r}_{-r}\rho(t)\|\int^{\infty}_{0} A^{\alpha}T(s)h_{2}(t-s)ds\|dt\\ &\leq\frac{1}{\mu(r,\rho)}\int^{r}_{-r}\int^{\infty}_{0}\rho(t) \|A^{\alpha}T(s)h_{2}(t-s)\|dsdt\\ &\leq \frac{1}{\mu(r,\rho)}\int^{r}_{-r}\int^{\infty}_{0}M_{\alpha} s^{-\alpha}e^{-\lambda s}\rho(t) \|h_{2}(t-s)\|dsdt\\ &\leq M_{\alpha}\int^{\infty}_{0}s^{-\alpha}e^{-\lambda s}H_{r}(s)ds, \end{align*} where $$ H_{r}(s)=\frac{1}{\mu(r,\rho)} \int^{r}_{-r}\rho(t)\|h_{2}(t-s)\|dt. $$ Since $h_{2}\in WPAP_{p}^{0}(\mathbb{R}, X,\rho)$, $\rho\in U_{T}$, it follows that $h_{2}(\cdot-s)\in WPAP_{p}^{0}(\mathbb{R}, X,\rho)$ for each $s\in\mathbb{R}$ by Remark \ref{remarktrans}, hence $\lim_{r\to \infty}H_{r}(s) =0$ for all $s\in \mathbb{R}$. By using the Lebesgue dominated convergence theorem, we have $\Lambda_{2}\in WPAP_{p}^{0}(\mathbb{R}, X,\rho)$. \end{proof} \begin{theorem}\label{theoremlip} Assume that {\rm (H1)--(H5)} hold and if $\Theta<1$, where $$ \Theta:= M_{\alpha}\lambda^{\alpha-1}\Gamma(1-\alpha) L_{f}\left( L_{g}C_{k} \eta^{-1} + 1\right)+ 2M_{\alpha} N L_{1}\left( m^{-\alpha} + (e^{\lambda}-1)^{-1} \right), $$ then \eqref{nonimpulsiveintegro} has a unique classical solution $u\in WPAP_{p}(\mathbb{R}, X,\rho)$ and $u(t)$ is an attractor. \end{theorem} \begin{proof} Let $\mathcal{F}: WPAP_{p}(\mathbb{R}, X,\rho)\cap \mathcal{U}PC(\mathbb{R}, X)\to PC(\mathbb{R}, X)$ be the operator defined by \begin{equation} \label{operator} \begin{aligned} (\mathcal{F} u) (t) &=\int^{t}_{-\infty}A^{\alpha}T(t-s)f(s,A^{-\alpha}u(s), K(A^{-\alpha}u(s)))ds\\ &\quad +\sum_{t_i0$, there exists relative dense sets of real numbers $\Omega_{\varepsilon}$ and integers $Q_{\varepsilon}$, such that for $t_i\varepsilon$, $|t-t_{i+1}|>\varepsilon$, $j\in\mathbb{Z}$, one has \begin{gather*} t+\tau>t_i+\varepsilon+\tau>t_{i+q}, \\ t_{i+q+1}>t_{i+1}+\tau-\varepsilon >t+\tau, \end{gather*} that is, $t_{i+q}0$ such that $$ \|u_{0}(t+h)-u_{0}\|\leq Ch^{\beta} $$ and therefore $u_{0}$ is H\"{o}lder continuous on $\mathbb{R}$. Finally, it remains to prove that $t\to f(t,A^{-\alpha}u_{0}(t), K(A^{-\alpha}u_{0}(t)))$ is H\"{o}lder continuous on $\mathbb{R}$. By (H4), one has \begin{align*} &\|f(t,A^{-\alpha}u_{0}(t), K(A^{-\alpha}u_{0}(t)))- f(s,A^{-\alpha}u_{0}(s), K(A^{-\alpha}u_{0}(s)))\|\\ & \leq L_{f}(|t-s|^{\theta}+\|u_{0}(t)-u_{0}(s)\|+\|K(A^{-\alpha}u_{0}(t)) -K(A^{-\alpha}u_{0}(s))\|_{\alpha}). \end{align*} Hence $f(t,A^{-\alpha}u_{0}(t), K(A^{-\alpha}u_{0}(t)))$ is H\"{o}lder continuous on $\mathbb{R}$. Let $u_{0}$ be the solution of \eqref{fixedpoint} and consider the equation \begin{gather*} \frac{du(t)}{dt}+Au(t)=f(t,A^{-\alpha}u_{0}(t), K(A^{-\alpha}u_{0}(t))), \quad t\in\mathbb{R},\; t\neq t_i, \; i\in\mathbb{Z}, \\ \Delta u(t_i)=I_i(A^{-\alpha}u_{0}(t_i)). \end{gather*} Then this equation has a unique classical solution given by \cite{staalz10} $$ u(t)= \int^{t}_{-\infty}T(t-s)f(s,A^{-\alpha}u_{0}(s), K(A^{-\alpha}u_{0}(s)))ds + \sum_{t_i\sigma$, $\sigma\neq t_i$, $i\in\mathbb{Z}$, \[ u(t)=T(t-\sigma)u(\sigma)+\int^{t}_{\sigma}T(t-s)f(s,u(s),(Ku)(s))ds +\sum_{\sigma0$, there exist $T>\max(0, \sigma+\kappa)$, such that for $t>T$, $$ e^{[M_{\alpha}\kappa^{-\alpha}L_{f}(L_{g}C_{k}\eta^{-1}+1) -\lambda](t-\sigma)}<\varepsilon,\quad (t-\sigma)^{-\alpha}<\varepsilon,\quad (t-t_i)^{-\alpha}<\varepsilon. $$ Hence for $t>T$, one has \begin{align*} \|u(t)-v(t)\|_{\alpha} &\leq M_{\alpha}(t-\sigma)^{-\alpha}e^{-\lambda(t-\sigma)}\|\varphi-\psi\|\\ &\quad +\int^{t-\kappa}_{\sigma}M_{\alpha}(t-s)^{-\alpha}e^{-\lambda(t-s)} L_{f}(L_{g}C_{k}\eta^{-1}+1)\|u(s)-v(s)\|_{\alpha}ds\\ &\quad +\int^{t}_{t-\kappa}M_{\alpha}(t-s)^{-\alpha}e^{-\lambda(t-s)} L_{f}(L_{g}C_{k}\eta^{-1}+1)\|u(s)-v(s)\|_{\alpha}ds\\ &\quad +\sum_{\sigma0$, we see that \begin{align*} &\frac{1}{\mu(r,\rho)}\int_{-r}^{r}\rho(t)\|u_{2}(t-\tau)\|dt\\ &=\frac{1}{\mu(r,\rho)}\int_{-r-\tau}^{r-\tau}\rho(t+\tau)\|u_{2}(t)\|dt\\ &\leq \frac{\mu(r+\tau,\rho)}{\mu(r,\rho)}\times\frac{1}{\mu(r+\tau,\rho)} \int_{-r-\tau}^{r+\tau}\frac{\rho(t+\tau)}{\rho(t)}\rho(t)\|u_{2}(t)\|dt. \end{align*} Since $\rho\in U_{T}$, it implies that there exists $\eta>0$ such that $\frac{\rho(t+\tau)}{\rho(t)}\leq \eta$, $\frac{\rho(t-\tau)}{\rho(t)}\leq \eta$, for $r>\tau$, \begin{align*} \mu(r+\tau,\rho) &=\int^{r-\tau}_{-r-\tau}\rho(t)dt+\int^{r+\tau}_{r-\tau}\rho(t)dt\\ & \leq \int^{r-\tau}_{-r-\tau}\rho(t)dt+\int^{r+\tau}_{-r+\tau}\rho(t)dt \\ & =\int^{r}_{-r}\rho(t-\tau)dt+\int^{r}_{-r}\rho(t+\tau)dt \leq 2\eta \mu(r,\rho), \end{align*} then by $u_{2}\in WPAP^{0}_{p}(\mathbb{R}, X,\rho)$, one has \[ \frac{1}{\mu(r,\rho)}\int_{-r}^{r}\rho(t)\|u_{2}(t-\tau)\|dt \leq \frac{2\eta^{2}}{\mu(r+\tau,\rho)} \int_{-r-\tau}^{r+\tau}\rho(t)\|u_{2}(t)\|dt\to 0 \] as $\to \infty$. Hence $u_{2}(t-\tau)\in WPAP^{0}_{p}(\mathbb{R}, X,\rho)$, that is $u(t-\tau)\in WPAP_{p}(\mathbb{R}, X,\rho)$ for $\tau\in\mathbb{R}^{+}$. Thus the conclusion of Theorem \ref{theoremlip} holds for \eqref{nonimpulsiveintegrodelay}. \end{remark} \begin{remark} \rm If $(Ku)(t)=0$, then impulsive integro-differential equations \eqref{nonimpulsiveintegro} become nonlinear impulsive differential equations: \begin{equation}\label{impulsivede} \begin{gathered} \frac{du(t)}{dt}+Au(t)=f(t, u(t)), \quad t\in\mathbb{R},\; t\neq t_i,\; i\in\mathbb{Z}, \\ \Delta u(t_i)=I_i(u(t_i)), \end{gathered} \end{equation} By Theorem \ref{theoremlip}, one has the following corollary. \end{remark} \begin{corollary}\label{theoremdelip} Assume that {\rm (H1), (H5)} hold and satisfy the condition: \begin{itemize} \item [(H4')] $f\in WPAP_{p}(\mathbb{R}\times X_{\alpha}, X,\rho)$, $\rho\in U_{T}$ and there exists constants $L_{f}>0$, $0<\theta<1$ such that $$\|f(t_{1}, u)-f(t_{2}, v) \| \leq L_{f}(|t_{1}-t_{2}|^{\theta}+\|u-v\|_{\alpha}),\quad t\in\mathbb{R}, ~u, v\in X_{\alpha}, $$ \end{itemize} then \eqref{impulsivede} has a unique classical solution $u\in WPAP_{p}(\mathbb{R}, X,\rho)$ which is an attractor if $$ \vartheta:= M_{\alpha}\lambda^{\alpha-1}\Gamma(1-\alpha) L_{f}+ 2M_{\alpha} N L_{1}\left( m^{-\alpha} + (e^{\lambda}-1)^{-1} \right)<1. $$ \end{corollary} \section{Example} Consider the integro-differential equation with impulsive effects \begin{equation}\label{exam2} \begin{gathered} \frac{\partial w(t,x)}{\partial t}-\frac{\partial^{2} w(t,x)}{\partial x^{2}}=f(t,x,w(t,x),Kw(t,x)), \quad t\in\mathbb{R},\; t\neq t_i,\; i\in\mathbb{Z},\; x\in(0,1),\\ Kw(t,x)=\int^{t}_{-\infty}e^{-\eta(t-s)}g(s,x,w(s,x))ds, \\ \Delta w (t_i, x)=\beta_iw(t_i, x), \quad i\in\mathbb{Z}, \; x\in[0,1], \\ w(t,0)=w(t,1)=0, \end{gathered} \end{equation} where $t_i=i+\frac{1}{4}|\sin i + \sin\sqrt{2}i|$, $\beta_i\in WPAP(\mathbb{Z}, \mathbb{R},\rho)$, $\rho\in U_{T}$. Note that $\{t^{j}_i\}$, $i\in\mathbb{Z}$, $j\in\mathbb{Z}$ are equipotentially almost periodic and $\kappa=\inf_{i\in\mathbb{Z}} (t_{i+1}-t_i)>0 $, one can see \cite{liuzha13,samperbook95} for more details. Define the operator $A$ by $$ A u:=-u'',\quad u\in \mathcal{D}(A), $$ where $$ \mathcal{D}(A):=\{u\in H^{1}_{0}((0,1),\mathbb{R})\cap H^{2}((0,1),\mathbb{R}): ~u''\in H \}. $$ The operator $A$ is the infinitesimal generator of an analytic semigroup $(T(t))_{t\geq 0}$ and also self adjoint \cite{pazbook83}. Let $\alpha=1/2$, so $\mathcal{D}(A^{1/2})$ is a Banach space endowed with the norm $$ \|u\|_{1/2}=\|A^{1/2}u\|,\quad u\in \mathcal{D}(A^{1/2}). $$ We call this space $X_{1/2}$. For more details about $X_{1/2}$, one can see \cite{bahsid02}. Let $u(t)x=w(t,x)$, $t\in\mathbb{R},x\in[0,1]$ and \[ f(t, u(t), (Ku)(t))(x)=f(t,x,w(t,x),Kw(t,x)). \] Then \eqref{exam2} can be rewritten as the abstract form \eqref{nonimpulsiveintegro}. Since $I_i(u)=\beta_iu$ and $\beta_i\in WPAP(\mathbb{Z}, \mathbb{R},\rho)$, then (H5) hold with $L_{1}=\sup_{i\in\mathbb{Z}}\|\beta_i\|$. By Theorem \ref{theoremlip}, one has the following result. \begin{theorem} Assume that \begin{itemize} \item [(A1)] $g\in WPAP_{p}(\mathbb{R}\times X_{1/2}, X,\rho)$, $\rho\in U_{T}$ and there exists a constant $L_{g}>0$ such that $$ \|g(t,u)-g(t,v)\| \leq L_{g}\|u-v\|_{1/2}, \quad t\in\mathbb{R},~~u ,v\in X_{1/2}. $$ \item [(A2)] $f\in WPAP_{p}(\mathbb{R}\times X_{1/2}\times X_{1/2}, X,\rho)$, $\rho\in U_{T}$ and there exists constants $L_{f}>0$, $0<\theta<1$ such that $$ \|f(t_{1}, u_{1},v_{1})-f(t_{2}, u_{2},v_{2}) \| \leq L_{f}(|t_{1}-t_{2}|^{\theta}+\|u_{1}-u_{2}\|_{1/2}+\|v_{1}-v_{2}\|_{1/2}), $$ for each $(t_i,u_i,v_i)\in \mathbb{R}\times X_{1/2}\times X_{1/2}$, $i=1,2$. \item [(A3)] $\beta_i\in WPAP(\mathbb{Z}, \mathbb{R},\rho)$, $\rho\in U_{T}$. \end{itemize} then \eqref{exam2} has a unique $WPAP_{p}$ solution which is an attractor if $\vartheta<1$, where $$ \vartheta:= M_{\alpha}\lambda^{-\frac{1}{2}}\Gamma\big(\frac{1}{2}\big) L_{f}\left( L_{g}\eta^{-1} + 1\right)+ 2M_{\alpha} N \Big( m^{-\frac{1}{2}} + (e^{\lambda}-1)^{-1} \Big) \sup_{i\in\mathbb{Z}}\|\beta_i\|. $$ \end{theorem} \subsection*{Conclusion} The notion of almost periodic function $AP(\mathbb{R}, X)$ introduced by Bohr in 1925. Since then, there have various important generalization of this concept, like: \begin{itemize} \item [(i)] Asymptotically almost periodic function $AAP(\mathbb{R}, X)$; \item [(ii)] Weakly almost periodic function $WAP(\mathbb{R}, X)$; \item [(iii)] Pseudo almost periodic function $PAP(\mathbb{R}, X)$; \item [(iv)] Weighted pseudo almost periodic function $WPAP(\mathbb{R}, X,\rho)$; \end{itemize} and many more. For origin references, details of these functions, one can see \cite{xznfm2012} and the relationship between these functions as follows: $$ AP(\mathbb{R}, X)\subset AAP(\mathbb{R}, X) \subset WAP(\mathbb{R}, X) \subset PAP(\mathbb{R}, X) \subset WPAP(\mathbb{R}, X,\rho). $$ The application of these functions in the context of various kinds of abstract differential equations attracted many mathematicians. In this paper, by the fixed point theorem and fractional powers of operators, we investigate the applications of weighted pseudo almost periodic functions to the impulsive integro-differential equations. The existence, uniqueness and attractivity of piecewise $WPAP$ classical solutions of nonlinear impulsive integro-differential equations are given. \subsection*{Acknowledgements} The authors would like to thank the editor and referees for their valuable comments and remarks, which led to a great improvement of the article. This research is supported by the National Natural Science Foundation of China (No.11426201, 11271065, 61273016) and the Natural Science Foundation of Zhejiang Province (No.LQ13A010015). \begin{thebibliography}{00} \bibitem{ab11} S. Abbas; \emph{Pseudo almost automorphic solutions of some nonlinear integro-differential equations}, Comput. Math. Appl. 62 (2011) 2259-2272. \bibitem{bahsid02} M. Bahaj, O. Sidki; \emph{Almost periodic solutions of semilinear equations with analytic semigroups in Banach spaces}, Electron. J. Differential Equations 2002 (2002) 1-11. \bibitem{baisimbook95} D. D. Bainov, P. S. Simeonov; \emph{Impulsive Differential Equations, Asymptotic properties of the solutions}, World Scientific, Singapore, 1995. \bibitem{chazhagmn12} Y. K. Chang, R. Zhang, G. M. N'Gu\'er\'ekata; \emph{Weighted pseudo almost automorphic mild solutions to semilinear fractional differential equations}, Comput. Math. Appl. 64 (2012) 3160-3170. \bibitem{che13} F. Ch\'erif; \emph{Pseudo almost periodic solutions of impulsive differential equations with delay}, Differ. Equ. Dyn. Syst. 22(1) (2014) 73-91. \bibitem{diagana2006} T. Diagana; \emph{Weighted pseudo almost periodic functions and applications}, C. R. Acad. Sci. Paris, Ser. I 343 (2006) 643-646. \bibitem{dia08} T. Diagana; \emph{Stepanov-like pseudo-almost periodicity and its applications to some nonautonomous differential equations}, Nonlinear Anal. 69 (2008) 4277-4285. \bibitem{diligmnxi07} H. S. Ding, J. Liang, G. M. N'Gu\'er\'ekata, T. J. Xiao; \emph{Mild pseudo-almost periodic solutions of nonautonomous semilinear evolution equations}, Math. Comput. Modelling 45 (2007) 579-584. \bibitem{dingmnnie13} H. S. Ding, G. M. N'Gu\'er\'ekata, J. J. Nieto; \emph{Weighted pseudo almost periodic solutions for a class of discrete hematopoiesis model}, Rev. Mat. Complut. 26 (2013) 427-443. \bibitem{finkbook74} A. M. Fink; \emph{Almost Periodic Differential Equations}, Springer, New York, 1974. \bibitem{hendearab11} H. R. Henr\'iquez, B. De Andrade, M. Rabelo; \emph{Existence of almost periodic solutions for a class of abstract impulsive differential equations}, ISRN Mathematical Analyis 2011 (2011) 1-21. \bibitem{iov07} G. Iovane; \emph{Some new integral inequalities of Bellman-Bihari type with delay for discontinuous functions}, Nonlinear Anal. 66 (2007) 498-508. \bibitem{liwan12} Y. K. Li, C. Wang; \emph{Pseudo almost periodic and pseudo almost periodic solutions to dynamic equations on time scale}, Adv. Difference Equ. 2012 (2012) 1-24. \bibitem{liuzha13} J. W. Liu, C. Y. Zhang; \emph{Composition of piecewise pseudo almost periodic functions and applications to abstract impulsive differential equations}, Adv. Difference Equ. 2013 (2013) 1-21. \bibitem{liuzha12} J. W. Liu, C. Y. Zhang; \emph{Existence and stability of almost periodic solutions for impulsive differential equations}, Adv. Difference Equ. 2012 (2012) 1-14. \bibitem{liuzha13-2} J. W. Liu, C. Y. Zhang; \emph{Existence and stability of almost periodic solutions to impulsive stochastic differential equations}, Cubo 15 (2013) 77-96. \bibitem{pazbook83} A. Pazy; \emph{Semigroup of Linear Operators and Applications to Partial Differential Equations}, Springer-Verlag, New York, 1983. \bibitem{ruepho95} W. M. Ruess, V. Q. Phong; \emph{Asymptotically almost periodic solutions of evolution equations in Banach spaces}, J. Differential Equations 122 (1995) 282-301. \bibitem{samperbook95} A. M. Samoilenko, N. A. Perestyuk; \emph{Impulsive Differential Equations}, vol. 14, World Scientific, Singapore, 1995. \bibitem{stabook12} G. T. Stamov; \emph{Almost Periodic Solutions of Impulsive Differential Equations}, Springer-Verlag, Berlin, 2012. \bibitem{staalz10} G. T. Stamov, J. O. Alzabut; \emph{Almost periodic solutions for abstract impulsive differential equations}, Nonlinear Anal. 72 (2010) 2457-2464. \bibitem{xznfm2012} Z. N. Xia, M. Fan; \emph{Weighted Stepanov-like pseudo almost automorphy and applications}, Nonlinear Anal. 75 (2012) 2378-2397. \bibitem{zhang94} C. Y. Zhang; \emph{Pseudo almost perioidc solutions of some differential equations}, J. Math. Anal. Appl. 181 (1994) 62-76 . \bibitem{zhang95} C. Y. Zhang; \emph{Pseudo almost perioidc solutions of some differential equations, II}, J. Math. Anal. Appl. 192 (1995) 543-561. \bibitem{zhli10} L. Zhang, H. Li; \emph{Weighted pseudo-almost periodic solutions for some abstract differential equations with uniform continuity}, Bull. Aust. Math. Soc. 82 (2010) 424-436. \end{thebibliography} \end{document}