\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 195, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/195\hfil Multiplicity of solutions] {Multiple solutions for a discrete anisotropic $(p_1(k),p_2(k))$-Laplacian equations} \author[E. M. Hssini \hfil EJDE-2015/195\hfilneg] {El Miloud Hssini} \address{EL Miloud Hssini \newline University Mohamed I, Faculty of Sciences, Oujda, Morocco} \email{hssini1975@yahoo.fr} \thanks{Submitted July 7, 2015. Published July 27, 2015.} \subjclass[2010]{39A10, 34B18, 58E30} \keywords{Discrete nonlinear boundary value problem; $p(k)$-Laplacian; \hfill\break\indent multiple solutions; critical point theory} \begin{abstract} This article concerns the existence and multiplicity solutions for a discrete Dirichlet Laplacian problems. Our technical approach is based on variational methods. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} In this work, we study the existence and multiplicity solutions of the discrete boundary-value problem \begin{equation} \label{E11} \begin{gathered} -\Delta(\phi_{p_1(k-1)}(\Delta u(k-1)))-\Delta(\phi_{p_2(k-1)}(\Delta u(k-1)))=\lambda f(k,u(k)),\\ \forall k\in \mathbb{Z}[1,T],\\ u(0)=u(T+1)=0, \end{gathered} \end{equation} where, $\phi_{p_i(k)}(t) = |t|^{p_i(k)-2}t$ $(i=1,2)$ for all $t\in \mathbb{R}$ and for each $k\in \mathbb{Z}[1,T]$, $T\geq2$ is a positive integer, $\mathbb{Z}[1,T]$ is a discrete interval $\{1, 2, \dots , T\}$, $\lambda$ is a positive parameter, $\Delta u(k-1):=u(k)-u(k-1)$ is the forward difference operator, $f:\mathbb{Z}[1,T]\times\mathbb{R}\to\mathbb{R}$ is a continuous function and $p_1,\,p_2:\mathbb{Z}[0, T]\to [2,+\infty)$. Discrete boundary value problems have been intensively studied in the last decade. The modeling of certain nonlinear problems from biological neural networks, economics, optimal control and other areas of study have led to the rapid development of the theory of difference equations; see the monograph of \cite{AgPerOr1,AgPerOr2,Cai,yu} for an overview on this subject. Equations involving the discrete $p$-Laplacian operator, subjected to classical or less classical boundary conditions, have been widely studied by many authors using various techniques. Recently, many results have been established by applying variational methods. In this direction we mention the papers \cite{Af,BiSunZha,JiZh,Molica,TiGe} and the references therein. However, problems like \eqref{E11} involving anisotropic exponents have only been started, by Mihailescu, Radulescu and Tersian \cite{Rad}, Kone and Ouaro \cite{Con}, where known tools from the critical point theory are applied in order to get the existence of solutions. Later considered by many methods and authors, see \cite{Ay,BerJeb,Gal,Gal2,Molica1,Ser} for an extensive survey of such boundary value problems. Our aim is to establish the existence and multiplicity results for problem \eqref{E11} through variational methods. First we will exploit a critical point Theorem \ref{teo:bon} which provides for the existence of a local minima for a parameterized abstract functional. Next, Theorem \ref{critical1} with the classical Ambrosetti-Rabinowitz condition, guarantee that \eqref{E11} has at least two distinct nontrivial weak solutions (Theorem \ref{the4.1}). Finally, we will get the existence of at least three nontrivial solutions of the problem \eqref{E11} where the nonlinearity $f(x,u)$ does not satisfy Ambrosetti-Rabinowitz condition (Theorem \ref{theo33}), by employing a local minimum Theorem \ref{critical3}. \section{Preliminaries and basic notation} In this section, we state some basic properties, definitions and theorems to be used in this article. Let $(X,\|\cdot\|)$ be a finite dimensional Banach space. A functional $I_{\lambda}$ is said to verify the Palais-Smale condition (in short $(P.S.)$) whenever one has that any sequence $\{u_n\}$ such that \begin{itemize} \item $\{I_\lambda (u_n)\}$ is bounded; \item $\{I'_\lambda (u_n)\}$ is convergent at $0$ in $X^*$ \end{itemize} admits a subsequence which is converging in $X$. Our main tool will be the following three abstract critical point theorems, which are a simple extension of the Ricceri's Variational Principle \cite{Ricceri} recalled here on the finite dimensional Banach spaces. \begin{theorem}\label{teo:bon} Let $X$ be a finite dimensional Banach space and let $\Phi$, $\Psi:X\to \mathbb{R}$ two functions of class $C^1$ on $X$ with $\Phi$ is coercive. In addition, suppose that there exist $r\in \mathbb{R}$ and $w\in X$, with $0<\Phi(w)0$. Assume that for each \[ \lambda \in \Lambda:=\big]0, \frac{r}{{\sup_{\Phi^{-1}([0, r])}\Psi}}\big[, \] the function $I_\lambda=\Phi-\lambda\Psi$ satisfies the (PS)-condition and is unbounded from below. Then, for each $\lambda \in \Lambda$, the function $I_\lambda$ admits at least two distinct critical points. \end{theorem} \begin{theorem}\label{critical3} Let $X$ be a reflexive real Banach space, $\Phi:X\to \mathbb{R}$ be a continuously G\^ateaux differentiable, coercive and sequentially weakly lower semicontinuous functional whose G\^ateaux derivative admits a continuous inverse on $X^*$, $\Psi: X\to \mathbb{R}$ be a continuously G\^ateaux differentiable functional whose G\^ateaux derivative is compact, moreover $$ \Phi(0)=\Psi(0)=0. $$ Assume that there exist $r\in \mathbb{R}$ and $ \bar{u}\in X$, with $0 1$ such that $\frac1 {p}+\frac1{q}=1$, we have $$ \max_{k\in \mathbb{Z}[1,T]}|u(k)|<\Big(T+1\Big)^{1/q}\Big(\sum_{k=1}^{T+1}|\Delta u(k-1)|^{p}\Big)^{1/p}. $$ \end{itemize} \end{lemma} \begin{definition} \rm We say that $u\in H$ is a weak solution of problem \eqref{E11} if \begin{align*} &\sum_{k=1}^{T+1}\left(\phi_{p_1(k-1)}(\Delta u(k-1))+\phi_{p_2(k-1)}(\Delta u(k-1))\right)\Delta v(k-1)\\ &-\lambda\sum_{k=1}^{T} f(k,u(k))v(k)=0, \end{align*} for all $v\in H$. \end{definition} To treat the Dirichlet problem \eqref{E11}, we define the following two functions: \begin{equation}\label{E23} \begin{gathered} \Phi(u)=\sum_{k=1}^{T+1}\Big(\frac{|\Delta u(k-1)|^{p_1(k-1)}}{p_1(k-1)}+\frac{|\Delta u(k-1)|^{p_2(k-1)}}{p_2(k-1)}\Big),\\ \Psi(u)=\sum_{k=1}^{T} F(k,u(k)), \end{gathered} \end{equation} where $F(k,t)=\int_0^tf(k,s)ds$ for all $(k,t)\in\mathbb{Z}[1,T]\times\mathbb{R}$. Further, let us denote $$ I_\lambda(u):=\Phi(u)-\lambda \Psi(u),\quad \text{for every }u\in H. $$ The functional $I_\lambda$ is of class $ C^1(H,\mathbb{R})$, and \begin{align*} \langle I'_\lambda(u),v\rangle &=\sum_{k=1}^{T+1}\left(\phi_{p_1(k-1)}(\Delta u(k-1))+\phi_{p_2(k-1)}(\Delta u(k-1))\right)\Delta v(k-1)\\ &-\lambda\sum_{k=1}^{T} f(k,u(k))v(k), \end{align*} for any $u,v\in H$. Thus, critical points of $I_\lambda$ are weak solutions of \eqref{E11}. \section{Main results} To introduce our result, for a nonnegative constant $\gamma$, put $$ \sigma(\gamma) :=\frac{T^{\frac{2-p_{\rm max}^+}{2}}}{p_{\rm max}^+} \Big(\Big(\frac{\gamma}{\sqrt{T+1}}\Big)^{p_{\rm min}^-} -2T^{\frac{p_{\rm max}^+}2}\Big). $$ \begin{theorem}\label{the3.1} Assume that there exist two real constants $\gamma$ and $\delta\geq1$, with \begin{gather} \label{e3.0} \gamma\geq \sqrt{T+1}\Big(T^{\frac{p_{\rm max}^+ +p_{\rm min}^--4}{2}}+2T^{\frac{p_{\rm max}^+}2}\Big)^{1/p_{\rm min}^-},\\ \label{e3.1} 4\delta^{p_{\rm max}^+}1$, we obtain \begin{equation}\label{e12} \begin{aligned} r\geq\Phi(u)&\geq \frac1{p_{\rm max}^+}\Big(T^{\frac{2-p_1^-}{2}} \|u\|^{p_1^-}+T^{\frac{2-p_2^-}{2}}\|u\|^{p_2^+}-2T\Big) \\ &\geq \frac{1}{p_{\rm max}^+}\Big(T^{\frac{2-p_{\rm max}^+}{2}} \|u\|^{p_{\rm min}^-}-T\big). \end{aligned} \end{equation} Then $$ \|u\|\leq\max\Big\{\Big(\frac{rp_{\rm max}^+}{T^{\frac{p_{\rm min}^--2}{2}}}\Big)^{1/p_{\rm max}^+}, \Big(\frac{rp_{\rm max}^+}{T^{\frac{2-p_{\rm max}^+}{2}}} +2T^{\frac{p_{\rm max}^+}2}\Big)^{1/{p_{\rm min}^-}}\Big\}. $$ Bearing in mind \eqref{e3.0}, we obtain $$ rp_{\rm max}^+\geq T^{\frac{p_{\rm min}^--2}{2}}. $$ Then, from \eqref{e1} and \eqref{e12} we have $$ \|u\|\leq\Big(\frac{rp_{\rm max}^+}{T^{\frac{2-p_{\rm max}^+}{2}}} +2T^{\frac{p_{\rm max}^+}2}\Big)^{1/p_{\rm min}^-}. $$ This together with Lemma \ref{lem} $(d)$, yields $$ |u(k)|\leq \sqrt{T+1}\|u\|\leq \sqrt{T+1}\Big(\frac{rp_{\rm max}^+}{T^{\frac{2-p_{\rm max}^+}{2}}} +2T^{\frac{p_{\rm max}^+}2}\Big)^{1/p_{\rm min}^-}=\gamma $$ for all $k\in\mathbb{Z}[1,T]$. Therefore, we have that \begin{equation}\label{e3.30} \sup_{u\in \Phi^{-1}([0,r])}\Psi(u) =\sup_{u\in \Phi^{-1}([0,r])}\sum_{k=1}^T F(k,u(k)) \leq\sum_{k=1}^T\max_{|t|\leq \gamma}F(k,t). \end{equation} In view of \eqref{e3.3} and \eqref{e3.30}, taking into account (A1) and (A2), we obtain \begin{equation}\label{eq} \begin{aligned} \frac{\sup_{\Phi^{-1}([0, r])}\Psi(u)}{r} &\leq \frac{\sum_{k=1}^T\max_{|t|\leq \gamma}F(k,t)}{\sigma(\gamma)} \\ &< \frac{p_{\rm min}^-\sum_{k=1}^TF(k,\delta)} {4\delta^{p_{\rm max}^+}} \leq \frac{\Psi(w)}{\Phi(w)}. \end{aligned} \end{equation} Therefore, condition \eqref{condizionealgebrica} of Theorem \ref{teo:bon} is verified and all the assumptions of Theorem \ref{teo:bon} are satisfied. So, for each $\lambda \in \Lambda_w\subset ] \frac{\Phi(w)}{\Psi(w)}, \frac{r}{\sup_{\Phi^{-1}([0, r])}\Psi(u)} [$, the functional $I_\lambda$ admits at least one critical point $\overline{u}$ such that $0<\Phi(\overline{u})< r$, and so $\overline{u}$ is a nontrivial weak solution of problem \eqref{E11} such that $|\overline{u}|<\gamma$. \end{proof} The following result, in which the global Ambrosetti-Rabinowitz condition is also used, ensures the existence at least two weak solutions. \begin{theorem}\label{the4.1} We suppose that the assumptions \eqref{e3.0} and \eqref{e3.1} of Theorem \ref{the3.1} be satisfied and $f(k,0)\neq 0$ for every $k\in\mathbb{Z}[1,T]$. Assume that there are two positive constants $\mu>p_{\rm max}^+$ and $R>0$ such that, \begin{equation}\label{r} 0<\mu F(k,t)\leq tf(k,t), \end{equation} for all $k\in \mathbb{Z}[1,T]$ and $|t|\geq R$. Then, for each $\lambda\in\Lambda:=\Big]0, \frac{\sigma(\gamma)}{\sum_{k=1}^T\max_{|t|\leq \gamma}F(k,t)}\Big[$, problem \eqref{E11} admits at least two nontrivial solutions. \end{theorem} \begin{proof} Let $\Phi,\Psi$ be the functionals defined in \eqref{E23} satisfy all regularity assumptions requested in Theorem \ref{critical1}. Arguing as in the proof of Theorem \ref{the3.1}, put $w(k)$ as in \eqref{w} and $r=\sigma(\gamma)$, for $\lambda\in \Lambda$ we obtain $$ \frac{\sup_{\Phi^{-1}([0,r])}\Psi(u)}{r} \leq\frac{\sum_{k=1}^T\max_{|t|\leq \gamma}F(k,t)}{\sigma(\gamma)}<\frac1{\lambda}. $$ Now, From condition \eqref{r}, by standard computations, there is a positive constant $c_1$ such that \begin{equation}\label{e3.7} F(k,s)\geq c_1|s|^{\mu}\quad \text{for all } k\in \mathbb{Z}[1,T]. \end{equation} Hence, for every $\lambda\in\Lambda$, $u\in H\backslash \{0\}$ and $t>1$, we obtain \begin{align*} I_\lambda(tu) &\leq \sum_{k=1}^{T+1}\Big(\frac{|\Delta tu(k-1)|^{p_1(k-1)}}{p_1(k-1)}+\frac{|\Delta tu(k-1)|^{p_2(k-1)}}{p_2(k-1)}\Big)-\lambda c_1 t^\mu\sum_{k=1}^T|u(k)|^\mu \\ &\leq t^{p_{\rm max}^+}\sum_{k=1}^{T+1}\Big(\frac{|\Delta u(k-1)|^{p_1(k-1)}}{p_1(k-1)}+\frac{|\Delta u(k-1)|^{p_2(k-1)}}{p_2(k-1)}\Big)-\lambda c_1 t^{\mu}\sum_{k=1}^T|u(k)|^\mu. \end{align*} Since $\mu>p_{\rm max}^+$, $I_\lambda(tu)\to -\infty$ as $t\to \infty$. Then $I_\lambda$ is unbounded from below. Finally, we verify the $(PS)$-condition, it is sufficient to prove that any Palais-Smale sequence is bounded. Arguing by contradiction, suppose that there exists a sequence $\{u_n\}$ such that $\{I_{\lambda}(u_n)\}$ is bounded and $\|I'_{\lambda}(u_n)\|_{X^{\ast}}\to 0\;\text{as}\; n\to +\infty$ and $\lim_{n\to +\infty} \|u_n\|=+\infty$. Using also \eqref{r}, we deduce that, for all $n\in\mathbb{N}$, it holds \begin{align*} &\sum_{k=1}^{T}\Big(\mu F(k,u_n(k))-u_n(k)f(k,u_n(k))\Big)\\ &\leq \sum_{|u_n(k)|\leq R}\Big(\mu F(k,u_n(k))-u_n(k)f(k,u_n(k))\Big)\\ &\leq \sum_{k=1}^{T}\max_{|x|\leq R}|\mu F(k,x)-xf(k,x)|=:c_2. \end{align*} To this end, taking into account Lemma \ref{lem} (b) one has \begin{align*} M+\|u_n\| &\geq I_\lambda(u_n)-\frac{1}{\mu}\langle I'_\lambda(u_n),u_n\rangle\\ &=\sum_{k=1}^{T+1}\Big(\frac{|\Delta u_n(k-1)|^{p_1(k-1)}}{p_1(k-1)}+\frac{|\Delta u_n(k-1)|^{p_2(k-1)}}{p_2(k-1)}\Big) -\lambda\sum_{k=1}^{T}F(x,u_n(k))\\ &\quad -\frac{1}{\mu}\sum_{k=1}^{T+1}\Big(|\Delta u_n(k-1)|^{p_1(k-1)}+|\Delta u_n(k-1)|^{p_2(k-1)}\Big)\\ &\quad+\lambda\sum_{k=1}^{T}\frac1{\mu}f(x,u_n(k))u_n(k) \\ &\geq\Big(\frac{1}{p_{\rm max}^+}-\frac{1}{\mu}\Big) \sum_{k=1}^{T+1}\Big(|\Delta u_n(k-1)|^{p_1(k-1)}+|\Delta u_n(k-1)|^{p_2(k-1)}\Big)\\ &\quad-\frac{\lambda}{\mu} \sum_{k=1}^{T} \left(\mu F(x,u_n(k))-u_n(k)f(x,u_n(k))\right)\\ &\geq \Big(\frac{1}{p_{\rm max}^+}-\frac{1}{\mu}\Big) \Big(T^{\frac{2-p_1^-}{2}}\|u_n\|^{p_1^-} +T^{\frac{2-p_2^-}{2}}\|u_n\|^{p_2^-}-2T\Big)-\frac{\lambda}{\mu}c_2. \end{align*} But, this cannot hold true since $p_1^-,\,p_2^->1$ and $\mu>p_{\rm max}^+$. Hence, $\{u_n\}$ is bounded. That information combined with the fact that $H$ is a finite dimensional Hilbert space implies that there exists a subsequence, still denoted by $\{u_n\}$, and $u_0\in H$ such that $u_n$ converges to $u_0$ in $H$. Then, for each $\lambda \in \Lambda$, the function $I_\lambda$ admits at least two distinct critical points. \end{proof} Finally, we give an application of Theorem \ref{critical3}. \begin{theorem}\label{theo33} Suppose that there exist two constants $\gamma$ and $\delta\geq1$ with \eqref{e3.0} and \begin{equation}\label{e2} 4\delta^{p_{\rm min}^-}>p_{\rm max}^+\sigma(\gamma) \end{equation} such that the assumptions {\rm (A1)} and {\rm (A2)} in Theorem \ref{the3.1} hold. Assume also \begin{equation}\label{f} |f(k,t)|\leq a_0(1+|t|^{\alpha(k)-1}), \end{equation} where $a_0>0$ and $2\leq \alpha^-=\min_{k\in [0,T]}\alpha(k)\leq\alpha^+=\max_{k\in [0,T]}\alpha(k)r>0. $$ Therefore, \eqref{eq} holds and the assumption $(i)$ of Theorem \ref{critical3} is satisfied. Now, we prove that the functional $I_\lambda$ is coercive. For $u\in H$ such that $\|u\|\to +\infty$, in fact by using condition \eqref{f}, we have \begin{align*} I_{\lambda}(u)&\geq \frac{1}{p_{\rm max}^+}\sum_{k=1}^{T+1}\Big(|\Delta u(k-1)|^{p_1(k-1)}+|\Delta u(k-1)|^{p_2(k-1)}\Big)\\ &\quad -\lambda a_1 \sum_{k=1}^T\frac{|u(k)|^{\alpha(k)}}{\alpha(k)} -a_2, \end{align*} where $a_1,a_2$ are positive constants. Now, for $k\in \mathbb{Z}[1,T]$ we point out that $$ |u(k)|^{\alpha(k)}\leq|u(k)|^{\alpha^-}+|u(k)|^{\alpha^+}. $$ Thus, using \eqref{e2.3} and Lemma \ref{lem} (c), we obtain \begin{align*} |u|^{\alpha^{\pm}}_{\alpha^{\pm}} &=\sum_{k=1}^{T} |u(k)|^{\alpha^{\pm}}\leq T|u|^{\alpha^{\pm}}_2 =T\Big(\sum_{k=1}^{T} |u(k)|^2\Big)^{\alpha^{\pm}/2}\\ &\leq T \Big(c_2\sum_{k=1}^{T+1} |\Delta u(k-1)|^2\Big)^{\alpha^{\pm}/2} =TC_{\alpha^{\pm}}\|u\|^{\alpha^{\pm}}. \end{align*} Then, for every $\lambda\in\Lambda$ we obtain \begin{align*} I_{\lambda}(u) &\geq \frac{1}{p_{\rm max}^+}\Big(T^{\frac{2-p_1^-}{2}}\|u\|^{p_1^-} +T^{\frac{2-p_2^-}{2}}\|u\|^{p_2^-}-2T\Big)\\ &\quad -\frac{\lambda a_1}{\alpha^-}\Big(TC_{\alpha^-}\|u\|^{\alpha^-} +TC_{\alpha^+}\|u\|^{\alpha^+}\Big)-a_2\\ &\geq \frac{1}{p_{\rm max}^+}\Big(T^{\frac{2-p_{\rm max}^+}{2}} \|u\|^{p_{\rm min}^-}-2T\Big)-a_3\|u\|^{\alpha^+}-a_2\to +\infty, \end{align*} since $p_{\rm min}^->\alpha^+$, the functional $I_\lambda$ is coercive, also condition (ii) holds. So, for each $\lambda\in\Lambda_w$, the functional $I_\lambda$ has at least three distinct critical points that are weak solutions of \eqref{E11}. \end{proof} \begin{example}\label{ex4.4}\rm For $T=2$, consider the problem \begin{equation} \label{ex} \begin{gathered} -\Delta\Big(\Big( |\Delta u(0)|^{p_1(0)-2}+|\Delta u(0)|^{p_2(0)-2}\Big)\Delta u(0)\Big)=-2\lambda(u(1)-1)\\ -\Delta\Big(\Big( |\Delta u(1)|^{p_1(1)-2}+|\Delta u(1)|^{p_2(1)-2}\Big)\Delta u(1)\Big)=-2\lambda(u(2)-2)\\ u(0)=u(3)=0, \end{gathered} \end{equation} where $f(k,t)=-2(t-k)$ for $k=1,2$ and for $$ p_1(k)=\frac12 k+2,\quad p_2(k)=-\frac{1}2 k+4\quad\text{for }k=0,1,2. $$ Then one has $$ p_1^-=2,\quad p_2^-=3,\quad p_1^+=3,\quad p_2^+=4,\quad p_{\rm min}^-=2,\quad p_{\rm max}^+=4. $$ In fact, if we choose, for example $\delta=1$ and $\gamma=6\sqrt{3}$ such that \eqref{e3.0} is verified, we obtain $\sigma(\gamma)=7/2$ and condition \eqref{e3.1} holds. Moreover, one has $$ \frac{\sum_{k=1}^2\max_{|t|\leq 6\sqrt{3}}F(k,t)}{7/2}=\frac{10}7 <2= \frac{p_{\rm min}^-\sum_{k=1}^2F(k,1)} {4\delta^{p_{\rm max}^+}}. $$ Then, owing to Theorem \ref{the3.1}, for each $\lambda\in\big]\frac12,\frac7{10}\big[$, problem \eqref{ex} admits at least one nontrivial solution $\overline{u}$, such that $ |\overline{u}|<6\sqrt{3}$. \end{example} \begin{thebibliography}{99} \bibitem{Af} G. A. Afrouzi, A. Hadjian; \emph{Existence and multiplicity of solutions for a discrete nonlinear boundary value problem}, Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 35, pp. 1--13. \bibitem{AgPerOr1} R. P. Agarwal, K. Perera, D. O'Regan; \emph{Multiple positive solutions of singular and nonsingular discrete problems via variational methods}, Nonlinear Anal., 58 (2004), 69--73. \bibitem{AgPerOr2} R. P. Agarwal, K. Perera, D. O'Regan; \emph{Multiple positive solutions of singular discrete $p$-Laplacian problems via variational methods}, Adv. Difference Equ., Vol. 2005 (2005), 93--99. \bibitem{AmbRab} A. Ambrosetti, P. H. Rabinowitz; \emph{Dual variational methods in critical point theory and applications}, J. Funct. Anal., 14 (1973), 349--381. \bibitem{AndRachTis} D. R. Anderson, I. Rachunkov\'{a}, C. C. Tisdell; \emph{Solvability of discrete Neumann boundary value problems}, Adv. Differential Equations, 2 (2007), 93--99. \bibitem{Ay} A. Ayoujil; \emph{On class of nonhomogeneous discrete Dirichlet problems}, Acta Universitatis Apulensis, No. 39 (2014) pp. 1--15. \bibitem{BerJeb} C. Bereanu, P. Jebelean, C. \c{S}erban; \emph{Ground state and mountain pass solutions for discrete $p(·)$-Laplacian}, Bereanu et al. Boundary Value Problems 2012, (2012): 104, 1--13. \bibitem{BerMaw} C. Bereanu, J. Mawhin; \emph{Boundary value problems for second-order nonlinear difference equations with discrete $\phi$-Laplacian and singular $\phi$}, J. Difference Equ. Appl., 14 (2008), 1099--1118. \bibitem{BiSunZha} L.-H. Bian, H.-R. Sun, Q.-G. Zhang; \emph{Solutions for discrete $p$-Laplacian periodic boundary value problems via critical point theory}, J. Difference Equ. Appl., 18 (2012), 345--355. \bibitem{CanMoli} P. Candito, G. Molica Bisci; \emph{Existence of two solutions for a second-order discrete boundary value problem}, Adv. Nonlinear Stud., 11 (2011), 443--453. \bibitem{Cai} X. Cai, J. Yu; \emph{Existence theorems for second-order discrete boundary value problems}, J. Math. Anal. Appl., 320 (2006), 649--661. \bibitem{ChuJi} J. Chu, D. Jiang; \emph{Eigenvalues and discrete boundary value problems for the one-dimensional $p$-Laplacian}, J. Math. Anal. Appl., 305 (2005), 452--465. \bibitem{Gal} M. Galewski, S. Glkab; \emph{On the discrete boundary value problem for anisotropic equation}, J. Math. Anal. Appl., 386 (2012), 956--965. \bibitem{Gal1} M. Galewski, S. Glkab and R. Wieteska; \emph{Positive solutions for anisotropic discrete boundary value problems}, Electron. J. Diff. Eqns., 2012 (2012), No. 32, pp. 1--9. \bibitem{Gal2} M. Galewski, R. Wieteska; \emph{ Existence and multiplicity of positive solutions for discrete anisotropic equations}, Turk. J. Math, (2014) 38: 297--310. \bibitem{Gal3} M. Galewski and R. Wieteska; \emph{On the system of anisotropic discrete BVPs}, J. Difference Equ. Appl., 19, 7 (2013), 1065--1081. \bibitem{HendThom} J. Henderson, H. B. Thompson; \emph{Existence of multiple solutions for second order discrete boundary value problems}, Comput. Math. Appl., 43 (2002), 1239--1248. \bibitem{HM} El. M. Hssini, M. Massar, and N. Tsouli; \emph{Existence and multiplicity of solutions for a $p(x)$-Kirchhoff type problems}, Bol. Soc. Paran. Mat. (3s.) v. 33 2 (2015): 201--215. \bibitem{JiChuOrAg} D. Jiang, J. Chu, D. O'Regan, R. P. Agarwal; \emph{Positive solutions for continuous and discrete boundary value problems to the one-dimensional $p$-Laplacian}, Math. Inequal. Appl., 7 (2004), 523--534. \bibitem{JiZh} L. Jiang, Z. Zhou; \emph{Three solutions to Dirichlet boundary value problems for $p$-Laplacian difference equations}, Adv. Difference Equ., Vol. 2008 (2008), Article ID 345916, 1--10. \bibitem{Con} B. Kone, S. Ouaro; \emph{Weak solutions for anisotropic discrete boundary value problems}, J. Difference Equ. Appl., 18 February (2010). \bibitem{KriMihRad} A. Krist\'aly, M. Mihailescu, V. R\u{a}dulescu; \emph{Discrete boundary value problems involving oscillatory nonlinearities: small and large solutions}, J. Difference Equ. Appl., 17 (2011), 1431--1440. \bibitem{mass} M. Massar, El. M. Hssini, N. Tsouli; \emph{Infinitely many solutions for class of Navier boundary (p,q)-biharmonic systems}, Electron. J. Diff. Equ. Vol. 2012 (2012) No. 163, pp. 1--9. \bibitem{Molic} G. Molica Bisci, D. Repov\v{s}; \emph{Nonlinear Algebraic Systems with discontinuous terms}, J. Math. Anal. Appl. 398 (2013), 846--856. \bibitem{Molica} G. Molica Bisci, D. Repov\v{s}; \emph{Existence of solutions for p-Laplacian discrete equations}, Applied Mathematics and Computation 242 (2014) 454--461. \bibitem{Molica1} G. Molica Bisci, D. Repov$\breve{s}$, \emph{On sequences of solutions for discrete anisotropic equations}, Expo. Math. 32 (2014) 284--295. \bibitem{Rad} M. Mih\u{a}ilescu, V. R\u{a}dulescu, S. Tersian; \emph{Eigenvalue problems for anisotropic discrete boundary value problems}, J. Difference Equ. Appl., 15 (2009), 557--567. \bibitem{Ricceri} B. Ricceri; \emph{A general variational principle and some of its applications}, J. Comput. Appl. Math., 113 (2000), 401--410. \bibitem{Ser} C. \c{S}erban; \emph{ Multiplicity of solutions for periodic and Neumann Problems involving the discrete $p(·)$-Laplacian}, Taiwanese Journal of Mathematics, Vol. 17, No. 4, (2013) pp. 1425--1439. \bibitem{TiGe} Y. Tian, Z. Du, W. Ge; \emph{Existence results for discrete Sturm-Liouville problem via variational methods}, J. Difference Equ. Appl., 13, 6 (2007) 467--478. \bibitem{yu} J. Yu and Z. Guo; \emph{On boundary value problems for a discrete generalized Emden-Fowler equation}, J. Math. Anal. Appl. 231 (2006), 18--31. \end{thebibliography} \end{document}