\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 198, pp. 1--22.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/198\hfil Direct and inverse degenerate problems] {Direct and inverse degenerate parabolic differential equations with multi-valued operators} \author[A. Favini, A. Lorenzi, H. Tanabe \hfil EJDE-2015/198\hfilneg] {Angelo Favini, Alfredo Lorenzi, Hiroki Tanabe} \dedicatory{In memory of Alfredo Lorenzi} \address{Angelo Favini \newline Dipartimento di Matematica, University of Bologna, Piazza di Porta San Donato 5, 40126, Bologna, Italy} \email{angelo.favini@unibo.it} \address{Alfredo Lorenzi \newline Dipartimento di Matematica ``F. Enriques'', Universit\`a degli Studi di Milano via Saldini 50, 20133 Milano, Italy} \email{alfredo.lorenzi@unimi.it} \address{Hiroki Tanabe \newline Takarazuka, Hirai Sanso 12-13, 665-0817, Japan} \email{h7tanabe@jttk.zaq.ne.jp} \thanks{Submitted June 11, 2015. Published July 30, 2015.} \subjclass[2010]{35R30, 34G10, 35K20, 35K50, 45N05, 45Q05} \keywords{Identification problems; first-order equations and systems \hfill\break\indent in Banach spaces; linear parabolic integro-differential equations; existence and uniqueness} \begin{abstract} Real interpolation spaces are used for solving some identification linear evolution problems in Banach spaces, under space regularity assumptions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} This note starts with the following {\it direct} problem in a Banach space $X$, \begin{equation} \begin{gathered} \frac d{dt}y(t)+Ay(t)\ni f(t),\quad 0\leq t\leq T,\\ y(0)=y_0. \end{gathered} \label{e1.1} \end{equation} Here $A$ is a possibly multivalued linear operator such that \begin{equation} \rho(A)\supset\Sigma_{\alpha}=\{\lambda\in\mathbb{C};\operatorname{Re}\lambda \leq c(1+|\operatorname{Im}\lambda|)^{\alpha}\}, \label{e1.2} \end{equation} and the following inequality holds for $\lambda\in\Sigma_{\alpha}$ \begin{equation} \|(\lambda-A)^{-1}\|_{\mathcal{L}(X)}\leq c(1+|\lambda|)^{-\beta}, \label{e1.3} \end{equation} where $c$, $\alpha$ and $\beta$ are positive constants satisfying $\beta\leq\alpha\leq1$. It is shown in the book by Favini and Yagi \cite{faviyagi} that $-A$ generates a $C^{\infty}$-semigroup $e^{-tA}$, $00. \label{e2.1} \end{equation} The set $D(A)$ makes a Banach space with norm \begin{equation} \|u\|_{D(A)}=\inf_{\phi\in Au}\|\phi\|_X\quad\text{for }u\in D(A). \label{e2.2} \end{equation} It is known that \begin{equation}\label{e2.3} A^{-1}\frac d{dt}e^{-tA}=\frac d{dt}e^{-tA}A^{-1} =-e^{-tA},\quad \lim_{t\to 0}e^{-tA}u=u\quad\text{for }u\in D(A). \end{equation} If $u\in D(A)$, then in view of \eqref{e2.3} and \eqref{e2.1} one has for $\phi\in Au$ \[ \|\frac d{dt}e^{-tA}u\|_X=\|\frac d{dt}e^{-tA}A^{-1}\phi\|_X =\|e^{-tA}\phi\|_X\leq C_0t^{(\beta-1)/\alpha}\|\phi\|_X. \] This implies, by \eqref{e2.2}, \[ \|\frac d{dt}e^{-tA}u\|_X\leq C_0t^{(\beta-1)/\alpha}\|u\|_{D(A)}. \] This inequality and the one obtained with the aid of an analogous argument imply \begin{equation}\label{e2.4} \|\frac d{dt}e^{-tA}\|_{\mathcal{L}(D(A),X)}\leq C_0t^{(\beta-1)/\alpha},\quad \|\frac{d^2}{dt^2}e^{-tA}\|_{\mathcal{L}(D(A),X)}\leq C_0t^{(\beta-2)/\alpha}. \end{equation} \smallskip \noindent\textbf{Definition.} For $0<\theta<1$, \begin{gather*} X_A^{\theta}=\{u\in X;\,|u|_{X_A^{\theta}} =\sup_{00}t^{(2-\beta-\theta)/\alpha}\|\frac d{dt}e^{-tA}u\|_X<\infty\big\}, \\ \|u\|_{{\widetilde X}_A^{\theta}}=|u|_{{\widetilde X}_A^{\theta}}+\|u\|_{X}. \end{gather*} One of the definition of $(X,D(A))_{\theta,\infty}$ is \begin{gather*} \begin{aligned} (X,D(A))_{\theta,\infty}=\Big\{&u=u_0(t)+u_1(t)\;\forall t\in(0,\infty); \sup_{02$. Then for $u\in(X,D(A))_{\theta,\infty}$, $e^{-tA}u\to u$ as $t\to 0$. If $v\in D(A)$, the set $Av\cap(X,D(A))_{\theta,\infty}$ consists of at most a single element $ {-\lim_{t\to 0}\frac d{dt}e^{-tA}v}$. \end{lemma} \begin{proof} Let $u\in D(A)$ and $\phi\in Au$. Then in view of \eqref{e2.3} one gets \[ e^{-tA}u-u=\int_0^t\frac d{d\tau}e^{-\tau A}ud\tau =\int_0^t\frac d{d\tau}e^{-\tau A}A^{-1}\phi d\tau =-\int_0^te^{-\tau A}\phi d\tau. \] Hence, noting that the assumption implies $\alpha+\beta>1$, one deduces \begin{align*} \|e^{-tA}u-u\|_{X} &=\|\int_0^te^{-\tau A}\phi d\tau\|_{X}\\ &\leq C_0\int_0^t\tau^{(\beta-1)/\alpha}\|\phi\|_{X}d\tau\\ &=C_0\frac{t^{(\beta-1)/\alpha+1}}{(\beta-1)/\alpha+1}\|\phi\|_{X}. \end{align*} This implies \begin{equation} \|e^{-tA}u-u\|_{X}\leq C_0\frac{t^{(\beta-1)/\alpha+1}}{(\beta-1)/\alpha+1}\|u\|_{D(A)}. \label{e2.6} \end{equation} For $u\in X$, \begin{equation} \|e^{-tA}u-u\|_{X}\leq\|e^{-tA}u\|_{X}+\|u\|_{X} \leq C_0t^{(\beta-1)/\alpha}\|u\|_{X}+\|u\|_{X}. \label{e2.7} \end{equation} Interpolating \eqref{e2.6} and \eqref{e2.7} yields that there exists a constant $C$ such that for $u\in(X,D(A))_{\theta,\infty}$, \begin{equation} \|e^{-tA}u-u\|_{X}\leq Ct^{(\beta-1)/\alpha+\theta}\|u\|_{(X,D(A))_{\theta,\infty}}, \quad 00. \] Hence the first assertion follows. Suppose $v\in D(A)$ and $\phi\in Av\cap(X,D(A))_{\theta,\infty}$. Then by the first assertion \[ \frac d{dt}e^{-tA}v=\frac d{dt}e^{-tA}A^{-1}\phi=-e^{-tA}\phi\to -\phi \] as $t\to 0$. \end{proof} \begin{lemma}\label{lem2.4} For $u\in X$, $t>0$, the following equality holds, \[ \int_0^{\infty}e^{-t\tau}e^{-\tau A}ud\tau=(A+t)^{-1}u. \] \end{lemma} \begin{proof} With the aid of \eqref{e2.3} and integration by parts one deduces \begin{align*} \int_0^{\infty}e^{-t\tau}e^{-\tau A}ud\tau &=-\int_0^{\infty}e^{-t\tau}\frac d{d\tau}e^{-\tau A}A^{-1}ud\tau\\ &=A^{-1}u-t\int_0^{\infty}e^{-t\tau}e^{-\tau A}A^{-1}ud\tau\\ &=A^{-1}\Big(u-t\int_0^{\infty}e^{-t\tau}e^{-\tau A}ud\tau\Big). \end{align*} Hence $\int_0^{\infty}e^{-t\tau}e^{-\tau A}ud\tau\in D(A)$ and \[ A\int_0^{\infty}e^{-t\tau}e^{-\tau A}ud\tau\ni u -t\int_0^{\infty}e^{-t\tau}e^{-\tau A}ud\tau. \] The assertion of the lemma readily follows. \end{proof} \begin{lemma}\label{lem2.5} Suppose $\alpha+\beta+\theta>2$. If $u\in{\widetilde X}_A^{\theta}$, then $e^{-tA}u$ converges as $t\to 0$. If the limit is equal to $u$: $\lim_{t\to 0}e^{-tA}u=u$, then $u\in X_A^{(\alpha+\beta-2+\theta)/\alpha}$ and \[ |u|_{X_A^{(\alpha+\beta-2+\theta)/\alpha}}\leq\Gamma((\alpha+\beta-2+\theta)/\alpha) |u|_{{\widetilde X}_A^{\theta}}. \] \end{lemma} \begin{proof} For $00$ \[ \int_0^{\infty}e^{-t\tau}\frac d{d\tau}e^{-\tau A}ud\tau =-u+t\int_0^{\infty}e^{-t\tau}e^{-\tau A}ud\tau=-u+t(t+A)^{-1}u. \] Hence \begin{align*} \|u-t(t+A)^{-1}u\|_X &=\|-\int_0^{\infty}e^{-t\tau}\frac d{d\tau}e^{-\tau A}ud\tau\|_X\\ &\leq\int_0^{\infty}e^{-t\tau}\tau^{(\beta-2+\theta)/\alpha} |u|_{{\widetilde X}_A^{\theta}}d\tau\\ &=t^{(2-\alpha-\beta-\theta)/\alpha}\Gamma((\alpha+\beta-2+\theta)/\alpha)|u|_{{\widetilde X}_A^{\theta}}. \end{align*} \end{proof} \begin{lemma}\label{Lemma 2.6} Let $\alpha+\beta+\theta>2$. If $v\in D(A)$ and $Av\cap{\widetilde X}_A^{\theta}\ne\emptyset$, then $ {\lim_{t\to 0}\frac d{dt}e^{-tA}v}$ exists. \end{lemma} \begin{proof} Let $\phi\in Av\cap{\widetilde X}_A^{\theta}$. Then \[ \lim_{t\to 0}\frac d{dt}e^{-tA}v=\lim_{t\to 0}\frac d{dt}e^{-tA}A^{-1}\phi=-\lim_{t\to 0}e^{-tA}\phi \] exists by Lemma \ref{lem2.5}. \end{proof} \begin{remark} \label{rmk2.1} \rm The limit $\lim_{t\to 0}e^{-tA}u$ is not necessarily equal to $u$ if $A$ is multivalued. If $0\ne u\in A0$, then \[ e^{-tA}u=-\frac d{dt}e^{-tA}A^{-1}u=-\frac d{dt}e^{-tA}0=0. \] Therefore $u\in{\widetilde X}_A^{\theta}$ for any $\theta\in(0,1)$ and $\lim_{t\to 0}e^{-tA}u=0\ne u$. If $A$ is single valued, then \[ A^{-1}\lim_{t\to 0}e^{-tA}u=\lim_{t\to 0}e^{-tA}A^{-1}u=A^{-1}u. \] Hence $\lim_{t\to 0}e^{-tA}u=u$ whenever the limit of the left hand side exists. \end{remark} \section{Main result concerning problem \eqref{e1.1}} \begin{theorem} \label{thm3.1} Suppose that $2\alpha+\beta+\theta>3,\;\,y_0\in D(A)$, $Ay_0\cap(X,D(A))_{\theta,\infty}\ne\emptyset$ and $f\in C([0,T];X)\cap B([0,T];(X,D(A))_{\theta,\infty})$. Then problem \eqref{e1.1} admits a unique solution $y$ such that \begin{equation}\label{e3.1} \begin{gathered} y\in C^1([0,T];X),\\ y'-f\in C^{(2\alpha+\beta-3+\theta)/\alpha}([0,T];X)\cap B([0,T];X_A^{(2\alpha+\beta-3+\theta)/\alpha}). \end{gathered} \end{equation} Here $B([0,T];Y)$ stands for the set of all bounded (not necessarily measurable) functions with values in $Y$ defined in $[0,T]$. \end{theorem} \begin{proof} Note that $\alpha+\beta-2+\theta\geq2\alpha+\beta-3+\theta>0$. Set \begin{equation} \begin{gathered} {y(t)=e^{-tA}y_0+\int_0^te^{-(t-s)A}f(s)ds},\\ {y_1(t)=e^{-tA}y_0,\quad y_2(t)=\int_0^te^{-(t-s)A}f(s)ds}. \end{gathered} \label{e3.2} \end{equation} In view of Lemma \ref{lem2.3}, $Ay_0\cap(X,D(A))_{\theta,\infty}$ consists of a single element $\phi= {-\lim_{t\to 0}\frac d{dt}e^{-tA}y_0}$. Hence \begin{equation} y_1'(t)=\frac d{dt}e^{-tA}y_0=\frac d{dt}e^{-tA}A^{-1}\phi=-e^{-tA}\phi. \label{e3.3} \end{equation} In view of \eqref{e2.5} \begin{equation} \|\frac d{dt}e^{-tA}\phi\|_X \leq C_0t^{(\beta-2+\theta)/\alpha}\|\phi\|_{(X,D(A))_{\theta,\infty}}. \label{e3.4} \end{equation} By of \eqref{e3.3} and Lemma \ref{lem2.3} \begin{equation} \lim_{t\to 0}y_1'(t)=-\phi. \label{e3.5} \end{equation} With the aid of \eqref{e3.4}, for $0\leq s0$, in view of \eqref{e3.3}, \eqref{e3.4} and $0<(2-\beta-\theta)/\alpha<1$, one deduces \begin{align*} &s^{(2-\beta-\theta)/\alpha}\|\frac d{ds}e^{-sA}y_1'(t)\|_X\\ &=s^{(2-\beta-\theta)/\alpha}\|\frac d{ds}e^{-sA}e^{-tA}\phi\|_X\\ &=s^{(2-\beta-\theta)/\alpha}\|\frac{\partial}{\partial s}e^{-(s+t)A}\phi\|_X\\ &\leq C_0s^{(2-\beta-\theta)/\alpha}(s+t)^{(\beta-2+\theta)/\alpha} \|\phi\|_{(X,D(A))_{\theta,\infty}}\\ &=C_0\left(\frac s{s+t}\right)^{(2-\beta-\theta)/\alpha} \|\phi\|_{(X,D(A))_{\theta,\infty}}\leq C_0\|\phi\|_{(X,D(A))_{\theta,\infty}}. \end{align*} Hence $y_1'(t)\in {\widetilde X}_A^{\theta}$ and \begin{equation} |y_1'(t)|_{{\widetilde X}_A^{\theta}}\leq C_0\|\phi\|_{(X,D(A))_{\theta,\infty}}. \label{e3.7} \end{equation} Using \eqref{e3.3} one observes that \[ e^{-\tau A}y_1'(t)=-e^{-\tau A}e^{-tA}\phi =-e^{-(t+\tau)A}\phi\to -e^{-tA}\phi=y_1'(t) \] as $\tau\to 0$. Hence in view of Lemma \ref{lem2.5} $y_1'(t)\in X_A^{(\alpha+\beta-2+\theta)/\alpha}$ and \begin{equation} |y_1'(t)|_{X_A^{(\alpha+\beta-2+\theta)/\alpha}}\leq\Gamma((\alpha+\beta-2+\theta)/\alpha)|y_1'(t)|_{{\widetilde X}_A^{\theta}}. \label{e3.8} \end{equation} This inequality, \eqref{e3.7} and \eqref{e3.3} yield \[ \|y_1'(t)\|_{X_A^{(\alpha+\beta-2+\theta)/\alpha}} \leq C_0\Gamma((\alpha+\beta-2+\theta)/\alpha)\|\phi\|_{(X,D(A))_{\theta,\infty}} +\|e^{-tA}\phi\|_{X}. \] Hence $y_1'\in B([0,T];X_A^{(\alpha+\beta-2+\theta)/\alpha})$ and \begin{equation} \begin{aligned} &\|y_1'\|_{B([0,T];X_A^{(\alpha+\beta-2+\theta)/\alpha})}\\ &\leq C_0\Gamma((\alpha+\beta-2+\theta)/\alpha) \|\phi\|_{(X,D(A))_{\theta,\infty}} +\sup_{0\leq t\leq T}\|e^{-tA}\phi\|_{X}. \end{aligned} \label{e3.9} \end{equation} The second term of the right hand side of \eqref{e3.9} is finite by \eqref{e3.3} and \eqref{e3.5}. In view of \eqref{e2.5} \begin{equation} \begin{aligned} \|\frac{\partial}{\partial t}e^{-(t-s)A}f(s)\|_X &\leq C_0(t-s)^{(\beta-2+\theta)/\alpha}\|f(s)\|_{(X,D(A))_{\theta,\infty}}\\ &\leq C_0(t-s)^{(\beta-2+\theta)/\alpha}\|f\|_{B([0,T];(X,D(A))_{\theta,\infty})}. \end{aligned} \label{e3.10} \end{equation} Hence \begin{equation} \begin{aligned} \|\int_0^t\frac{\partial}{\partial t}e^{-(t-s)A}f(s)ds\|_X &\leq C_0\int_0^t(t-s)^{(\beta-2+\theta)/\alpha}\|f\|_{B([0,T];(X,D(A))_{\theta,\infty})}ds\\ &=C_0\frac{t^{(\alpha+\beta-2+\theta)/\alpha}}{(\alpha+\beta-2+\theta)/\alpha} \|f\|_{B([0,T];(X,D(A))_{\theta,\infty})}. \end{aligned} \label{e3.11} \end{equation} For $0\leq t0$, \begin{align*} \frac d{d\tau}e^{-\tau A}(y_2'(t)-f(t)) &=\frac d{d\tau}e^{-\tau A}\int_0^t\frac{\partial}{\partial t}e^{-(t-s)A}f(s)ds\\ &=\int_0^t\frac d{d\tau}e^{-\tau A}\frac{\partial}{\partial t}e^{-(t-s)A}f(s)ds\\ &=\int_0^t\frac{\partial^2}{\partial t^2}e^{-(t-s+\tau)A}f(s)ds. \end{align*} With the aid of \eqref{e3.16} one obtains \begin{align*} &\|\frac d{d\tau}e^{-\tau A}(y_2'(t)-f(t))\|_X\\ &=\|\int_0^t\frac{\partial^2}{\partial t^2}e^{-(t-s+\tau)A}f(s)ds\|_X\\ &\leq C_0\int_0^t(t-s+\tau)^{(\beta-3+\theta)/\alpha} \|f\|_{B([0,T];(X,D(A))_{\theta,\infty})}ds\\ &=C_0\frac{\tau^{(\alpha+\beta-3+\theta)/\alpha}-(t+\tau)^{(\alpha+\beta-3+\theta)/\alpha}} {(3-\alpha-\beta+\theta)/\alpha}\|f\|_{B([0,T];(X,D(A))_{\theta,\infty})}\\ &\leq\frac{C_0\tau^{(\alpha+\beta-3+\theta)/\alpha}}{(3-\alpha-\beta+\theta)/\alpha} \|f\|_{B([0,T];(X,D(A))_{\theta,\infty})}. \end{align*} This means that $y_2'(t)-f(t)\in {\widetilde X}_A^{\alpha+\theta-1}$ and \begin{equation}\label{e3.20} |y_2'(t)-f(t)|_{{\widetilde X}_A^{\alpha+\theta-1}} \leq \frac{C_0}{(3-\alpha-\beta-\theta)/\alpha}\|f\|_{B([0,T];(X,D(A))_{\theta,\infty})}. \end{equation} For $\tau>0$, \begin{equation}\label{e3.21} \begin{aligned} e^{-\tau A}\big[y_2'(t)-f(t)\big] &=e^{-\tau A}\int_0^t\frac{\partial}{\partial t}e^{-(t-\sigma)A}f(\sigma)\,d\sigma\\ &=\int_0^t\frac{\partial}{\partial t}e^{-(t-\sigma+\tau)A}f(\sigma)\,d\sigma. \end{aligned} \end{equation} As $\tau\to 0$ for $0<\sigma2$, $0<\alpha+\theta-1<1$ we can apply Lemma \ref{lem2.5} and \eqref{e3.20} to obtain that $y_2'(t)-f(t)\in X_A^{(2\alpha+\beta-3+\theta)/\alpha}$ and \begin{align*} |y_2'(t)-f(t)|_{X_A^{(2\alpha+\beta-3+\theta)/\alpha}} &\leq\Gamma((2\alpha+\beta-3+\theta)/\alpha)|y_2'(t)-f(t)|_{{\widetilde X}_A^{\alpha+\theta-1}} \\ &\leq\frac{C_0\Gamma((2\alpha+\beta-3+\theta)/\alpha)}{(3-\alpha-\beta-\theta)/\alpha} \|f\|_{B([0,T];(X,D(A))_{\theta,\infty})}. \end{align*} From this inequality and the boundedness of $\|y_2'(t)-f(t)\|_X$, which follows from \eqref{e3.11}, and \eqref{e3.13} one concludes that $y_2'-f\in B([0,T];X_A^{(2\alpha+\beta-3+\theta)/\alpha})$. This and \eqref{e3.9} imply $y'-f\in B([0,T];X_A^{(2\alpha+\beta-3+\theta)/\alpha})$. Finally we show that $y$ defined by \eqref{e3.2} satisfies \eqref{e1.1}. By virtue of \eqref{e3.13} one has \[ y'(t)=y_1'(t)+y_2'(t)=\frac d{dt}e^{-tA}y_0+f(t) +\int_0^t\frac{\partial}{\partial t}e^{-(t-s)A}f(s)ds. \] Hence \begin{align*} A^{-1}y'(t) &=A^{-1}\frac d{dt}e^{-tA}y_0+A^{-1}f(t) +\int_0^tA^{-1}\frac{\partial}{\partial t}e^{-(t-s)A}f(s)ds\\ &=-e^{-tA}y_0+A^{-1}f(t)-\int_0^te^{-(t-s)A}f(s)ds. \end{align*} Therefore, one obtains \[ A^{-1}(y'(t)-f(t))=-e^{-tA}y_0-\int_0^te^{-(t-s)A}f(s)ds=-y(t). \] From this the assertion \eqref{e1.1} readily follows. Thus the proof complete. \end{proof} \begin{theorem} \label{thm3.2} Suppose that $\alpha+\beta>3/2$, $\theta>2(2-\alpha-\beta)$, $y_0\in D(A)$, $Ay_0\cap{\widetilde X}_A^{\theta}\ne\emptyset$, $f\in C([0,T];X)\cap B([0,T];{\widetilde X}_A^{\theta})$ and $\lim_{\tau\to 0}e^{-\tau A}f(t)=f(t)$ for every $t\in[0,T]$. Then problem \eqref{e1.1} admits a unique solution $y$ such that $y\in C^1([0,T];X)$ and \begin{equation}\label{e3.26} y'-f\in C^{(2\alpha+2\beta-4+\theta)/\alpha}([0,T];X) \cap B([0,T];X_A^{(2\alpha+2\beta-4+\theta)/\alpha}). \end{equation} \end{theorem} \begin{proof} Define functions $y_1$ and $y_2$ by \eqref{e3.2}. Let $\phi\in Ay_0\cap{\widetilde X}_A^{\theta}$. Since \[ \alpha+\beta-2+\theta>\alpha+\beta-2+2(2-\alpha-\beta)=2-\alpha-\beta\geq0, \] we can show as for \eqref{e3.6} and \eqref{e3.7} that \begin{equation} \begin{gathered} |y_1'|_{C^{(\alpha+\beta-2+\theta)/\alpha}([0,T];X)} \leq \frac{|\phi|_{{\widetilde X}_A^{\theta}}}{(\alpha+\beta-2+\theta)/\alpha}, \label{e3.27}\\ |y_1'(t)|_{{\widetilde X}_A^{\theta}}\leq|\phi|_{{\widetilde X}_A^{\theta}}, \end{gathered} \end{equation} and furthermore \eqref{e3.8} holds. Consequently the following statements are obtained as \eqref{e3.9} was \begin{gather} y_1'\in B([0,T];X_A^{(\alpha+\beta-2+\theta)/\alpha}), \label{e3.28}\\ \|y_1'\|_{B([0,T];X_A^{(\alpha+\beta-2+\theta)/\alpha})} \leq \Gamma((\alpha+\beta-2+\theta)/\alpha)|\phi|_{{\widetilde X}_A^{\theta}} +\sup_{0\leq t\leq T}\|e^{-tA}\phi\|_{X}. \label{e3.29} \end{gather} The second term in the right-hand side of \eqref{e3.29} is finite since $\lim_{t\to 0}e^{-tA}\phi$ exists by Lemma \ref{lem2.5}. In the present case the following inequality holds instead of \eqref{e3.10}, \begin{equation} \begin{aligned} \|\frac{\partial}{\partial t}e^{-(t-s)A}f(s)\|_X &\leq(t-s)^{(\beta-2+\theta)/\alpha}|f(s)|_{{\widetilde X}_A^{\theta}}\\ &\leq(t-s)^{(\beta-2+\theta)/\alpha}\|f\|_{B([0,T];{\widetilde X}_A^{\theta})}. \end{aligned} \label{e3.30} \end{equation} Noting that \eqref{e3.12} holds since $e^{-(\tau-s)A}f(s)\to f(s)$ as $\tau\to s$ by assumption, it is possible to show that $y_2(t)=\int_0^te^{-(t-s)A}f(s)ds$ is differentiable and \eqref{e3.13} holds. Let $F_1(s,t)$ and $F_2(s,t)$ be functions defined by \eqref{e3.14}. We have for $u\in{\widetilde X}_A^{\theta}$, \begin{align*} \|\frac{d^2}{dt^2}e^{-t A}u\|_X &=4\|\big(\frac d{dt}e^{-(t/2)A}\big)^2u\|_X \leq4\|\frac d{dt}e^{-(t/2)A}\|_{\mathcal{L}(X)}\|\frac d{dt}e^{-(t/2)A}u\|_X \\ &\leq 4\frac{C_0}2\big(\frac t2\big)^{(\beta-2)/\alpha} \frac12\left(\frac t2\right)^{(\beta-2+\theta)/\alpha}|u|_{{\widetilde X}_A^{\theta}}\\ &=C_1t^{(2\beta-4+\theta)/\alpha}|u|_{{\widetilde X}_A^{\theta}}, \end{align*} where $C_1=C_02^{(4-2\beta-\theta)/\alpha}$. Hence \begin{equation} \begin{aligned} \|\frac{d^2}{d\tau^2}e^{-(\tau-\sigma)A}f(\sigma)\|_X &\leq C_1(\tau-\sigma)^{(2\beta-4+\theta)/\alpha}|f(\sigma)|_{{\widetilde X}_A^{\theta}}\\ &\leq C_1(\tau-\sigma)^{(2\beta-4+\theta)/\alpha}\|f\|_{B([0,T];{\widetilde X}_A^{\theta})}. \end{aligned} \label{e3.31} \end{equation} With the aid of \eqref{e3.15} and \eqref{e3.31} we obtain \begin{equation} \begin{aligned} &\|F_1(s,t)\|_X\\ &\leq C_1\int_0^s\int_s^t(\tau-\sigma)^{(2\beta-4+\theta)/\alpha} \|f\|_{B([0,T];{\widetilde X}_A^{\theta})}d\tau \,d\sigma\\ &\leq \frac{C_1\alpha^2}{(4-\alpha-2\beta-\theta)(2\alpha+2\beta-4+\theta)} (t-s)^{(2\alpha+2\beta-4+\theta)/\alpha}\|f\|_{B([0,T];{\widetilde X}_A^{\theta})}. \end{aligned} \label{e3.32} \end{equation} Using \eqref{e3.30}, one obtains \begin{equation} \begin{aligned} \|F_2(s,t)\|_X &\leq\int_s^t(t-\sigma)^{(\beta-2+\theta)/\alpha}\|f\|_{B([0,T];{\widetilde X}_A^{\theta})} \,d\sigma\\ &=\frac{(t-s)^{(\alpha+\beta-2+\theta)/\alpha}}{(\alpha+\beta-2+\theta)/\alpha} \|f\|_{B([0,T];{\widetilde X}_A^{\theta})}. \end{aligned} \label{e3.33} \end{equation} Inequalities \eqref{e3.32} and \eqref{e3.33} imply that $y_2'-f\in C^{(2\alpha+2\beta-4+\theta)/\alpha}([0,T];X)$. This and \eqref{e3.27} yield $y'-f\in C^{(2\alpha+2\beta-4+\theta)/\alpha}([0,T];X)$. With the aid of \eqref{e3.31} one observes that \begin{align*} \|\frac d{d\tau}e^{-\tau A}(y_2'(t)-f(t))\|_X &=\|\int_0^t\frac{\partial^2}{\partial t^2}e^{-(t-s+\tau)A}f(s)ds\|_X\\ &\leq C_1\int_0^t(t-s+\tau)^{(2\beta-4+\theta)/\alpha}\|f\|_{B([0,T]; {\widetilde X}_A^{\theta})}ds\\ &=C_1\frac{\tau^{(\alpha+2\beta-4+\theta)/\alpha}-(t+\tau)^{(\alpha+2\beta-4+\theta)/\alpha}} {(4-\alpha-2\beta+\theta)/\alpha}\|f\|_{B([0,T];{\widetilde X}_A^{\theta})}\\ &\leq\frac{C_1\tau^{(\alpha+2\beta-4+\theta)/\alpha}}{(4-\alpha-2\beta+\theta)/\alpha} \|f\|_{B([0,T];{\widetilde X}_A^{\theta})}. \end{align*} This means that $y_2'(t)-f(t)\in {\widetilde X}_A^{\alpha+\beta+\theta-2}$ and \begin{equation}\label{e3.34} |y_2'(t)-f(t)|_{{\widetilde X}_A^{\alpha+\beta+\theta-2}} \leq \frac{C_1}{(4-\alpha-2\beta+\theta)/\alpha}\|f\|_{B([0,T];{\widetilde X}_A^{\theta})}. \end{equation} From \eqref{e3.21}, \eqref{e3.22}, \eqref{e3.24} and the inequality \begin{align*} \|\frac{\partial}{\partial t}e^{-(t-\sigma+\tau)A}f(\sigma)\|_{X} &\leq(t-\sigma+\tau)^{(\beta-2+\theta)/\alpha}\|f\|_{B([0,T];{\widetilde X}_A^{\theta})}\\ &\leq C_1(t-\sigma)^{(\beta-2+\theta)/\alpha}\|f\|_{B([0,T];{\widetilde X}_A^{\theta})}, \end{align*} which follows from \eqref{e3.30}. Then \eqref{e3.25} holds. Therefore noting $\alpha+\beta+(\alpha+\beta+\theta-2)=2\alpha+2\beta+\theta-2>2$ we may apply Lemma \ref{lem2.5} and \eqref{e3.34} to obtain that $y_2'(t)-f(t)\in X_A^{(2\alpha+2\beta-4+\theta)/\alpha}$ and \begin{align*} |y_2'(t)-f(t)|_{X_A^{(2\alpha+2\beta-4+\theta)/\alpha}} &\leq\Gamma((2\alpha+2\beta-4+\theta)/\alpha)|y_2'(t)-f(t)|_{{\widetilde X}_A^{\alpha+\beta+\theta-2}} \\ &\leq\frac{C_1\Gamma((2\alpha+2\beta-4+\theta)/\alpha)}{(4-\alpha-2\beta+\theta)/\alpha} \|f\|_{B([0,T];{\widetilde X}_A^{\theta})}. \end{align*} From this inequality, \eqref{e3.13} and \eqref{e3.30} one concludes that \[ y_2'-f\in B([0,T];X_A^{(2\alpha+2\beta-4+\theta)/\alpha}). \] This and \eqref{e3.28} imply $y'-f\in B([0,T];X_A^{(2\alpha+2\beta-4+\theta)/\alpha})$. The proof that $y$ defined by \eqref{e3.2} satisfies \eqref{e1.1} is the same as that in the proof of Theorem \ref{thm3.1}. \end{proof} \begin{remark} \label{rmk3.1} \rm Suppose that the assumptions of Theorem \ref{thm3.1} are satisfied, and let $k\in{\mathbb R}$. Consider the problem \begin{equation}\label{e3.35} \begin{gathered} \frac d{dt}y(t)+Ay(t)+ky(t)\ni f(t),\quad 0\leq t\leq T,\\ y(0)=y_0. \end{gathered} \end{equation} The operator $-(A+k)$ generates a differentiable semigroup $e^{-t(A+k)}=e^{-kt}e^{-tA}$. Then define $C_0'=C_0e^{\max\{k,0\}T}$, so that for $03$, $y_0\in D(A)$, $Ay_0\cap(X,D(A))_{\theta,\infty}\ne\emptyset$, $z\in (X,D(A))_{\theta,\infty}$, $h\in C([0,T];X)\cap B([0,T];(X,D(A))_{\theta,\infty})$, $g\in C^1([0,T];\mathbb{C})$, $\Phi\in X^*$, $\Phi[y_0]=g(0)$, $\Phi[z]\ne0$. Then problem \eqref{e4.1}-\eqref{e4.3} admits a unique solution $(y,f)$ such that \begin{equation}\label{e4.4} \begin{gathered} y\in C^1([0,T];X),\quad f\in C([0,T];\mathbb{C}),\\ y'-f(\cdot)z-h\in C^{(2\alpha+\beta-3+\theta)/\alpha}([0,T];X) \cap B([0,T];X_A^{(2\alpha+\beta-3+\theta)/\alpha}). \end{gathered} \end{equation} \end{theorem} \begin{proof} Supposing that $f\in C([0,T];\mathbb{C})$ is known, define a function $y$ by \begin{equation} y(t)=e^{-tA}y_0+\int_0^tf(s)e^{-(t-s)A}zds+\int_0^te^{-(t-s)A}h(s)ds. \label{e4.5} \end{equation} Since $\alpha+\beta+\theta-2\geq2\alpha+\beta+\theta-3>0$, by Lemma \ref{lem2.3} and \eqref{e2.5} the following statements hold: \begin{equation} e^{-tA}z\to z\text{ as }t\to 0,\quad \|\frac d{dt}e^{-tA}z\|_X\leq C_0t^{(\beta-2+\theta)/\alpha}\|z\|_{(X,D(A))_{\theta,\infty}}. \label{e4.6} \end{equation} Hence $\int_0^tf(s)e^{-(t-s)A}zds$ is differentiable and \begin{equation} \frac d{dt}\int_0^tf(s)e^{-(t-s)A}zds =f(t)z+\int_0^tf(s)\frac{\partial}{\partial t}e^{-(t-s)A}zds. \label{e4.7} \end{equation} According to the proof of Theorem \ref{thm3.1} (cf. \eqref{e3.13} and \eqref{e3.11}) $\int_0^te^{-(t-s)A}h(s)ds$ is differentiable and \begin{gather} \frac d{dt}\int_0^te^{-(t-s)A}h(s)ds =h(t)+\int_0^t\frac{\partial}{\partial t}e^{-(t-s)A}h(s)ds, \label{e4.8}\\ \|\int_0^t\frac{\partial}{\partial t}e^{-(t-s)A}h(s)ds\|_X \leq C_0\frac{t^{(\alpha+\beta-2+\theta)/\alpha}}{(\alpha+\beta-2+\theta)/\alpha} \|h\|_{B([0,T];(X,D(A))_{\theta,\infty})}. \label{e4.9} \end{gather} Hence $y$ is differentiable and \begin{equation} \frac d{dt}y(t) =\frac d{dt}e^{-tA}y_0+f(t)z+\int_0^tf(s) \frac{\partial}{\partial t}e^{-(t-s)A}zds +\frac d{dt}\int_0^te^{-(t-s)A}h(s)ds. \label{e4.10} \end{equation} Assuming that $y(t)$ satisfies \eqref{e4.3} one deduces from \eqref{e4.10} the following identity \begin{equation} \begin{aligned} g'(t)&=\Phi\Big[\frac d{dt}e^{-tA}y_0\Big]+f(t)\Phi[z] +\int_0^tf(s)\Phi\Big[\frac{\partial}{\partial t}e^{-(t-s)A}z\Big]ds\\ &\quad +\Phi\Big[\frac d{dt}\int_0^te^{-(t-s)A}h(s)ds\Big]. \end{aligned}\label{e4.11} \end{equation} Rewriting \eqref{e4.11} one obtains the following integral equation to be satisfied by $f$: \begin{equation} \begin{aligned} &f(t)+\chi\int_0^tf(s)\Phi\Big[\frac{\partial}{\partial t}e^{-(t-s)A}z\Big]ds\\ &=\chi g'(t)-\chi\Phi\Big[\frac d{dt}e^{-tA}y_0\Big] -\chi\Phi\Big[\frac d{dt}\int_0^te^{-(t-s)A}h(s)ds\Big], \end{aligned} \label{e4.12} \end{equation} where $\chi=\Phi[z]^{-1}$. Set \begin{equation}\label{e4.13} \begin{gathered} \kappa(t)=\chi\Phi\Big[ {\frac d{dt}}e^{-tA}z\Big],\\ {\psi(t)=\chi g'(t)-\chi\Phi\Big[\frac d{dt}e^{-tA}y_0\Big] -\chi\Phi\Big[\frac d{dt}\int_0^te^{-(t-s)A}h(s)ds\Big]}. \end{gathered} \end{equation} Then \eqref{e4.12} is rewritten as \[ f(t)+\int_0^t\kappa(t-s)f(s)ds=\psi(t), \] or briefly \begin{equation} f+\kappa*f=\psi. \label{e4.14} \end{equation} By \eqref{e4.6} one has \[ |\kappa(t)|\leq C_0|\chi|\|\Phi\|t^{(\beta-2+\theta)/\alpha} \|z\|_{(X,D(A))_{\theta,\infty}}. \] In view of \eqref{e3.5}, \eqref{e4.8} and \eqref{e4.9} one observes that $\psi\in C([0,T];\mathbb{C})$. Let $r$ be the solution to the integral equation \[ \kappa+r+r*\kappa=0. \] This equation is solved by successive approximations, and the solution $r$ satisfies \[ \kappa+r+\kappa*r=0,\quad |r(t)|\leq C_2t^{(\beta-2+\theta)/\alpha},\quad C_2>0. \] The integral equation \eqref{e4.14} admits a unique solution $f\in C([0,T];\mathbb{C})$ given by $f=\psi+r*\psi$, or \begin{equation} f(t)=\psi(t)+\int_0^tr(t-s)\psi(s)ds. \label{e4.15} \end{equation} It is easy to verify that if we define $y$ by \eqref{e4.5} with $f$ given by \eqref{e4.15}, the pair $(y,f)$ satisfies \eqref{e4.1} and \eqref{e4.2}. From \eqref{e4.10} and \eqref{e4.11} it follows that \[ g'(t)=\Phi\Big[\frac d{dt}y(t)\Big]=\frac d{dt}\Phi[y(t)]. \] From this equality and the compatibility condition $\Phi[y_0]=g(0)$ \eqref{e4.3} follows. Since $f(\cdot)z+h\in C([0,T];X)\cap B([0,T];(X,D(A))_{\theta,\infty})$, the assertion \eqref{e4.4} follows from Theorem \ref{thm3.1}. \end{proof} \begin{theorem} \label{thm4.2} Suppose that $\alpha+\beta>3/2$, $2(2-\alpha-\beta)<\theta<1$, $y_0\in D(A)$, $Ay_0\cap{\widetilde X}_A^{\theta}\ne\emptyset$, $z\in{\widetilde X}_A^{\theta}$, $\lim_{t\to 0}e^{-tA}z=z$, $g\in C^1([0,T];\mathbb{C})$, $\Phi\in X^*$, $\Phi[y_0]=g(0)$, $\Phi[z]\ne0$, $h\in C([0,T];X)\cap B([0,T];{\widetilde X}_A^{\theta})$, $\lim_{\tau\to 0}e^{-\tau A}h(t)=h(t)$ for every $t\in[0,T]$. Then problem \eqref{e4.1}-\eqref{e4.3} admits a unique solution $y$ such that $y\in C^1([0,T];X)$ and \[ y'-f\in C^{(2\alpha+2\beta-4+\theta)/\alpha}([0,T];X)\cap B([0,T];X_A^{(2\alpha+2\beta-4+\theta)/\alpha}). \] \end{theorem} \begin{proof} Supposing that $f\in C([0,T];X)$ is known, define the function $y$ by \eqref{e4.5}. Let $\phi\in Ay_0\cap{\widetilde X}_A^{\theta}$. Then in view of Lemma \ref{lem2.5}, \[ \frac d{dt}e^{-tA}y_0=\frac d{dt}e^{-tA}A^{-1}\phi=-e^{-tA}\phi \] converges as $t\to 0$. Hence \begin{equation}\label{e4.16} \text{the function $t\mapsto\frac d{dt}e^{-tA}y_0$ belongs to }C([0,T];X). \end{equation} By the definition of ${\widetilde X}_A^{\theta}$ one has \begin{equation} \|\frac d{dt}e^{-tA}z\|_X\leq t^{(\beta-2+\theta)/\alpha}|z|_{{\widetilde X}_A^{\theta}}. \label{e4.17} \end{equation} Hence using the assumption $\lim_{t\to 0}e^{-tA}z=z$ one observes that $\int_0^tf(s)e^{-(t-s)A}zds$ is differentiable and \eqref{e4.7} holds. According to the proof of Theorem \ref{thm3.2} (cf. \eqref{e3.30}) $\int_0^te^{-(t-s)A}h(s)ds$ is differentiable, and equality \eqref{e4.8} and the inequality \begin{equation}\label{e4.18} \|\int_0^t\frac{\partial}{\partial t}e^{-(t-s)A}h(s)ds\|_X \leq \frac{t^{(\alpha+\beta-2+\theta)/\alpha}}{(\alpha+\beta-2+\theta)/\alpha} \|h\|_{B(0,T;{\widetilde X}_A^{\theta})} \end{equation} holds. Hence $y$ is differentiable and \eqref{e4.10} holds. Assuming that $y(t)$ satisfies \eqref{e4.3} one deduces \eqref{e4.14} from \eqref{e4.10} as in the proof of Theorem \ref{thm4.1}, where $\kappa$ and $\psi$ are functions defined by \eqref{e4.13}. By virtue of \eqref{e4.17} one has \[ |\kappa(t)|\leq |\chi|\|\Phi\|_{X^*}t^{(\beta-2+\theta)/\alpha} |z|_{{\widetilde X}_A^{\theta}}. \] In view of \eqref{e4.16}, \eqref{e4.8} and \eqref{e4.18} one observes $\psi\in C([0,T];\mathbb{C})$. The remaining part of the proof is the same as that of Theorem \ref{thm4.1}. \end{proof} \section{Equations with several unknown scalar functions} In this section we consider the problem consisting of recovering several unknown scalar functions $f_1,\dots,f_n$ and a vector function $y$ such that \begin{gather} \frac d{dt}y(t)+Ay(t)\ni \sum_{j=1}^nf_j(t)z_j+h(t),\quad t\in[0,T], \label{e5.1}\\ y(0)=y_0, \label{e5.2}\\ \Phi_j[y(t)]=g_j(t),\quad j=1,\dots,n,\quad t\in[0,T]. \label{e5.3} \end{gather} \begin{theorem} \label{thm5.1} Suppose $2\alpha+\beta+\theta>3$, $y_0\in D(A)$, $Ay_0\cap(X,D(A))_{\theta,\infty}\ne\emptyset$, $z_j\in (X,D(A))_{\theta,\infty}$, $j=1,\dots,n$, $h\in C([0,T];X)\cap B([0,T];(X,D(A))_{\theta,\infty})$, $g_j\in C^1([0,T];\mathbb{C})$, $\Phi_j\in X^*$, $\Phi_j[y_0]=g_j(0),\,j=1,\dots,n$, and \begin{equation} \det \begin{pmatrix}\Phi_1[z_1] & \dots &\Phi_1[z_n]\\ \dots& & \dots \\ \Phi_n[z_1]&\dots&\Phi_n[z_n]\end{pmatrix} \ne0. \label{e5.4} \end{equation} Then, problem \eqref{e5.1}--\eqref{e5.3} admits a unique solution $(y,f_1,\dots,f_n)$ such that \begin{equation} \begin{gathered} y\in C^1([0,T];X),\quad f_1,\dots,f_n\in C([0,T];\mathbb{C}), \\ y'-\sum_{j=1}^nf_j(\cdot)z_j-h\in C^{(2\alpha+\beta-3+\theta)/\alpha}([0,T];X) \cap B([0,T];X_A^{(2\alpha+\beta-3+\theta)/\alpha}). \end{gathered} \label{e5.5} \end{equation} \end{theorem} The proof is performed in parallel to the proof of Theorem \ref{thm4.1}. If $f_1,\dots,f_n\in C([0,T];\mathbb{C})$ are known, $y$ is given by \[ y(t)=e^{-tA}y_0+\int_0^t\sum_{j=1}^nf_j(s)e^{-(t-s)A}z_jds +\int_0^te^{-(t-s)A}h(s)ds. \] Just as the proof of \eqref{e4.10} one deduces from this equality \begin{equation} \begin{aligned} y'(t)&=\frac d{dt}e^{-tA}y_0+\sum_{j=1}^nf_j(t)z_j\\ &\quad +\int_0^t\sum_{j=1}^nf_j(s)D_te^{-(t-s)A}z_jds +\frac d{dt}\int_0^te^{-(t-s)A}h(s)ds. \end{aligned}\label{e5.6} \end{equation} It follows from \eqref{e5.3} and \eqref{e5.6} that \begin{align*} g_i'(t)&=\Phi_i[y'(t)] \\ &=\Phi_i\big[D_te^{-tA}y_0\big]+\sum_{j=1}^nf_j(t)\Phi_i[z_j] +\int_0^t\sum_{j=1}^nf_j(s)\Phi_i[D_te^{-(t-s)A}z_j]ds \\ &\quad +\Phi_i\Big[D_t\int_0^te^{-(t-s)A}h(s)ds\Big]. \end{align*} This is rewritten as \begin{equation} \begin{aligned} &\begin{pmatrix} \Phi_1[z_1] & \dots &\Phi_1[z_n]\\ \dots && \dots\\ \Phi_n[z_1]&\dots& \Phi_n[z_n] \end{pmatrix} \begin{pmatrix} f_1(t)\\ \dots \\ f_n(t)\end{pmatrix} \\ &=\begin{pmatrix} g_1'(t)-\Phi_1[D_te^{-tA}y_0]-\Phi_1\big[D_t \int_0^te^{-(t-s)A}h(s)ds\big]\\ \dots\\ g_n'(t)-\Phi_n[D_te^{-tA}y_0]-\Phi_n\big[D_t \int_0^te^{-(t-s)A}h(s)ds\big] \end{pmatrix} \\ &\quad \int_0^t \begin{pmatrix} \Phi_1[D_te^{-(t-s)A}z_1]&\dots&\Phi_1[D_te^{-(t-s)A}z_n]\\ \dots& & \dots \\ \Phi_n[D_te^{-(t-s)A}z_1]&\dots &\Phi_n[D_te^{-(t-s)A}z_n] \end{pmatrix} \begin{pmatrix} f_1(s)\\ \dots\\ f_n(s)\end{pmatrix}\,ds. \end{aligned}\label{e5.7} \end{equation} Set \[ \mathcal{A}=\begin{pmatrix} \Phi_1[z_1]&\dots&\Phi_1[z_n]\\ \dots&&\dots \\ \Phi_n[z_1]&\dots&\Phi_n[z_n] \end{pmatrix}. \] Then by assumption \eqref{e5.4}, $\mathcal{A}^{-1}$ exists. Set \begin{gather*} \Phi(t)=\mathcal{A}^{-1}\begin{pmatrix} g_1'(t)-\Phi_1[D_te^{-tA}y_0] -\Phi_1\big[D_t \int_0^te^{-(t-s)A}h(s)ds\big]\\ \dots\\ g_n'(t)-\Phi_n[D_te^{-tA}y_0]-\Phi_n \big[D_t \int_0^te^{-(t-s)A}h(s)ds\big]\end{pmatrix},\\ K(t)=\mathcal{A}^{-1}\begin{pmatrix} \Phi_1[D_te^{-tA}z_1]&\dots& \Phi_1[D_te^{-tA}z_n]\\ \dots&& \dots \\ \Phi_n[D_te^{-tA}z_1]&\dots&\Phi_n[D_te^{-tA}z_n] \end{pmatrix},\quad F(t)=\begin{pmatrix} f_1(t)\\ \dots\\ f_n(t) \end{pmatrix}. \end{gather*} Tt follows from \eqref{e5.7} that \[ F(t)=\Phi(t)-\int_0^tK(t-s)F(s)\,ds. \] Since \[ \|K(t)\|_{\mathcal{L}(\mathbb{C}^n)}\leq Ct^{(\beta-2+\theta)/\alpha}, \] the remaining part of the proof is the same as that of Theorem \ref{thm4.1}. Analogously the following theorem is established. \begin{theorem} \label{thm5.2} Suppose $2(2-\alpha-\beta)<\theta<1$, $y_0\in D(A)$, $Ay_0\cap{\widetilde X}_A^{\theta}\ne\emptyset$, $z_j\in {\widetilde X}_A^{\theta}$, $\lim_{t\to 0}e^{-tA}z_j=z_j$, $j=1,\dots,n$, $h\in C([0,T];X)\cap B([0,T];{\widetilde X}_A^{\theta})$, $\lim_{\tau\to 0}e^{-\tau A}h(t)=h(t)$ for every $t\in[0,T]$, $g_j\in C^1([0,T];\mathbb{C}),\,\Phi_j\in X^*$, $\Phi_j[y_0]=g_j(0),\,j=1,\dots,n$, and \[ \det \begin{pmatrix} \Phi_1[z_1]&\dots&\Phi_1[z_n]\\ \dots&&\dots\\ \Phi_n[z_1]&\dots&\Phi_n[z_n] \end{pmatrix}\ne0. \] Then, problem \eqref{e5.1}-\eqref{e5.3} admits a unique solution $(y,f_1,\dots,f_n)$ such that \begin{gather*} y\in C^1([0,T];X),\quad f_1,\dots,f_n\in C([0,T];\mathbb{C}),\\ y'-\sum_{j=1}^nf_j(\cdot)z_j-h\in C^{(2\alpha+2\beta-4+\theta)/\alpha}([0,T];X) \cap B([0,T];X_A^{(2\alpha+2\beta-4+\theta)/\alpha}). \end{gather*} \end{theorem} \section{Problems \eqref{e1.6} and \eqref{e1.7}} Let $L$ and $M$ be two linear closed operators satisfying \eqref{e1.8} and \eqref{e1.9}. Set $A=LM^{-1}$. Namely \begin{equation}\label{e6.1} \begin{gathered} D(A)=MD(L)=\{Mu: u\in D(L)\},\\ Ay=\{Lu: y=Mu,\, u\in D(L)\}\text{ for } y\in D(A). \end{gathered} \end{equation} It is shown in Favini and Yagi \cite{faviyagi} that $A$ satisfies \eqref{e1.2} and \eqref{e1.3}. The graph-norm of $D(A)$ is defined by \[ \|y\|_{D(A)}=\inf\{\|Lu\|_X: y=Mu,\ u\in D(L)\}\quad{\rm for}\quad y\in D(A). \] Consider the problem \begin{gather} \frac d{dt}Mu(t)+Lu(t)=f(t),\quad t\in[0,T], \label{e6.2}\\ Mu(0)=Mu_0. \label{e6.3} \end{gather} \begin{theorem} \label{thm6.1} Suppose that $2\alpha+\beta+\theta>3$, $u_0\in D(L)$, $Lu_0\in(X,D(A))_{\theta,\infty}$, $f\in C([0,T];X)\cap B([0,T];(X,D(A))_{\theta,\infty})$. Then problem \eqref{e6.2}--\eqref{e6.3} admits a unique solution $u$ such that \begin{equation}\label{e6.4} \begin{gathered} Mu\in C^1([0,T];X),\\ Lu\in C^{(2\alpha+\beta-3+\theta)/\alpha}([0,T];X)\cap B([0,T];X_A^{(2\alpha+\beta-3+\theta)/\alpha}). \end{gathered} \end{equation} \end{theorem} \begin{proof} Set $y_0=Mu_0$. Then $y_0\in D(A)$, and $Ay_0\cap(X,D(A))_{\theta,\infty}$ is not empty, since it contains $Lu_0$. In view of Theorem \ref{thm3.1} there exists a solution $y$ to \eqref{e1.1}, $A$ being defined by \eqref{e6.1}. Set $u(t)=L^{-1}(f(t)-y'(t))$. Then \begin{equation}\label{e6.5} Lu(t)=f(t)-y'(t)\in Ay(t)=LM^{-1}y(t). \end{equation} Since $L$ is bijective, it follows from \eqref{e6.5} that $u(t)\in M^{-1}y(t)$, or $y(t)=Mu(t)$. From the first equation of \eqref{e6.5} equation \eqref{e6.2} follows. It is obvious that $u$ satisfies \eqref{e6.3}. \end{proof} Analogously, using Theorem \ref{thm3.2} instead of Theorem \ref{thm3.1}, the following theorem is obtained. \begin{theorem} \label{thm6.2} Suppose that $\theta>2(2-\alpha-\beta)$, $u_0\in D(L)$, $Lu_0\in{\widetilde X}_A^{\theta}$, $f\in C([0,T];X)\cap B([0,T];{\widetilde X}_A^{\theta})$, $\lim_{\tau\to 0}e^{-\tau A}f(t)=f(t)$ for every $t\in[0,T]$. Then problem \eqref{e6.2}--\eqref{e6.3} admits a unique solution $u$ such that \begin{equation}\label{e6.6} \begin{gathered} Mu\in C^1([0,T];X),\\ Lu\in C^{(2\alpha+2\beta-4+\theta)/\alpha}([0,T];X)\cap B([0,T];X_A^{(2\alpha+2\beta-4+\theta)/\alpha}). \end{gathered} \end{equation} \end{theorem} Next, consider the problem \begin{gather} \frac d{dt}Mu(t)+Lu(t)=\sum_{j=1}^nf_j(t)z_j+h(t),\quad t\in[0,T], \label{e6.7}\\ Mu(0)=Mu_0, \label{e6.8}\\ \Phi_j[Mu(t)]=g_j(t),\quad j=1,\dots,n,\quad t\in[0,T]. \label{e6.9} \end{gather} \begin{theorem} \label{thm6.3} Suppose $2\alpha+\beta+\theta>3$, $u_0\in D(L)$, $Lu_0\in(X,D(A))_{\theta,\infty}$, $z_j\in (X,D(A))_{\theta,\infty}$, $j=1,\dots,n$, $h\in C([0,T];X)\cap B([0,T];(X,D(A))_{\theta,\infty})$, $\Phi_j\in X^*$, $g_j\in C^1([0,T;\mathbb{C})$, $\Phi_j[Mu_0]=g_j(0)$, $j=1,\dots,n$, and \eqref{e5.4} holds. Then problem \eqref{e6.7}--\eqref{e6.9} admits a unique solution $(u,f_1,\dots,f_n)$ such that \begin{equation} \begin{gathered} Mu\in C^1([0,T];X),\quad f_1,\dots,f_n\in C([0,T];\mathbb{C}), \\ Lu\in C^{(2\alpha+\beta-3+\theta)/\alpha}([0,T];X)\cap B([0,T]; X_A^{(2\alpha+\beta-3+\theta)/\alpha}). \end{gathered} \label{e6.10} \end{equation} \end{theorem} \begin{proof} Let $(y,f_1,\dots,f_n)$ be a solution to problem \eqref{e5.1}-\eqref{e5.3} with $A$ defined by \eqref{e6.1} and define a function $u$ by \[ u(t)=L^{-1}\Big[\sum_{j=1}^nf_j(t)z_j+h(t)-y'(t)\Big],\quad t\in [0,T]. \] Then in view of \eqref{e5.1} \begin{equation}\label{e6.11} Lu(t)=\sum_{j=1}^nf_j(t)z_j+h(t)-y'(t)\in Ay(t)=LM^{-1}y(t). \end{equation} Since $L$ is injective, one gets $u(t)\in M^{-1}y(t)$. This implies \begin{equation}\label{e6.12} Mu(t)=y(t). \end{equation} The first equation in \eqref{e6.11} and \eqref{e6.12} imply \eqref{e6.7}. It is obvious that \eqref{e6.8} and \eqref{e6.9} hold. From the first equation in \eqref{e6.11} and the second equation in \eqref{e5.5} it follows that \[ Lu=\sum_{j=1}^nf_j(\cdot)z_j+h-y'\in C^{(2\alpha+\beta-3 +\theta)/\alpha}([0,T];X)\cap B([0,T];X_A^{(2\alpha+\beta-3+\theta)/\alpha}). \] Thus the regularity property \eqref{e6.10} is proved. \end{proof} The following theorem is analogously established. \begin{theorem} \label{thm6.4} Suppose $\theta>2(2-\alpha-\beta)$, $u_0\in D(L)$, $Lu_0\in{\widetilde X}_A^{\theta}$, $z_j\in {\widetilde X}_A^{\theta}$, $\lim_{t\to 0}e^{-tA}z_j=z_j$, $j=1,\dots,n$, $h\in C([0,T];X)\cap B([0,T];{\widetilde X}_A^{\theta})$, $\lim_{\tau\to 0}e^{-\tau A}h(t)\\ =h(t)$ for every $t\in[0,T]$, $g_j\in C^1([0,T];\mathbb{C})$, $\Phi_j\in X^*$, $\Phi_j[Mu_0]=g_j(0)$, $j=1,\dots,n$, and \eqref{e5.4} holds. Then, problem \eqref{e6.7}--\eqref{e6.9} admits a unique solution $(u,f_1,\dots,f_n)$ such that \begin{gather*} Mu\in C^1([0,T];X),\quad f_1,\dots,f_n\in C([0,T];\mathbb{C}),\\ Lu\in C^{(2\alpha+2\beta-4+\theta)/\alpha}([0,T];X)\cap B([0,T]; X_A^{(2\alpha+2\beta-4+\theta)/\alpha}). \end{gather*} \end{theorem} \begin{remark} \label{rmk6.1}\rm When $L$ is the realization in $L^2(\Omega)$ of a second order strongly elliptic linear differential operator $\mathcal{L}$ with the Dirichlet boundary condition in a bounded domain $\Omega$ and $M$ is the multiplication operator by a function belonging to $L^\infty(\Omega)$ one has $\alpha=1$, $\beta=1/2$. Hence the assumption $2\alpha+\beta+\theta>3$ of Theorems \ref{thm6.1} and \ref{thm6.3} is not satisfied for $\theta=1/2$, and the assumption $\theta>2(2-\alpha-\beta)$ of Theorems \ref{thm6.2} and \ref{thm6.4} is not satisfied for $\theta\in(0,1)$. A treatment of this case is given in \cite{tanabe}. Furthermore, owing to the inclusion relations $D({\widetilde A})\subset L^2(\Omega)_A^{1/2}\subset(L^2(\Omega),D(A))_{1/2,\infty}$ the assumptions are described by using a clearer space $D({\widetilde A})$ than ${\widetilde L^2(\Omega)}_A^{1/2}$, $(L^2(\Omega),D(A))_{1/2,\infty}$ in \cite{tanabe}, where ${\widetilde A}={\widetilde L}M^{-1}$ and ${\widetilde L}$ is the realization of $\mathcal{L}$ in $H^{-1}(\Omega)=H_0^1(\Omega)^*$. \end{remark} \section{Problems for systems} Let us consider the following inverse problem: Recover $y_i,f_{ij}$, $i=1,\ldots,n$, $j=1,\ldots,N$, such that \begin{gather} \begin{gathered} y_1'=A_1y_1+B_{11}y_1+\dots+B_{1n}y_n+f_{11}(t)z_1+\dots+f_{1N}(t)z_N+h_1(t),\\ \dots \\ y_n'=A_ny_n+B_{n1}y_1+\dots+B_{nn}y_n+f_{n1}(t)z_1+\dots+f_{nN}(t)z_N+h_n(t), \end{gathered} \label{e7.1} \\ y_1(0)=y_{10},\ldots,y_n(0)=y_{n0},\\ \Phi_j[y_i(t)]=g_{ji}(t),\quad i=1,\ldots,n; j=1,\ldots,N. \label{e7.3} \end{gather} Assume $0<\beta\leq\alpha\leq1$ and $2\alpha+\beta+\theta>3$. It is also assumed that for $i,j=1,\dots,n$, $A_i$ and $B_{ij}$ satisfy \begin{gather*} \|(\lambda-A_i)^{-1}\|_{\mathcal{L}(X)} \leq \frac C{(1+|\lambda|)^{\beta}}\quad\text{for }\lambda\in\Sigma_{\alpha} =\{\lambda in\mathbb{C};\operatorname{Re}\lambda\geq-c(1+|\operatorname{Im}\lambda|)^{\alpha}\},\\ B_{ij}\in\mathcal{L}(D(A_j),X_{A_i}^\theta). \end{gather*} Also assume that $y_{i0}\in D(A_i)$, $A_iy_{i0}\in(X,D(A_i))_{\theta,\infty}$, $z_j\in\cap_{k=1}^n(X,D(A_k))_{\theta,\infty}$, $h_i\in C([0,T];X)\cap B([0,T];(X,D(A_i))_{\theta,\infty}$, $g_{ji}\in C^1([0,T];\mathbb{C})$, $\Phi_j\in X^*$, $\Phi_j[y_{i0}]=g_{ji}(0)$, $i=1,\ldots,n$, $j=1,\ldots,N$. Set \[ y=\begin{pmatrix} y_1\\ \dots\\ y_n\end{pmatrix},\quad A=\begin{pmatrix} A_1&0&\dots&0\\ \dots&&&\dots \\ 0&0&\dots&A_n\end{pmatrix},\quad B=\begin{pmatrix} B_{11}&\dots&B_{1n}\\ \dots &&\dots\\ B_{n1}&\dots&B_{nn} \end{pmatrix}. \] Then $A$ and $A+B$ generate infinitely differentiable semigroups in $X^n$. The system \eqref{e7.1} is written as \begin{align*} y'&=(A+B)y+f_{11}(t) \begin{pmatrix} z_1\\0\\ \dots\\ 0\end{pmatrix} +f_{12}(t)\begin{pmatrix}z_2\\ 0 \\ \dots\\ 0\end{pmatrix} +\dots+f_{1N}(t)\begin{pmatrix}z_N\\ 0\\ \dots\\ 0\end{pmatrix}\\ &\quad +f_{21}(t)\begin{pmatrix}0\\ z_1\\ \dots\\ 0\end{pmatrix} +f_{22}(t)\begin{pmatrix}0\\ z_2\\ \dots\\ 0\end{pmatrix} +\dots+f_{2N}(t)\begin{pmatrix}0\\ z_N\\ \dots \\ 0\end{pmatrix}+\dots\\ &\quad +f_{n1}(t)\begin{pmatrix}0\\ 0\\ \dots \\ z_1\end{pmatrix} +f_{n2}(t)\begin{pmatrix}0\\ 0\\ \dots \\ z_2\end{pmatrix}+\dots +f_{nN}(t)\begin{pmatrix}0\\ 0\\ \dots\\ z_N \end{pmatrix} +\begin{pmatrix}h_1(t)\\ h_2(t)\\ \dots\\h_n(t)\end{pmatrix}. \end{align*} Theorem \ref{thm6.3} applies provided that \[ \det \begin{pmatrix} \Phi_1[z_1]& \dots &\Phi_1[z_N]\\ \dots&&\dots\\ \Phi_N[z_1]&\dots&\Phi_N[z_N] \end{pmatrix}\ne 0. \] Indeed, the further information reduces to the $N$ linear systems in the unknowns $f_{i1},\ldots,f_{iN},i=1,\ldots,n$, whose determinant is just the indicated above. Identification problem \eqref{e7.1}--\eqref{e7.3} admits a unique solution $y=(y_1,\ldots,y_n)^t$, $f_{ij}$, $i=1,\ldots,n$, $j=1,\ldots,N$ such that \begin{gather*} y\in C^1([0,T];X^n),\quad f_{ij}\in C^1([0,T];\mathbb{C}),\quad i=1,\ldots,n,\; j=1,\ldots,N,\\ \begin{aligned} &(A+B)y\in C^{(2\alpha+\beta-3+\theta)/\alpha}([0,T];X^n)\cap B([0,T];X_{A+B}^{(2\alpha+\beta-3+\theta)/\alpha})\\ & \subset C^{(2\alpha+\beta-3+\theta)/\alpha}([0,T];X^n) \cap \big[B([0,T];(X,D(A_1))_{(2\alpha+\beta-3+\theta)/\alpha,\infty})\\ &\times\dots\times B([0,T];(X,D(A_n))_{(2\alpha+\beta-3+\theta)/\alpha,\infty})\big]. \end{aligned} \end{gather*} \subsection*{Example} Let us consider the inverse problem \begin{gather} \frac d{dt}(A+1)y+Ay=\int_0^tk(t-s)Ay(s)ds+f(t)z+h(t),\quad0\leq t\leq T, \label{e7.4}\\ (A+1)y(0)=(A+1)y_0, \label{e7.5}\\ \Phi[(A+1)y(t)]=\Phi[g(t)],\quad0\leq t\leq T. \label{e7.6} \end{gather} We suppose that $-1$ is a simple pole for the resolvent of $A$, i.e. $(A+1+\lambda)^{-1}$ exists for $0<|\lambda|\leq\varepsilon$ and \[ \|(A+1+\lambda)^{-1}\|_{\mathcal{L}(X)}\leq\frac C{|\lambda|}. \] A change of variable $y(t)=e^{\kappa t}x(t)$ transforms equation \eqref{e7.4} into \begin{align*} &\frac d{dt}(A+1)x(t)+\kappa(A+1)x(t)+Ax(t)\\ &=\int_0^tk(t-s)e^{-\kappa(t-s)}Ax(s)ds+f_1(t)z+e^{-\kappa t}h(t), \end{align*} where $f_1(t)=e^{-\kappa t}f(t)$. Now \begin{align*} &\lambda(A+1)+\kappa(A+1)+A=(\lambda+\kappa+1)A+\lambda+\kappa\\ &=(\lambda+\kappa+1)\Big(A+\frac{\lambda+\kappa}{\lambda+\kappa+1}\Big) =(\lambda+\kappa+1)\Big(A+1-\frac1{\lambda+\kappa+1}\Big). \end{align*} Hence if $0<|\lambda+\kappa+1|^{-1}<\varepsilon$, i.e. $|\lambda+\kappa+1|>\varepsilon^{-1}$, $\lambda(A+1)+\kappa(A+1)+A$ has a bounded inverse. Take $\kappa$ so large that $\kappa+1>\varepsilon^{-1}$. Then $(A+1- {\frac1{\lambda+\kappa+1}})^{-1}\in\mathcal{L}(X)$ exists for $\lambda\in \mathbb{C}\setminus S(-1-\kappa,\varepsilon^{-1})$ and \begin{align*} &(A+1)(\lambda(A+1)+\kappa(A+1)+A)^{-1}\\ & =(A+1)(\lambda+\kappa+1)^{-1}\big(A+1-\frac1{\lambda+\kappa+1}\big)^{-1}\\ & =(\lambda+\kappa+1)^{-1} \big\{1+\frac1{\lambda+\kappa+1}\big(A+1-\frac1{\lambda+\kappa+1}\big)^{-1}\big\}, \end{align*} so that \[ \|(A+1)(\lambda(A+1)+\kappa(A+1)+A)^{-1}\|_{\mathcal{L}(X)} \leq C|\lambda+\kappa+1|^{-1} \] for $|\lambda+\kappa+1|>\varepsilon^{-1}$. Hence the previous results (See also Favini and Tanabe \cite{fata}) apply for $\alpha=\beta=1$. However, this pole case allows a better treatment. First of all the change of variable $y=e^{-t}x$ transforms the given problem \eqref{e7.4}--\eqref{e7.6} into \begin{gather} \frac d{dt}(A+1)x(t)-x(t)=\int_0^tk_1(t-s)Ax(s)ds+f_1(t)z+h_1(t), \label{e7.7}\\ (A+1)x(0)=(A+1)y_0, \label{e7.8}\\ \Phi[(A+1)x(t)]=g_1(t). \label{e7.9} \end{gather} where $k_1(t)=e^tk(t)$, $f_1(t)=e^tf(t)$, $h_1(t)=e^th(t)$, $g_1(t)=e^tg(t)$. If $-1$ is a simple pole for $(A-\lambda)^{-1}$, so that \[ X=N(A+1)\oplus R(A+1), \] and $P$ denotes the projection onto $N(A+1)$, problem \eqref{e7.7}--\eqref{e7.9} reduces to \begin{gather} \begin{aligned} & \frac d{dt}(A+1)(1-P)x(t)-(1-P)x(t)\\ &=\int_0^tk_1(t-s)A(1-P)x(s)ds+f_1(t)(1-P)z+(1-P)h_1(t), \end{aligned} \label{e7.10}\\ (A+1)(1-P)x(0)=(A+1)(1-P)y_0, \label{e7.11}\\ \Phi[(A+1)(1-P)x(t)]=g_1(t), \label{e7.12}\\ \begin{aligned} -Px(t)&=\int_0^tk_1(t-s)P(A+1-1)x(s)ds+f_1(t)Pz+Ph_1(t) \\ &=-\int_0^tk_1(t-s)Px(s)ds+f_1(t)Pz+Ph_1(t). \end{aligned} \label{e7.13} \end{gather} Since the restriction of $A+1$ to $R(A+1)$ is boundedly invertible, the change of variable $(A+1)(1-P)x(t)=\xi(t)$ transforms \eqref{e7.10}--\eqref{e7.12} into \begin{gather} \frac d{dt}\xi(t)-R\xi(t) =\int_0^tk_1(t-s)[1-R]\xi(s)ds+f_1(t)(1-P)z+(1-P)h_1(t), \label{e7.14} \\ \xi(0)=(A+1)(1-P)y_0, \label{e7.15}\\ \Phi[\xi(t)]=g_1(t), \label{e7.16} \end{gather} where $R$ indicates the inverse of the restriction of $A+1$ to $R(A+1)$. Therefore, if $k$ is continuous in $[0,T]$, $\Phi[(1-P)z]\ne0$, $h\in C([0,T];X)$, $(1-P)y_0\in D(A)$, $g\in C^1([0,T];\mathbb{C})$, problem \eqref{e7.14}--\eqref{e7.16} admits a unique strict solution $(\xi,f_1)$. Hence, we have a unique strict solution $((1-P)x,f_1)$ to \eqref{e7.10}--\eqref{e7.12}. Since $f_1$ is now known, we only remain to solve integral equation \eqref{e7.13}, that is uniquely solvable. Notice that this improves the preceding result, since condition $\Phi[z]\ne0$ is replaced by the weaker condition $\Phi[(1-P)z]\ne0$. \begin{thebibliography}{99} \bibitem{FLMT} A. Favini, A. Lorenzi, G. Marinoschi, H. Tanabe; \emph{Perturbation methods and identification problems for degenerate evolution systems}, contribution to the Seventh Congress of Romanian Mathematicians, Brasov, 2011, Eds. L. Beznea, V. Brinzanescu, M. Iosifescu, G. Marinoschi, R. Purice, D.~Timotin, Publishing House of the Romanian Academy of Science, 88-96, 2013. \bibitem{falota} A. Favini, A. Lorenzi, H. Tanabe: \emph{Direct and inverse problems for systems of singular differential boundary value problems}, \newblock Electronic Journal of Diffential Equations, {\bf 2012} (2012), 1-34. \bibitem{Lptheory} A. Favini, A. Lorenzi, H. Tanabe; \emph{Degenerate integrodifferential equations of parabolic type with Robin boundary conditions: $L^p$-theory}, preprint. \bibitem{falotaya} A. Favini, A. Lorenzi, H. Tanabe, A. Yagi; \emph{An $L^p$-approach to singular linear parabolic equations with lower order terms}, \newblock Discrete and Continuous Dynamical Systems, 22 No.4, 989-1008. \bibitem{fata} A. Favini, H. Tanabe; \emph{Degenerate differential equations of parabolic type and inverse problems}, Proceedings of Seminar on Partial Differential Equations in Osaka 2012, Osaka University, August 20-24, 2012, 89-100. \bibitem{faviyagi} A. Favini and A. Yagi; \emph{Degenerate Differential Equations in Banach spaces}, \newblock Marcel Dekker, Inc., New York-Barsel-Hong Kong, 1999. \bibitem{tanabe} H. Tanabe; \emph{Identification problem for degenerate parabolic equations}, Proceedings of Seminar on Partial Differential Equations in Osaka 2012, Osaka University, August 20-24, 2012, 83-88. \bibitem{prilepko} A. Prilepko, D. G. Orlovsky, I. Vasin; \emph{Methods for Solving Inverse Problems in Mathematical Physics}, \newblock Marcel Dekker, Inc., New York-Barsel-Hong Kong, 2000. \end{thebibliography} \end{document}