\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 200, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/200\hfil Existence and multiplicity of solutions] {Existence and multiplicity of solutions for semilinear elliptic equations with Neumann boundary conditions} \author[Q. Jiang, S. Ma \hfil EJDE-2015/200\hfilneg] {Qin Jiang, Sheng Ma} \address{Qin Jiang \newline Department of Mathematics, Huanggang Normal University, Hubei 438000, China} \email{jiangqin999@126.com} \address{Sheng Ma \newline Department of Mathematics, Huanggang Normal University, Hubei 438000, China} \email{masheng666@126.com} \thanks{Submitted May 29, 2015. Published August 4, 2015.} \subjclass[2010]{35J20, 35J25} \keywords{Elliptic equations; Neumann boundary conditions; critical point; \hfill\break\indent least action principle; minimax methods} \begin{abstract} This article shows the existence of solutions by the least action principle, for semilinear elliptic equations with Neumann boundary conditions, under critical growth and local coercive conditions. In the subcritical growth and local coercive case, multiplicity results are established by using the minimax methods together with a standard eigenspace decomposition. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction and statement of main results} Since the 70s, several authors have studied the existence and multiplicity of solutions for the Neumann boundary-value problem \begin{equation} \label{e1} \begin{gathered} -\Delta{u}=f(x,u)+h(x)\quad \text{for a.e. } x\in \Omega, \\ \frac{\partial u}{\partial n}=0 \quad \text{on }\partial\Omega \end{gathered} \end{equation} where $\Omega \subset \mathbb{R}^N$ $(N \geq 1) $ is a bounded domain with smooth boundary and outer normal vector $n= n(x)$, $\partial u/\partial n = n(x)\cdot\nabla u$. The function $f : {\bar{\Omega}}\times R\longrightarrow R $ is a Caratheodory function with $F(x,u )=\int_0^{u}f(x,s )ds$ as its primitive. And then, for \eqref{e1}, a vast of literature related to the solvability conditions has been published. It has been showed that there is at least one solution for \eqref{e1} under the assumptions of the periodicity condition, see\cite{PH}, or the monotonicity condition, see\cite{JM1,JM2}, or the sign condition, see\cite{CP,RI1}, or the Landesman-Lazer type condition, see\cite{RI2,Kuo}, or a new Landesman-Lazer type condition and sublinear condition, see\cite{Tang1,Tang2}. At the same time, some authors studied multiplicity of solutions for \eqref{e1}, see\cite{Costa,Tang3,Tang4}, some authors obtained sign-changing solutions, see\cite{LiC,Li}. In either case, existence or multiplicity of solutions, even sign-changing solutions, the main methods are the dual least action principle and the minimax methods respectively. In this paper, under the critical growth and local coercive condition, we obtain the existence theorem by the least action principle for \eqref{e1}. What's more, in the subcritical growth and local coercive case, multiplicity results are established by using the minimax methods, in particular, a three-critical-point theorem proposed by Brezis and Nirenberg \cite{H}. A contribution in this direction is \cite{Tang5}, where the authors use the local coercive condition to study the second order Hamiltonian systems by variational method. We study \eqref{e1} under the following assumptions: \begin{itemize} \item[(H1)] There exist a constant $C_1 > 0$ and a real function $\gamma \in L^1(\Omega) $ such that $$ |f(x,t)|\leq C_1 |t|^{2^*-1}+\gamma (x) $$ for all $ t\in R$ and a.e. $x \in \Omega$, where \[ 2^*=\begin{cases} \frac{2N}{N-2}, & N\geq 3\\ \text{any value} & q\in (2,+\infty), \; N=1,2 \end{cases} \] \item[(H1')] There exist $C_2 > 0$ and $ 2
0 $ such that $ F(x,t)\to -\infty$ as $|t|\to \infty$, uniformly for a.e. $x\in E$. \item[(H3)] There exists $g \in L^1(\Omega )$ such that $F(x,t) \leq g(x) $ for all $t\in R $ and a.e. $x \in \Omega$. \item[(H4)] There exists $h\in L^{2^{*'}}(\Omega)$ such that $$ \int_\Omega h(x)dx = 0. $$ where $2^{*'}$ is the conjugate exponent of $ 2^*$, that is, $\frac{1}{2^{*'} }+ \frac{1}{2^{*}} = 1$. \item[(H5)] There exist $ \delta>0$ and an integer $m \geq 1$ such that $$ \mu_{m}\leq \frac{f (x, t)}{t} \leq \mu_{m+1} $$ for all $ 0 < |t|\leq \delta $, and a.e. $x \in \Omega $, where $$ 0 =\mu_1 <\mu_2 \leq \dots \leq \mu_m \leq \mu_{m+1} \leq \dots, \quad \mu_m\to \infty $$ is the sequence of eigenvalues in $H^1(\Omega)$ for $ -\Delta $ with Neumann boundary condition. \end{itemize} Our main results read as follows. \begin{theorem} \label{thm1} Under hypotheses {\rm (H1)--(H4)}, Problem \eqref{e1} has at least one solution in the Sobolev space $H^1(\Omega)$. \end{theorem} \begin{theorem} \label{thm2} If $h= 0$, under hypotheses {\rm (H1'), (H2), (H3), (H5)}, Problem \eqref{e1} has at least two nonzero solutions in $H^1(\Omega)$. \end{theorem} \begin{remark} \label{rmk1} \rm Theorem \ref{thm1} generalizes \cite[Theorem 1]{Tang3} because that conditions (H2) and (H3) are weaker than \cite[condition (3)]{Tang3}. There are functions $f (x, t)$ and $h(x) $ satisfying our Theorem \ref{thm1} and not satisfying the corresponding results in \cite{Costa,CP,RI1,RI2,Kuo,LiC,Li,JM1,JM2,PH,Tang1,Tang2,Tang3,Tang4}. In fact, let $$ f (x, t)=-(x-x_0)\frac{ 2t}{1+t^2} + 2^*|t |^{2^*-2}t \cos |t |^{2^*} $$ and $h\in L^{2^{*'}}(\Omega)$ satisfying (H4), where $x_0\in \bar{\Omega}$. A direct computation shows that $$ F(x, t)=-(x-x_0)\ln (1 + t^2)+ \sin |t |^{2^{*}} $$ satisfies (H1), (H2) and (H3). But $f(x, t)$ does not satisfy the conditions in \cite{Costa,CP,RI1,RI2,Kuo,LiC,Li,JM1,JM2,PH,Tang1,Tang2,Tang3,Tang4}. \end{remark} \begin{remark} \label{rmk2}\rm Obviously, Theorem \ref{thm2} generalizes \cite[Theorem 2]{Tang3} because the local coercive condition (H2) and (H3) are weaker than \cite[condition (3)]{Tang3} \eqref{e3}, and condition (H5) is weaker than \cite[condition (7)]{Tang3}. Hence, we solve the open question posed in \cite[Remark 4]{Tang3}. There are functions $f (x, t)$ satisfying our Theorem \ref{thm2} and not satisfying the conditions in \cite{Costa,CP,RI1,RI2,Kuo,LiC,Li,JM1,JM2,PH,Tang1,Tang2,Tang3,Tang4}. For example, $$ f(x, t)=\begin{cases} -(x-x_0)\frac{ 2t}{1+t^2} + C_3 p|t |^{p-2}t \cos |t|^p, & |t|\geq \delta\\ [\mu_m \sin^2 t^{-2}+\mu_{m+1}(1-\sin^2 t^{-2})]t, &|t|\leq \delta \\ 0, & t=0 \end{cases} $$ where $x_0\in \bar{\Omega}$, $C_3>0$ and $ 2
0$. Hence, one has
$$
\int_\Omega |u|^2 dx\leq c_2(|\bar{u}|^2 +\int_\Omega |\nabla u|^{2} dx)
$$
for some constant $c_2>0$, which implies
$\|u\|\leq c_3\|u\|_*$ for some constant $c_3>0$.
On the other hand, H\"older inequality leads to
$$
\bar{u}=(\operatorname{meas} \Omega)^{-1}\int_\Omega u(x)dx\leq \|u\|_{L^2} $$
Thus, we obtain
$\|u\|_*\leq c_4\|u\|$
for some constant $c_4>0$.
That is, the two norms $\|u\|$ and $\|u\|_*$ are equivalent.
It is well known that, by
Sobolev's inequality, there exists a constant $C>0$ such that
\begin{equation} \label{e2}
\|u\|_{L^1(\Omega)}\leq C\|u\|, \quad
\|u\|_{L^{2^*}(\Omega)}\leq C\|u\|,\quad \|u\|_{L^p(\Omega)}\leq C\|u\|
\end{equation}
where $p$ is the same as in Theorem \ref{thm2}.
Now, the functional $\varphi$ on
$H^1(\Omega)$ is given by
\[
\varphi(u)=\frac{1}{2}\int_\Omega |\nabla u(x)|^2\,dx -\int_\Omega
F(x,u(x))dx-\int_\Omega h u \,dx
\]
for all $u\in H^1(\Omega)$. By the critical growth conditions
(H1) or subcritical growth condition (H1'), we can easy prove
that $\varphi$ is continuously differentiable in $H^1(\Omega)$ ,
in a way similar to \cite[Theorem 1.4]{J}.
It is well known that finding solutions of \eqref{e1} is equivalent to
finding critical points of $\varphi$ in $H^1(\Omega)$.
For the sake of convenience, we show $C_i\ (i=1,2,\dots,8)$ be positive constants.
Before giving the proof of Theorem \ref{thm1}, we show the following lemmas.
\begin{lemma}[{The least action principle, \cite[Theorem 1.1]{J}}] \label{lem1}
Suppose that $ X$ is a reflexive Banach space and $\varphi: X
\to R$ is weakly lower semi-continuous. Assume that
$\varphi$ is coercive; that is,
$\varphi(u)\to +\infty$ as $\|u\|\to \infty$
for $u\in X$. Then $\varphi$ has at least one minimum.
\end{lemma}
\begin{lemma} \label{lem2}
Suppose that $F$ satisfies assumption {\rm (H1)} and
{\rm (H2)}. Then there exist a real function
$\beta \in L^1(\Omega)$, and $G \in C(R,R)$ which is subadditive,
that is,
$$
G(s + t)\leq G(s)+ G(t)
$$
for all $s,t\in R$, and coercive, that is,
$ G(t)\to +\infty$ as $|t|\to \infty$ and satisfies
$$
G(t) \leq |t| + 4
$$
for all $t\in R$, such
that
$$
F(x,t) \leq -G(t)+ \beta(x)
$$
for all $t \in R$ and a.e. $t\in E$.
\end{lemma}
The proof of Lemma \ref{lem2} is essentially the same one as the
introductory part of the proof of \cite[Theorem 1]{Tang3}.
\begin{proof}[Proof of Theorem \ref{thm1}]
First, we prove that the functional
$\varphi$ is coercive. By Lemma \ref{lem2}, (H3) and \eqref{e2} we obtain
\begin{align*}
\int_\Omega F(x,u)dx
&= \int_E F(x,u)dx+ \int_{\Omega\setminus E} F(x,u)dx\\
&\leq -\int_E G(u)dx+ \int_E \beta(x) dx+ \int_{\Omega\setminus E} g(x)dx\\
&\leq -\int_E G(\bar{u})dx+ \int_E
G(-\tilde{u})dx + \int_{E} \beta(x) dx+ \int_{\Omega\setminus E} g(x)dx\\
&\leq -\operatorname{meas}{E} \cdot G(\bar{u})+ \int_E G(-\tilde{u})dx
+ \int_\Omega |\beta(x)| dx+ \int_{\Omega} |g(x)|dx\\
&\leq -\operatorname{meas}{E} G(\bar{u})+ \int_E(|\tilde{u}|+4)dx
+ C_4\\
&\leq -\operatorname{meas}{E} G(\bar{u})+ \|\tilde{u}\|_{L^1(\Omega)}+4 \operatorname{meas}{E}
+ C_4\\
&\leq \operatorname{meas}{E} (4-G(\bar{u}))+ C\|\tilde{u}\|
+ C_4
\end{align*}
for all $u \in H^1(\Omega)$, where
$C_4=\int_\Omega |\beta(x)| dx+ \int_{\Omega} |g(x)|dx$ and
$$
\tilde{u}(x) = u(x)-\bar{u}.
$$
Hence by the inequality above, H\"older inequality and \eqref{e2} we have
\begin{align*}
\varphi(u)
&= \frac{1}{2}\int_\Omega |\nabla u|^2dx -\int_\Omega F(x,u)dx-\int_\Omega h u dx\\
&\geq \frac{1}{2}\int_\Omega |\nabla \tilde{u}|^2dx+
\operatorname{meas}{E} (G(\bar{u})-4)- C\|\tilde{u}\|
-C_4-\int_\Omega h \tilde{u }dx\\
&\geq \frac{1}{2}\int_\Omega |\nabla \tilde{u}|^2dx+
(G(\bar{u})-4)\operatorname{meas}{E} - C\|\tilde{u}\|
-C_4-\|h\|_{L^{2^{*'}}(\Omega)} \|\tilde{u }\|_{L^{2^*}(\Omega)}\\
&\geq \frac{1}{2} \|\tilde{u}\|^2+(G(\bar{u})-4) \operatorname{meas}{E}
- C(1+\|h\|_{L^{2^{*'}}(\Omega)})\|\tilde{u}\|-C_4
\end{align*}
for all $u \in H^1(\Omega)$. By Lemma \ref{lem2}, we know that $ G(t)\to +\infty$
as $|t|\to \infty$, together with the
fact that
$$
\|\tilde{u }\|^2+ \|\bar{u }\|^2=\|u\|^2,
$$
it is easy to obtain $\varphi$ is coercive.
Next, by (H3), in a way similar to the first part of the proof of
\cite[Theorem 1]{G} or the part of the proof of
\cite[Theorem 1]{Tang3}, we can easily prove the functional $\varphi$
is weakly lower semicontinuous.
Derived by the least action
principle (see, Lemma \ref{lem1}), $\varphi$ has a minimum. Hence
\eqref{e1} has at least one solution, which
completes the proof.
\end{proof}
Next, we prove Theorem \ref{thm2} by using the following
three-critical-point theorem proposed by Brezis-Nirenberg \cite{H}.
\begin{lemma}[\cite{H}] \label{lem3}
Let $X$ be a Banach space with a direct sum decomposition
$$
X=X_1\oplus X_2
$$
with $\operatorname{dim}X_2<\infty$ and let $\varphi$ be a $C^1$ function on $X$
with $\varphi(0)=0$, satisfying the $(PS)$ condition. Assume that, for some
$\delta_0>0$,
\begin{gather*}
\varphi(v)\geq 0, \quad \text{for $v\in X_1$ with } \|v\|\leq \delta_0,\\
\varphi(v)\leq 0, \quad \text{for $v\in X_2$ with } \|v\|\leq \delta_0\,.
\end{gather*}
Assume also that $\varphi$ is bounded from below and $\inf_X
\varphi<0$. Then $\varphi$ has at least two nonzero
critical points.
\end{lemma}
\begin{proof}[Proof of Theorem \ref{thm2}]
Let $X=H^1(\Omega)=X_1\oplus X_2$, where
$X_2=\oplus_{1\leq i \leq m}\ker(\Delta +\mu_i)$
is a finite dimension subspace and $X_1=X_2^\perp$.
Obviously, $\varphi$ is a $C^1$ function
on $H^1(\Omega)$ with $\varphi(0)=0$. Similar to the proof of the coercivity of
$\varphi$ in Theorem \ref{thm1}, by condition (H2), (H3) and (H1'),
the subcritical growth condition, we can easily obtain that $\varphi$ is coercive and
bounded from below. Therefore, the functional $\varphi$ satisfies the $(PS)$
condition; that is, $\{u_n\}$ possesses a convergent subsequence if $\{u_n\}$
is a sequence of $X$ such that $\{\varphi(u_n)\}$ is bounded and
$\varphi'(u_n)\to 0 $ as $n\to \infty$.
Firstly, we obtain that
\begin{equation} \label{e3}
\varphi(u)\leq 0, \quad \text{for $u\in X_2$ with } \|u\|\leq \delta_0
\end{equation}
By (H5), we have
$$
\mu_mt^2\leq tf(x,t)\leq \mu_{m+1}t^2
$$
for all $|t|\leq \delta$ and a.e.$x\in \Omega$.
Hence, the following inequality holds
$$
\mu_mt^2s\leq tf(x,ts)\leq \mu_{m+1}t^2s
$$
for all $0\delta$, we have
\begin{align*}
|w(x)|
&\geq |u(x)|-|v(x)|\geq |u(x)|-\|v\|_\infty \\
&\geq |u(x)|-C_5\|v\| \geq |u(x)|-C_5\|u\|\\
&\geq \frac{1}{2}|u(x)|
\end{align*}
Moreover,
\[
\mu_{m+2}\int_\Omega|w(x)|^2dx\leq\int_\Omega |\nabla w(x)|^2dx
\]
Hence, we obtain
\[
\|w\|^2=\int_\Omega |\nabla w(x)|^2dx +\int_\Omega |w(x)|^2dx
\leq (1+\frac{1}{ \mu_{m+2}})\int_\Omega |\nabla w(x)|^2dx\,;
\]
that is,
\begin{equation} \label{e7}
\int_\Omega |\nabla w(x)|^2dx\geq \frac{\mu_{m+2}}{1+\mu_{m+2}}\|w\|^2
\end{equation}
By \eqref{e4}, \eqref{e6}, \eqref{e2} and \eqref{e7}, one has
\begin{align*} %\label{e8}
&\varphi(u)\\
&= \frac{1}{2}\int_\Omega |\nabla u(x)|^2dx -\int_\Omega
F(x,u(x))dx \\
& = \frac{1}{2}\int_\Omega |\nabla u(x)|^2dx -\int_{\{x\in \Omega:|u(x)|> \delta\}}
F(x,u(x))dx
-\int_{\{x\in \Omega:|u(x)|\leq \delta\}} F(x,u(x))dx \\
& = \frac{1}{2}\int_\Omega |\nabla u(x)|^2dx
- \int_{\{x\in \Omega:|u(x)|\leq \delta\}}
\frac{1}{2}\mu_{m+1}|u|^2dx \\
&\quad -\int_{\{x\in \Omega:|u(x)|> \delta\}}F(x,u(x))dx
- \int_{\{x\in \Omega:|u(x)|\leq \delta\}}
\Big(F(x,u)-\frac{1}{2}\mu_{m+1}|u|^2\Big)dx \\
& \geq \frac{1}{2}\int_\Omega |\nabla w(x)|^2dx
+\frac{1}{2}\int_\Omega |\nabla v(x)|^2dx- \int_{\Omega}
\frac{1}{2}\mu_{m+1}|u|^2dx \\
& \quad -\int_{\{x\in \Omega:|u(x)|> \delta\}}
|F(x,u(x))|dx \\
& \geq \frac{1}{2}\int_\Omega |\nabla w(x)|^2dx
+\frac{1}{2}\int_\Omega |\nabla v(x)|^2dx- \int_{\Omega}
\frac{1}{2}\mu_{m+1}w^2dx \\
&\quad - \int_{\Omega}
\frac{1}{2}\mu_{m+1}v^2dx
-\int_{\{x\in \Omega:|u(x)|> \delta\}}
C_6|u|^pdx \\
&\geq \frac{1}{2}\int_\Omega |\nabla w(x)|^2dx
-\frac{1}{2}\int_\Omega \mu_{m+1}|w(x)|^2dx-\int_{\Omega}C_6 |2w|^pdx \\
&= \frac{1}{2}\int_\Omega |\nabla w(x)|^2dx
-\frac{1}{2}\int_\Omega \mu_{m+1}|w(x)|^2dx-C_6\|2w\|_{L^p(\Omega)}^p \\
&\geq \frac{1}{2}(1-\frac{\mu_{m+1}}{\mu_{m+2}})
\int_\Omega |\nabla w(x)|^2dx-C_6C^p\|2w\|^p \\
&\geq \frac{\mu_{m+2}-\mu_{m+1}}{2(1+\mu_{m+2})}\|w\|^2-C_7\|w\|^p
= C_8\|w\|^2-C_7\|w\|^p
\end{align*}
for all $u\in X_1$ with $\|u\|\leq \frac{\delta}{2C_5}$.
From the above inequality, we can conclude that
$$
\varphi(u)\geq 0, \quad \text{for $u\in X_1$ with }
\|u\|\leq \delta_1= \big(\frac{C_8}{C_7}\big)^{\frac{1}{p-2}}
$$
Let $\delta_0=\min\{ \frac{\delta}{2C_5},\delta_1\}$,
hence \eqref{e3} and \eqref{e5} hold.
In the case $\inf_X \varphi<0$, the proof of Theorem \ref{thm2} is complete directly
by Lemma \ref{lem3}.
In the case $\inf_X \varphi\geq 0$, it follows from \eqref{e3} that
$$
\varphi(u)=\inf_X \varphi=0\ \text{ for all $u\in X_2$ with } \|u\|\leq \delta
$$
Hence all $u \in X_2$ with $ \|u\|\leq \delta$ are solutions of \eqref{e1}.
Therefore, Theorem \ref{thm2} is proved.
\end{proof}
\subsection*{Acknowledgments}
This research was supported by the Science Foundation of Hubei
Provincial Department of Education, China (No.Q20132902) and by the
Science Foundation of Huanggang Normal University (2014018703).
The authors would like to thank the anonymous referees for their valuable
suggestions.
\begin{thebibliography}{00}
\bibitem{H} H. Brezis, L. Nirenberg;
\emph{Remarks on finding critical points}, Comm. Pure Appl. Math. 44
(1991), 939-963.
\bibitem{Costa} D. G. Costa;
\emph{An invitation to variational methods in differential equations},
Birkhauser, 2007.
\bibitem{CP} C. P. Gupta;
\emph{Perturbations of second order linear elliptic
problems by unbounded nonlinearities}, Nonlinear Anal. 6 (1982),
919-933.
\bibitem{G} J. V. A. Goncalves;
\emph{On nonresonant sublinear elliptic problems}, Nonlinear Anal. 15 (1990),
915-920.
\bibitem{RI1} R. Iannacci, M. N. Nkashama;
\emph{Nonlinear two point boundary value
problem at resonance without Landesman-Lazer condition}, Proc.
Amer. Math. Soc. 10 (1989), 943-952.
\bibitem{RI2} R. Iannacci, M. N. Nkashama;
\emph{Nonlinear boundary value problems
at resonance}, Nonlinear Anal. 11 (1987), 455-473.
\bibitem{Kuo} C. C. Kuo;
\emph{On the solvability of a nonlinear second-order
elliptic equations at resonance}, Proc. Amer. Math. Soc. 124 (1996),
83-87.
\bibitem{LiC} C. Y. Li, Q. Zhang, F. F. Chen;
\emph{Pairs of sign-changing solutions for sublinear
elliptic equations with Neumann boundary conditions},
Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 112, 1-9.
\bibitem{Li} C. Li, S. J. Li;
\emph{Multiple solutions and sign-changing solutions of a class of nonlinear elliptic
equations with Neumann boundary condition}, J. Math. Anal. Appl. 298(2004), 14-32.
\bibitem{JM1} J. Mawhin;
\emph{Necessary and sufficient conditions for the
solvability of nonlinear equations through the dual least action
principle}, in: X. Pu (Ed.), Workshop on Applied Differential
Equations, Beijing, 1985, World Scientific, Singapore, 1986,
91-108.
\bibitem{JM2} J. Mawhin;
\emph{Semi-coercive monotone variational problems}, Acad.
Roy. Belg. Bull. Cl. Sci. 73 (1987), 118-130.
\bibitem{J} J. Mawhin, M. Willem;
\emph{Critical Point Theory and Hamiltonian
Systems}, Springer-Verlag, New York, 1989.
\bibitem{PH} P. H. Rabinowitz;
\emph{On a class of functionals invariant under a
$Z^n$ action}, Trans. Amer. Math. Soc. 310 (1988), 303-311.
\bibitem{Tang1} C. L. Tang;
\emph{Solvability of Neumann problem for elliptic
equation at resonance}, Nonlinear Anal. 44 (2001), 323-335.
\bibitem{Tang2} C. L. Tang;
\emph{Some existence theorems for sublinear Neumann
boundary value problem}, Nonlinear Anal. 48 (2002), 1003-1011.
\bibitem{Tang3} C. L. Tang, X. P. Wu;
\emph{Existence and multiplicity for
solutions of Neumann problem for semilinear elliptic equations},J.
Math. Anal. Appl. 288 (2003), 660-670.
\bibitem{Tang4} C. L. Tang, X. P. Wu;
\emph{Multiple solutions of a class of Neumann problem for
semilinear elliptic equations}, Nonlinear Analysis: TMA, 62(2005), 455-465.
\bibitem{Tang5} C. L. Tang, X. P. Wu;
\emph{Periodic solutions for second order systems with not uniformly coercive
potential}, J. Math. Anal. Appl. 259 (2001), 386-397.
\end{thebibliography}
\end{document}