\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 201, pp. 1--18.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/201\hfil Analytic solutions of nonlinear PDEs] {Analytic solutions of a class of nonlinear partial differential equations} \author[E. N. Petropoulou \hfil EJDE-2015/201\hfilneg] {Eugenia N. Petropoulou} \address{Eugenia N. Petropoulou \newline Department of Civil Engineering, University of Patras, 26500 Patras, Greece} \email{jenpetr@upatras.gr} \thanks{Submitted April 29, 2015. Published August 4, 2015.} \subjclass[2010]{35A01, 35A02, 35B99, 35C10, 35J60, 35L70} \keywords{Analytic solution; series solution; bounded solution; wave-type PDE; \hfill\break\indent Laplace-type PDE; PDE with mixed derivatives; sine-Gordon; Klein-Gordon} \begin{abstract} We study a class of nonlinear partial differential equations, which can be connected with wave-type equations and Laplace-type equations, by using a functional-analytic technique. We establish primarily the existence and uniqueness of bounded solutions in the two-dimensional Hardy-Lebesque space of analytic functions with independent variables lying in the open unit disc. However these results can be modified to expand the domain of definition. The proofs have a constructive character enabling the determination of concrete and easily verifiable conditions, and the determination of the coefficients appearing in the power series solution. Illustrative examples are given related to the sine-Gordon equation, the Klein-Gordon equation, and to equations with nonlinear terms of algebraic, exponential and logistic type. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{result}[theorem]{Result} \allowdisplaybreaks \section{Introduction} \label{Intro} Recently in \cite{PSAIMS}, a functional-analytic technique was employed for the study of bounded, analytic or entire, complex solutions of the Benjamin-Bona-Mahony equation \cite{BBM1972} \begin{equation} u_t+u_x+uu_x-u_{xxt}=0,\quad u=u(x,t)\label{Intro_BBM} \end{equation} as well as the associated linear equation \begin{equation} u_t+u_x-u_{xxt}=0, \quad u=u(x,t). \label{Intro_LinBBM} \end{equation} This technique was used for the first time in \cite{PS2009}, for finding a necessary and sufficient condition for the existence of polynomial solutions of a class of linear partial differential equations (PDEs). Its main idea, is the transformation of the PDE into an equivalent operator equation in an abstract Hilbert or Banach space. Moreover, this technique is an extension of another functional-analytic technique for the study of analytic solutions of initial value problems of ordinary differential equations (ODEs), introduced by Ifantis \cite{I1971} and systemized in \cite{I1978,I1987a}. In the present study, the analytic solutions of the general class of nonlinear PDEs \begin{equation} u_{xt}+au_{x}+bu_{t}+cu=g(x,t)+G(u(x,t)), \quad u=u(x,t) \label{Intro_GeneralPDE} \end{equation} where $ G(u(x,t))=\sum_{n=2}^{\infty}c_n [u(x,t)]^n$ will be studied, extending in this way the method of \cite{PSAIMS} to other kind of nonlinear terms. It should be noted that the nonlinear term $G(u(x,t))$ appearing in \eqref{Intro_GeneralPDE} is quite general, since it includes all kind of nonlinear terms having a Taylor expansion. The problem of the analytic solutions of PDEs is an old and interesting problem on its own. From the various papers regarding several results on analytic solutions of PDEs, \cite{ES1997,K1972,Z1980,Z1999} are indicatively mentioned, as well as the more recent \cite{CN2012,CGS2012,HP2012}. The main result of the present paper (Theorem \ref{MR_MainTheorem}) is stated in \S\ref{MR} and is of Cauchy-Kowalewski type establishing a unique bounded solution of \eqref{Intro_GeneralPDE} in the Banach space \begin{align*} H_1(\Delta^{2})=\Big\{&f:\Delta^{2}\to\mathbb{C} , \text{ where } f(x,t)=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\overline {f}_{ij}x^{i-1}t^{j-1}\in H_2(\Delta^2),\\ & \text{for which }\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}| f_{ij}| <+\infty\Big\}, \end{align*} where $\Delta^2=\Delta\times\Delta$, $\Delta=\{z\in\mathbb{C}:| z|<1\}$, with norm $\| f(x,t)\|_{H_1(\Delta^{2})}=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty}| f_{ij}|$. The space $H_2(\Delta^2)$ appearing in the previous definition, is the Hilbert space \begin{align*} H_2(\Delta^{2})=\Big\{&f:\Delta^{2}\to\mathbb{C} , \text{ where } f(x,t)=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\overline {f}_{ij}x^{i-1}t^{j-1}, \text{is analytic in } \Delta^{2}\\ &\text{with } \sum_{i=1}^{\infty}\sum_{j=1}^{\infty}| f_{ij}|^{2} <+\infty\}, \end{align*} with inner product defined by $$ \left(f_1(x,t),f_2(x,t)\right)_{H_2(\Delta^{2})}=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\overline{\alpha}_{ij}b_{ij}, $$ where \[ f_1(x,t)=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\overline{\alpha}_{ij}x^{i-1}t^{j-1}, \quad f_2(x,t)=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\overline{b}_{ij}x^{i-1}t^{j-1} \] are elements of $H_2(\Delta^{2})$. (The one dimensional spaces $H_2(\Delta)$ and $H_1(\Delta)$ are analogously defined with only one series involved in their definitions.) For the proof of the main result, which is also given in \S\ref{MR}, the technique presented in \S\ref{Abstract} is utilized. This technique reduces the problem of $H_1(\Delta^{2})$ solutions of \eqref{Intro_GeneralPDE}, to an equivalent problem for the solutions of an operator equation in an abstract Banach space. One important advantage of this approach is that the conditions accompanying \eqref{Intro_GeneralPDE} are incorporated in the equivalent operator equation. Another equally important advantage of this technique, which is a consequence of the spaces $H_2(\Delta^{2})$ and $H_1(\Delta^{2})$, is that the established solution is by definition analytic in the form of a power series and thus, there is no need to prove convergence using for example the commonly used method of majorants. The reasons for studying PDEs in $H_1(\Delta^2)$ and $H_2(\Delta^2)$, apart from the fact that these spaces are included in the important class of analytic functions, is that they are quite useful in applications and their elements are represented by one function and not by a class of equivalent functions, as in the case of $L_2(\Delta^{2})$. Moreover, they are suitable for studying polynomial solutions of PDEs. Also, by establishing a solution of a PDE in $H_2(\Delta^{2})$ or $H_1(\Delta^{2})$, this solution is a convergent power series, the coefficients of which can be uniquely determined in many cases, thus obtaining an ``exact" solution. Finally, these spaces appear naturally in problems of quantum mechanics. For more details, see \cite{PSAIMS} and the references therein. For the main result of \eqref{Intro_GeneralPDE}, the independent variables $x$ and $t$ are both assumed in the open unit disc $\Delta$. However, this is not restrictive since one may choose instead equation \begin{equation} \tilde{u}_{\tilde{x}\tilde{t}}+\tilde{a}\tilde{u}_{\tilde{x}} +\tilde{b}\tilde{u}_{\tilde{t}}+\tilde{c}\tilde{u} =\tilde{g}(\tilde{x},\tilde{t})+\tilde{G}(\tilde{u}(\tilde{x},\tilde{t})) \label{Intro_GeneralPDEXT} \end{equation} where $\tilde{u}=\tilde{u}(\tilde{x},\tilde{t})$ with $|\tilde{x}|0$. Then, the nonlinear operator \begin{equation} N(f)=\sum_{n=2}^{\infty}\overline{c}_n[f(V_1,V_2)]^{n-1}f \label{Method_OperatorSeries} \end{equation} is the abstract form of $ G(f(x,t))=\sum_{n=2}^{\infty}c_n [f(x,t)]^n$ and is defined in the open sphere $S(0,R_1)\subset H_1$. \end{proposition} \begin{proof} The operator $N(f)$ is well defined for $f\in S(0,R_1)$, since $$ \| N(f)\|_1\leq\sum_{n=2}^{\infty}| c_n|\cdot\| [f(V_1,V_2)]^{n-1}f\|_1 \leq\sum_{n=2}^{\infty}| c_n|\cdot\| f\|_1^n \leq\sum_{n=2}^{\infty}| c_n| R^n<\infty, $$ for $\| f\|\leq R0$. Then, the nonlinear operator $N(f)$ defined by \eqref{Method_OperatorSeries}, is Frech\'et differentiable at every point $f_0\in S(0,R_1)$ and its derivative is given by \begin{equation} N'(f_0)f=\sum_{n=2}^{\infty}\overline{c}_n(n-1)[f_0(V_1,V_2)]^{n-2}f. \label{Method_FrechetDerivative} \end{equation} \end{proposition} \begin{proof} Since formally \begin{align*} (f_{xt},N'(f_0)f) &=\Big(f_{xt},\sum_{n=2}^{\infty}\overline{c}_n(n-1)[f_0(V_1,V_2)]^{n-2}f\Big)\\ &=\sum_{n=2}^{\infty}c_n (n-1)\left(f_{xt},[f_0(V_1,V_2)]^{n-2}f\right) \\ &=\sum_{n=2}^{\infty}c_n (n-1)\left(f_{0}^{*}(V_1,V_2)f_{xt},[f_0(V_1,V_2)]^{n-3} f\right)\\ & \stackrel{\eqref{Method_EigenvalueTypeRelation}}= \sum_{n=2}^{\infty}c_n (n-1)f_0(x,t)\left(f_{xt},[f_0(V_1,V_2)]^{n-3}f\right) \end{align*} which implies \[ (f_{xt},N'(f_0)f) =\sum_{n=2}^{\infty}c_n (n-1)[f_0(x,t)]^{n-2}f(x,t)=G_2(f(x,t)), \] it suffices to show that $G_2(f(x,t))$ is the Frech\'et derivative of \[ G_1(f(x,t))=\sum_{n=2}^{\infty}c_n[f(x,t)]^{n-1} \] at the point $f_0(x,t)\in S(0,R_1)\subset H_1(\Delta^2)$. Obviously, $G_2(f(x,t))$ is a linear operator of $f(x,t)$ for which $$ \| G_2(f(x,t))\|_{H_1(\Delta^2)} \leq\sum_{n=2}^{\infty}| c_n|(n-1)R^{n-2}\| f(x,t)\|_{H_1(\Delta^2)} <\sum_{n=2}^{\infty}| c_n|(n-1)R^{n-1}, $$ which converges for $f_0(x,t)\in S(0,R_1) \Rightarrow\| f_0(x,t)\|_{H_1(\Delta^2)}\leq R0$, sufficiently large. Then, if \begin{equation} | a|+| b|+| c|<1, \label{MR_Con1} \end{equation} there exist $R_0>0$ and $P_0>0$ such that if \begin{equation} \| g(x,t)\|_{H_1(\Delta^2)}+\left(1+| b|\right) \| u(x,0)\|_{H_1(\Delta)}+\left(1+| a|\right) \| u(0,t)\|_{H_1(\Delta)}-| u(0,0)|0$ and $P_0>0$ can be explicitly determined. More precisely, as it will be made clear in the proof of Theorem \ref{MR_MainTheorem}, the constant $R_0$ is the point at which the function $$ P(R)=\frac{R}{L}-\sum_{n=2}^{\infty}| c_n| R^n, \quad \text{with } L=\frac{1}{1-| a|-| b|-| c|}$$ attaints its maximum and $P_0=P(R_0)$. \end{remark} \begin{remark} \label{rmk3.3} \rm Even if the quantities $R_0$ and $P_0$ cannot be explicitly determined in some cases, they can be approximately determined by truncating the power series appearing in $P(R)$. In this way $P(R)$, becomes a polynomial of which the maximum can be found, at least numerically. \end{remark} The following corollary is an immediate consequence of Theorem \ref{MR_MainTheorem} and extends the previous result for independent variables lying in a disc with radius not equal to 1. \begin{corollary} \label{MR_Cor1} Consider the equation \begin{equation} \tilde{u}_{\tilde{x}\tilde{t}}+\tilde{a}\tilde{u}_{\tilde{x}} +\tilde{b}\tilde{u}_{\tilde{t}}+\tilde{c}\tilde{u} =\tilde{g}_1(\tilde{x},\tilde{t})+\sum_{n=2}^{\infty}\tilde{c}_n [\tilde{u}(\tilde{x},\tilde{t})]^n, \quad\tilde{u}=\tilde{u}(\tilde{x},\tilde{t}) \label{MR_GeneralPDEXT} \end{equation} with $|\tilde{x}|0$, sufficiently large and \begin{equation} T|\tilde{a}|+X|\tilde{b}|+XT|\tilde{c}|<1. \label{MR_Con11} \end{equation} Then there exist $R_0>0$ and $P_0>0$ such that if \begin{equation} \begin{aligned} &\| g(x,t)\|_{H_1(\Delta^2)}+\Big(1+X|\tilde{b}|\Big) \| u(x,0)\|_{H_1(\Delta)}\\ &+ \left(1+T|\tilde{a}|\right)\| u(0,t)\|_{H_1(\Delta)} -| u(0,0)|0$ such that $\| x'-y\|>\epsilon_1$ for all $x'\in X'$ and $y\in E-X$.)" Returning to \eqref{Proofs_FixedPointEquation}, suppose that $u\in B(0,R)$, $R1$. Then, for the function $$ M_1(R)=1-LRM(R) $$ it is $M_1(0)=1>0$ and $M_1(R_2)<0$, which by the intermediate value theorem implies that there exists an $R_3\in(0,R_2)$ such that $M_1(R_3)=0$. Consider now the continuous function $$ P(R)=L^{-1}RM_1(R). $$ Then, $P(0)=0=P(R_3)$ and $P'(0)>0$, whereas $P'(R_3)<0$. Thus, there exists an $R_0\in (0,R_3)$ where $P(R)$ attains its maximum. Now for every $\epsilon>0$ and $R=R_0$, if \begin{equation} \| h\|_1+\| g\|_1\leq P(R_0)-\frac{\epsilon}{L}, \label{Proofs_Condition} \end{equation} relation \eqref{Proofs_Bounds} gives $$ \| g(u)\|\leq LP(R_0)-\epsilon+LR_{0}^{2}M(R_0) =LP(R_0)-\epsilon+R_0-R_{0}M_1(R_0) $$ which implies $\| g(u)\|\leq R_0-\epsilon0$, sufficiently large and \begin{equation} |\hat{b}+\hat{a}\kappa|+ |\hat{b}-\hat{a}\kappa|+|\hat{c}|<4\kappa^2. \label{Appl_WaveCon1} \end{equation} Then there exist $R_0>0$ and $P_0>0$ such that if \begin{equation} \begin{aligned} &\| g(x,t)\|_{H_1(\Delta^2)}+\Big(1+\frac{|\hat{b} -\hat{a}\kappa|}{4\kappa^2}\Big)\| u(x,0)\|_{H_1(\Delta)}\\ &+\Big(1+\frac{|\hat{b}+\hat{a}\kappa|}{4\kappa^2}\Big) \| u(0,t)\|_{H_1(\Delta)}-| u(0,0)|0$, sufficiently large and \begin{equation} |\hat{b}-i\hat{a}k|+ |\hat{b}+i\hat{a}k|+|\hat{c}|<4k^2. \label{Appl_LaplaceCon1} \end{equation} Then there exist $R_0>0$ and $P_0>0$ such that if \begin{equation} \begin{aligned} &\| g(x,t)\|_{H_1(\Delta^2)}+\Big(1+\frac{|\hat{b} +i\hat{a}k|}{4k^2}\Big)\| u(x,0)\|_{H_1(\Delta)}\\ &+ \Big(1+\frac{|\hat{b}-i\hat{a}k|}{4k^2}\Big)\| u(0,t)\|_{H_1(\Delta)} -| u(0,0)|0 \label{Exa_Alg_Trans2} \end{gather} equation \eqref{Exa_Alg_PDESpecificPaper} is reduced to \begin{equation} u_{xt}+\frac{XT}{4}u=h(x,t)-\frac{XT}{4}u^3, \quad u=u(x,t), \label{Exa_Alg_PDESpecific} \end{equation} which is of the form \eqref{Exa_Alg_PDE}, with \begin{align*} h(x,t) &=-\frac{t^9 T^{10} X}{2048}+\frac{3t^8 T^9 x X^2}{2048} -\frac{t^6T^7 x^3 X^4}{256}+\frac{3 t^5 T^6 x^4X^5}{1024} \\ &\quad +\frac{3 t^4 T^5 x^5 X^6}{1024}-\frac{t^3 T^4 x^6 X^7}{256} -\frac{t^3 T^4 X}{32}+\frac{t^2 T^3 x X^2}{32}+\frac{3 t T^2 x^8 X^9}{2048} \\ &\quad +\frac{t T^2 x^2 X^3}{32}+\frac{t T^2 X}{4}-\frac{T x^9 X^{10}}{2048} -\frac{T x^3 X^4}{32}+\frac{T x X^2}{4}. \end{align*} For reasons of simplicity only the real solutions of \eqref{Exa_Alg_PDESpecific} will be considered. If \eqref{Exa_Alg_PDESpecific} is complemented by the initial conditions \begin{equation} u(x,0)=-\frac{X^3}{8}x^3,\quad u(0,t)=-\frac{T^3}{8}t^3, \label{Exa_Alg_IC} \end{equation} then Result \ref{Exa_Alg_ResultGeneral} becomes \begin{result} \label{Exa_Alg_ResultSpecific} \rm If \begin{equation} XT<4 \label{Exa_Alg_SpCon1} \end{equation} and \begin{equation} \begin{aligned} &\frac{T^{10} X}{2048}+\frac{3T^9X^2}{2048}+\frac{T^7 X^4}{256} +\frac{3T^6X^5}{1024}+\frac{3T^5X^6}{1024}+\frac{T^4X^7}{256}+\frac{T^4 X}{32} +\frac{T^3 X^2}{32}\\ &+\frac{3T^2 X^9}{2048}+\frac{T^2 X^3}{32}+\frac{T^2 X}{4}+\frac{T X^{10}}{2048} +\frac{T X^4}{32}+\frac{T X^2}{4} +\frac{X^3}{8}+\frac{T^3}{8}\\ &<2\big(\frac{4-XT}{12}\big)^{3/2}, \end{aligned} \label{Exa_Alg_SpCon2} \end{equation} the initial value problem \eqref{Exa_Alg_PDESpecific}, \eqref{Exa_Alg_IC} has a unique solution in $H_1(\Delta^2)$ bounded by $(\frac{4-XT}{12})^{1/2}$. \end{result} Moreover, this solution can be determined by computing the coefficients $(u,e_{i,j})$ of the real solution $u(x,t)=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}(u,e_{i,j})x^{i-1}t^{j-1}$ in the following way: The equivalent to \eqref{Exa_Alg_PDESpecific}--\eqref{Exa_Alg_IC}, for the abstract operator equation, according to \eqref{Proofs_P1_K}, is \begin{equation} \Big(I+\frac{XT}{4}V_2B_2^{(0)}V_1B_1^{(0)}\Big)u=h+V_2B_2^{(0)}V_1B_1^{(0)}g +V_2B_2^{(0)}V_1B_1^{(0)}N(u), \label{Exa_Alg_AbstractForm} \end{equation} where \begin{gather*} N(u)=-\frac{XT}{4}[u(V_1,V_2)]^2u,\quad h=-\frac{T^3}{8}e_{1,4}-\frac{X^3}{8}e_{4,1},\\ \begin{aligned} g&=\frac{T^2 X}{4}e_{1,2}-\frac{T^4 X}{32}e_{1,4}-\frac{T^{10} X}{2048}e_{1,10} +\frac{T X^2}{4}e_{2,1}+\frac{T^3 X^2}{32}e_{2,3}+\frac{3T^9 X^2}{2048}e_{2,9}\\ &\quad +\frac{T^2 X^3}{32}e_{3,2}-\frac{T X^4}{32}e_{4,1}-\frac{T^7 X^4}{256}e_{4,7} +\frac{3 T^6 X^5}{1024}e_{5,6}+\frac{3 T^5 X^6}{1024}e_{6,5} \\ &\quad -\frac{T^4 X^7}{256}e_{7,4}+\frac{3T^2 X^9}{2048}e_{9,2} -\frac{T X^{10}}{2048}e_{10,1}. \end{aligned} \end{gather*} By the second of the initial conditions \eqref{Exa_Alg_IC} it is deduced that $$ (u,e_{1,j})=0,\quad\forall j\neq4\quad \text{and}\quad (u,e_{1,4})=-\frac{T^3}{8}. $$ By taking the inner product of \eqref{Exa_Alg_AbstractForm} with $e_{2,j}$ and using the othonormality of $\{e_{i,j}\}$ one obtains: \begin{gather*} (u,e_{2,1})=0,\\ \begin{aligned} (u,e_{2,j})&=-\frac{XT}{4(j-1)}(u,e_{1,j-1})+\frac{1}{j-1}(g,e_{1,j-1}) \\ &\quad -\frac{XT}{4(j-1)}\sum_{\ell=1}^{j-1}\sum_{p=1}^{j-\ell}(u,e_{1,\ell}) (u,e_{1,p})(u,e_{1,j-\ell-p+1}), \end{aligned} \end{gather*} from where it is deduced that $$ (u,e_{2,j})=0,\quad\forall j\neq3\quad \text{and}\quad (u,e_{2,3})=\frac{XT^2}{8}. $$ Similarly, by taking the inner product of \eqref{Exa_Alg_AbstractForm} with $e_{3,j}$ it is deduced that $$ (u,e_{3,j})=0,\quad\forall j\neq2\quad \text{and}\quad (u,e_{3,2})=\frac{TX^2}{8} $$ and by taking the inner product of \eqref{Exa_Alg_AbstractForm} with $e_{4,j}$ it is obtained that $$ (u,e_{4,j})=0,\quad\forall j\neq1\quad \text{and}\quad (u,e_{4,1})=-\frac{X^3}{8}. $$ Continuing in the same way and after some tedious manipulations, which can be performed also by use of a symbolic package calculations such as \emph{Mathematica}, it is found that for $i=5,\ldots,11$ it is $(u,e_{i,j})=0$, for all $j$ and by use of mathematical induction it is finally proved that $(u,e_{i,j})=0$, $\forall$ $j$ and $\forall$ $i\geq12$. Thus, the unique solution of \eqref{Exa_Alg_PDESpecific}, \eqref{Exa_Alg_IC} in $H_1(\Delta^2)$ is $$ u(x,t)=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}(u,e_{i,j})x^{i-1}t^{j-1} =-\frac{T^3}{8}t^3+\frac{XT^2}{8}xt^2+\frac{TX^2}{8}x^2t-\frac{X^3}{8}x^3, $$ for $X$, $T$ satisfying \eqref{Exa_Alg_SpCon1} and \eqref{Exa_Alg_SpCon2}. Notice that by using \eqref{Exa_Alg_Trans2} and \eqref{Exa_Alg_Trans1}, $u(x,t)$ is rewritten as $\hat{u}(\xi,\eta)=\eta\xi^2$. \subsection{Equations with logistic type nonlinear terms} In \cite{AKB2002}, the traveling waves of \begin{equation} u_{tt}=v^2 u_{xx}+ku(1-u),\quad u=u(x,t) \label{Exa2_PDEPaper} \end{equation} were studied. Such kind of equations appear in chemical and population dynamics. Thus, in this example the PDE \begin{equation} u_{xt}+au_{x}+bu_{t}+cu=k u(1-u), \quad u=u(x,t), \label{Exa2_PDE} \end{equation} will be considered. The function $P(R)$ in this case is $$ P(R)=R\left(1-| a|-| b|-| c-\lambda|\right)-|\lambda| R^2, $$ which attains its maximum at $R_0=\frac{1-| a|-| b|-| c-\lambda|}{2|\lambda|}$. Thus, according to Theorem \ref{MR_MainTheorem} the following holds. \begin{result} \label{Exa2_Result} \rm Assume that $u(x,0),u(0,t)\in H_1(\Delta)$, $| a|+| b|+| c-\lambda|<1$ and $$ | a|+| b|+2<\frac{1-| a|-| b|-| c-\lambda|}{4|\lambda|}. $$ Then equation \eqref{Exa2_PDE} has a unique solution in $H_1(\Delta^2)$ bounded by $R_0$. \end{result} \subsection{The sine-Gordon equation} Consider now the well-known sine-Gordon equation \begin{equation} \hat{u}_{\xi\xi}-\omega^2\hat{u}_{\eta\eta}+d\sin\hat{u}=0, \label{Appl_sineGordon} \end{equation} where $\omega$ is a non zero real number, which arises in various problems such as differential geometry, oscillations, optics, fluid mechanics, elementary particle physics and biology. (For more information see \cite{D2005} and the references therein). Equation \eqref{Appl_sineGordon} can be rewritten in the form \begin{equation} \hat{u}_{\xi\xi}-\omega^2\hat{u}_{\eta\eta}+d\hat{u}= -d\sum_{s=1}^{\infty}\frac{(-1)^{2s+1}}{(2s+1)!}\hat{u}^{2s+1}, \label{Appl_sineGordonSeries} \end{equation} or after using \eqref{Appl_Trans} for $\kappa=\omega$ in the form \begin{equation} u_{xt}-\frac{d}{4\omega^2}u=\frac{d}{4\omega^2} \sum_{s=1}^{\infty}\frac{(-1)^{2s+1}}{(2s+1)!}\hat{u}^{2s+1}, \label{Appl_sineGordonu} \end{equation} where $u(x,t)=\hat{u}(\frac{x+t}{2},\frac{x-t}{2\omega})=\hat{u}(\eta,\xi)$. The function $P(R)$ in this case is \begin{align*} P(R)&=\frac{4\omega^2 R}{4\omega^2-| d|} -\frac{| d|}{4\omega^2}\sum_{s=1}^{\infty}\frac{1}{(2s+1)!}R^{2s+1}\\ &=\frac{4\omega^2 R}{4\omega^2-| d|}-\frac{| d|}{4\omega^2}(\sinh R-R)\\ &= \frac{16\omega^4+4\omega^2 | d|-| d|^2}{4\omega^2(4\omega^2-| d|)}R -\frac{| d|}{4\omega^2}\sinh R, \end{align*} which attains its maximum at $R_0=\cosh^{-1}\big(\frac{16\omega^4+4\omega^2| d|-| d|^2}{4\omega^2-| d|}\big)$. Then a direct application of Corollary \ref{Appl_CorWave} gives \begin{result} \label{Appl_CorsineGordon} \rm Assume that $u(x,0),u(0,t)\in H_1(\Delta)$, \begin{gather} | d|<4\omega^2 , \label{Appl_sineGordonCon1} \\ \| u(x,0)\|_{H_1(\Delta)}+\| u(0,t)\|_{H_1(\Delta)}-| u(0,0)|