\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 202, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/202\hfil Multiple positive solutions] {Multiple positive solutions for Kirchhoff problems with sign-changing potential} \author[G.-S. Liu, C.-Y. Lei, L.-T. Guo, H. Rong \hfil EJDE-2015/202\hfilneg] {Gao-Sheng Liu, Chun-Yu Lei, Liu-Tao Guo, Hong Rong} \address{Gao-Sheng Liu \newline School of Science, Guizhou Minzu University, Guiyang 550025, China} \email{772936104@qq.com} \address{Chun-Yu Lei (corresponding author)\newline School of Science, Guizhou Minzu University, Guiyang 550025, China} \email{leichygzu@sina.cn, Phone +86 15985163534 } \address{Liu-Tao Guo \newline School of Science, Guizhou Minzu University, Guiyang 550025, China} \email{350630542@qq.com} \address{Hong Rong \newline School of Science, Guizhou Minzu University, Guiyang 550025, China} \email{402453552@qq.com} \thanks{Submitted June 22, 2015. Published August 4, 2015.} \subjclass[2010]{35D05, 35J60, 58J32} \keywords{Kirchhoff type equation; sign-changing potential; Nehari manifold} \begin{abstract} In this article, we study the existence and multiplicity of positive solutions for a class of Kirchhoff type equations with sign-changing potential. Using the Nehari manifold, we obtain two positive solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction and statement of main result} Consider the Kirchhoff type problems with Dirichlet boundary value conditions \begin{equation}\label{1} \begin{gathered} -(a+b\int_\Omega(|\nabla u|^2+v(x)u^2)\,dx)(\Delta u-v(x)u) =h(x)u^{p}+{\lambda}f(x,u) \quad \text{in }\Omega, \\ u=0 \quad\text{on }\partial\Omega, \end{gathered} \end{equation} where $\Omega$ is a smooth bounded domain in $\mathbb{R}^{3}$, $a>0$, $b>0$, $\lambda>0$, $3
0$, and
$f(x,u)$ satisfies the following two conditions:
\begin{itemize}
\item[(F1)] $f(x,u)\in{C^1(\Omega\times \mathbb{R})}$ with $f(x,0)\geq0$,
and $f(x,0)\neq0$. There exists a constant
$c_1>0$, such that $f(x,u)\leq c_1(1+u^q)$ for $0 0$, such that $I_{\lambda}(tu)>0$, for $\lambda<\lambda_3$.
\end{lemma}
\begin{proof}
For every $u\in H^{1}_0(\Omega)$, $u\neq0$, if $H(u)\leq 0$, by \eqref{2.4},
we obtain $I_{\lambda}(tu)>0$ when $t$ is large enough. Assume $H(u)>0$, and
let
\[
\phi_1(t)=\frac{a}{2}t^{2}\|u\|^{2}-\frac{t^{p+1}}{p+1}H(u).
\]
Through calculations, one obtains that $\phi_1(t)$ takes on a maximum at
\[
t_{\rm max}=\Big(\frac{a\|u\|^2}{H(u)}\Big)^{\frac{1}{p-1}}.
\]
It follows that
\begin{align*}
\phi_1(t_{\rm max})
&=\frac{p-1}{2(p+1)}\Big( \frac{(a\|u\|^2)^{p+1}}
{(\int_{\Omega}h(x)|u|^{p+1}\,dx)^2}\Big)^{\frac{1}{p-1}}\\
&\geq \frac{p-1}{2(p+1)}\Big( \frac{a^{p+1}}{\|h^{+}\|_{\infty}^{2}S_{p+1}^{2(p+1)}}
\Big)^{\frac{1}{p-1}}:=\delta_1.
\end{align*}
When $1\leq r<6$, one has
\begin{equation}\label{2.10}
\begin{aligned}
(t_{\rm max})^{r}\int_{\Omega}|u|^{r}\,dx
&\leq S_{r}^{r}\Big(\frac{a\|u\|^2}{H(u)}\Big)^{\frac{r}{p-1}}
(\|u\|^{2})^{r/2}\\
&= S_{r}^{r}a^{-\frac{r}{2}} \Big(\frac{(a\|u\|^2)^{p+1}}{(H(u))^{2}}
\Big)^{\frac{r}{2(p-1)}}\\
&= S_{r}^{r}a^{-\frac{r}{2}} \Big(\frac{2(p+1)}{p-1}\Big)^{r/2}
\Big(\phi_1(t_{\rm max})\Big)^{r/2}\\
&= c\big(\phi_1(t_{\rm max})\big)^{r/2}.
\end{aligned}
\end{equation}
Then by (F1) and (F4), we deduce that
\begin{equation}\label{2.11}
\begin{aligned}
&\int_{\Omega}F(x,t_{\rm max}|u|)\,dx\\
&\leq \frac{1}{p+1}\int_{\Omega}c_4 (2+|t_{\rm max}u|^2)\,dx
+\int_{\Omega}c_1(|t_{\rm max}u|+|t_{\rm max}u|^{q+1})\\
&\leq B_0+B_1 \phi_1(t_{\rm max})
+B_2 (\phi_1(t_{\rm max}))^{1/2}
+B_3 \phi_1(t_{\rm max})^\frac{q+1}{2}.
\end{aligned}
\end{equation}
Since
\[
I_{\lambda}(t_{\rm max}u)=A_{u}(t_{\rm max})
-\lambda K_{u}(t_{\rm max})\geq \phi_1(t_{\rm max})
-\lambda \int_{\Omega}F(x,t_{\rm max}|u|)\,dx,
\]
according to \eqref{2.4}, \eqref{2.10} and \eqref{2.11}, one obtains
\begin{align*}
I_{\lambda}(t_{\rm max}u)
&\geq \phi_1(t_{\rm max})-\lambda \int_{\Omega}F(x,t_{\rm max}|u|)\,dx\\
&\geq \phi_1(t_{\rm max})-\lambda\Big[ B_0+B_1 \phi_1(t_{\rm max})
+B_2 (\phi_1(t_{\rm max}))^{1/2}
+B_3 \phi_1(t_{\rm max})^\frac{q+1}{2}\Big]\\
&\geq \delta_1\Big[1-\lambda\Big(B_0\delta^{-1}+B_1
+B_2\delta^{-\frac{1}{2}}+B_3\delta^{\frac{q-1}{2}}\Big)\Big].
\end{align*}
So, if $\lambda < \lambda_3=(2(B_0\delta^{-1}+B_1
+B_2\delta^{-\frac{1}{2}}+B_3\delta^{\frac{q-1}{2}}))^{-1}$,
we obtain $I_{\lambda}(t_{\rm max}u)>0$.
\end{proof}
\begin{remark} \label{rmk2.4} \rm
If $\lambda < \lambda_3$ and $u\in \mathcal{N}_{\lambda}^{-}(\Omega)$, by (F2),
we conclude that there is a global maximum on $u$ for $I_{\lambda}(u)$,
then $I_{\lambda}(u)>I_{\lambda}(t_{\rm max}u)>0$.
\end{remark}
\begin{lemma} \label{lem2.5}
If $u\in H_0^{1}(\Omega)\backslash \{0\}$, there exists a constant $\lambda_4>0$
such that $\psi_{\lambda}(tu)=\langle I'_{\lambda}(tu),tu \rangle>0$ when
$\lambda<\lambda_4$.
\end{lemma}
\begin{proof}
For every $u\in H^{1}_0(\Omega)$, $u\neq0$, if $H(u)\leq 0$, by \eqref{2.5},
we get $\psi_{\lambda}(tu)>0$ when $t$ is large enough.
Assume $H(u)>0$, and let
\[
\psi_1(t)=at^{2}\|u\|^{2}-t^{p+1}H(u).
\]
Through calculations, we obtain that $\psi_1(t)$ takes on a maximum at
\[
\tilde{t}_{\rm max}=\Big(\frac{2a\|u\|^2}{(p+1)H(u)}\Big)^{\frac{1}{p-1}}.
\]
It follows that
\begin{align*}
\psi_1(\tilde{t}_{\rm max})
&= \Big(\frac{2a}{p+1}\Big)^{\frac{2}{p-1}}\Big(\frac{p-1}{p+1}\Big)
\Big( \frac{(\|u\|^2)^{p+1}}{(\int_{\Omega}h(x)|u|^{p+1}\,dx)^2}\Big)^{\frac{1}{p-1}}\\
&\geq \Big(\frac{2a}{p+1}\Big)^{\frac{2}{p-1}}\Big(\frac{p-1}{p+1}\Big)
\Big( \frac{1}{\|h^{+}\|_{\infty}^{2}S_{p+1}^{2(p+1)}}\Big)^{\frac{1}{p-1}}
:=\delta_2.
\end{align*}
Similar to the proof of Lemma \ref{lem2.4}, when $1\leq r<6$, one obtains
\begin{equation}\label{2.12}
(\tilde{t}_{\rm max})^{r}\int_{\Omega}|u|^{r}\,dx
\leq \tilde{c}\left(\psi_1(\tilde{t}_{\rm max})\right)^{r/2}.\\
\end{equation}
According to (F1), we deduce that
\begin{equation}\label{2.13}
\begin{aligned}
\int_{\Omega}f(x,\tilde{t}_{\rm max}|u|)|\tilde{t}_{\rm max}u|\,dx
&\leq c_1 \int_{\Omega}\left(|\tilde{t}_{\rm max}u|
+|\tilde{t}_{\rm max}u|^{q+1}\right)\,dx\\
&\leq b_0\left(\psi_1(\tilde{t}_{\rm max})\right)^{1/2}
+b_1\left(\psi_1(\tilde{t}_{\rm max})\right)^\frac{q+1}{2},
\end{aligned}
\end{equation}
then, by \eqref{2.5}, \eqref{2.12} and \eqref{2.13}, it follows that
\begin{align*}
\psi_{\lambda}(\tilde{t}_{\rm max}u)
&\geq \psi_1(\tilde{t}_{\rm max})
- \lambda \int_{\Omega}f(x,\tilde{t}_{\rm max}|u|)|\tilde{t}_{\rm max}u|\,dx\\
&\geq (\psi_1(\tilde{t}_{\rm max}))^{\frac{1+q}{2}}
\left(\psi_1(\tilde{t}_{\rm max}))^{\frac{1-q}{2}}
-\lambda (b_0(\psi_1(\tilde{t}_{\rm max}))^{-\frac{q}{2}}+b_1)\right)\\
&\geq \delta_2^\frac{1+q}{2}\left( \delta_2^{\frac{1-q}{2}}
-\lambda (b_0\delta_2^{-\frac{q}{2}}+b_1) \right),
\end{align*}
consequently, when $\lambda < \lambda_{4}
= \delta_2^{\frac{1-q}{2}}/2(b_0\delta_2^{-\frac{q}{2}}+b_1)$,
we obtain $\psi_{\lambda}(\tilde{t}_{\rm max}u)>0$.
\end{proof}
\begin{remark} \label{rmk2.5} \rm
We claim that:
(1) If $H(u)\leq 0$ for every $u \in H_0^{1}(\Omega)\backslash \{0\}$,
there exists $t_1$ such that $I_{\lambda}(t_1u)<0$ for
$t_1u \in \mathcal{N}_{\lambda}^{+}(\Omega)$. Indeed, obviously,
in this condition, $\psi_{\lambda}(0)<0$ and
$\lim_{t\to\infty}\psi_{\lambda}(tu)=+\infty $, therefore, there exists
$t_1>0$ such that $\psi_{\lambda}(tu)=0$. Because of $\psi_{\lambda}(tu)<0$
for $00$, such that
$pf(x,u)-uf_{u}(x,u)\leq c_2(1+u)$, for all
$(x,u)\in \Omega \times \mathbb{R}^+$.
\item[(F4)] $F(x,u)-\frac{1}{p+1}f(x,u)u\leq c_2(1+u^2)$, for all
$(x,u)\in \Omega \times \mathbb{R}^+$, where $F(x,u)$ is
defined by $F(x,u)=\int_0^{u}f(x,s)ds$ for $x\in \Omega$, $u\in \mathbb{R}$.
\end{itemize}
\end{remark}
In recent years, the existence and multiplicity of solutions to the nonlocal problem
\begin{equation}\label{1.2}
\begin{gathered}
-\Big(a+b\int_\Omega|\nabla u|^2\,dx\Big)\Delta u=g(x,u) \quad \text{in }\Omega, \\
u=0, \quad\text{on } \partial\Omega,
\end{gathered}
\end{equation}
have been studied by various researchers and many interesting and important
results can be found. For instance, positive solutions could be obtained
in \cite{CF,CX,TJ}. Especially, Chen et al \cite{CT} discussed a Kirchhoff
type problem when $g(x,u)=f(x)u^{p-2}u+\lambda g(x)|u|^{q-2}u$, where
$1
4$, $0<\lambda<\lambda_0(a)$.
Researchers, such as Mao and Zhang \cite{AZ}, Mao and Luan \cite{AS}, found
sign-changing solutions.
As for infinitely many solutions, we refer readers to \cite{JX,LX}.
He and Zou \cite{XW} considered the class of Kirchhoff type problem when
$g(x,u)=\lambda f(x,u)$ with some conditions and proved a sequence of a.e.
positive weak solutions tending to zero in $L^{\infty}(\Omega)$.
In addition, problems on unbounded domains have been studied by researchers,
such as Figueiredo and Santos Junior \cite{GJ}, Li et al. \cite{YF},
Li and Ye \cite{GH}.
Our main result read as follows.
\begin{theorem} \label{thm1.1}
Assume that conditions {\rm (F1)} and {\rm (F2)} hold.
Then there exists $\lambda^{*}>0$ such that for any $\lambda\in (0,\lambda^{*})$,
problem \eqref{1} has at least two positive solutions.
\end{theorem}
The article is organized as following:
Section 2 contains notation and preliminaries.
Section 3 contains the proof of Theorem \ref{thm1.1}.
\section{Preliminaries}
Throughout this article, we use the following notation:
The space $H_0^{1}(\Omega)$ is equipped with the norm
$\|u\|^2=\int_{\Omega}(|\nabla u|^2+v(x)|u|^2)\,dx$.
Let $S_r$ be the best Sobolev constant for the embedding of
$H_0^{1}(\Omega)$ into $L^{r}(\Omega)$, where $1\leq r < 6$, then
\begin{equation}\label{2.1}
\frac{1}{S_{p+1}^{2(p+1)}}
\leq \frac{\|u\|^{2(p+1)}}{(\int_{\Omega}|u|^{p+1})^2} .
\end{equation}
We define a functional $I_{\lambda}(u)$: $H_0^{1}(\Omega)\to \mathbb{R}$ by
\begin{equation}\label{2.2}
I_{\lambda}(u)=\frac{a}{2}\|u\|^2+\frac{b}{4}\|u\|^4
-\frac{1}{p+1}H(u)-\lambda\int_{\Omega}F(x,|u|)\,dx
\quad\text{for } u\in H_0^{1}(\Omega) ,
\end{equation}
where
\[
H(u)=\int_{\Omega}h(x)|u|^{p+1}\,dx.
\]
The weak solutions of \eqref{1} is the critical points of the functional
$I_{\lambda}$. Generally speaking, a function $u$ is called a solution
of \eqref{1} if
$u\in H_0^{1}(\Omega)$ and for all $\varphi\in H_0^{1}(\Omega)$ it
holds
\[
(a+b\|u\|^2)\int_{\Omega}(\nabla u \cdot \nabla \varphi+v(x)u\varphi)\,dx
=\int_{\Omega}h(x)|u|^{p-1}|u|\varphi \,dx+\lambda\int_{\Omega}f(x,|u|)\varphi \,dx.
\]
As $I_{\lambda}(u)$ is unbounded below on $H_0^{1}(\Omega)$,
it is useful to consider the functional on the Nehari manifold:
\[
\mathcal{N}_\lambda(\Omega)
=\{u\in H_0^{1}(\Omega)\backslash{\{0\}}: \langle I'_{\lambda}(u),u\rangle=0 \}.
\]
It is obvious that the Nehari manifold contains all the nontrivial critical
points of $I_{\lambda}$, thus, for $u\in \mathcal{N}_\lambda(\Omega)$,
if and only if
\begin{equation}\label{2.3}
(a+b\|u\|^2)\|u\|^2-\int_{\Omega}h(x)|u|^{p+1} \,dx
-\lambda\int_{\Omega}f(x,|u|)|u|\,dx=0.
\end{equation}
Define
\[
\psi_{\lambda}(u)=\langle I'_{\lambda}(u),u \rangle,
\]
then it follows that
\begin{gather}\label{2.4}
I_{\lambda}(tu)=\frac{a}{2}t^{2}\|u\|^{2}+\frac{b}{4}t^{4}\|u\|^{4}
-\frac{t^{p+1}}{p+1}\int_{\Omega}h(x)|u|^{p+1}\,dx-\lambda\int_{\Omega} F(x,|tu|)\,dx,\\
\label{2.5}
\psi_{\lambda}(tu)=at^{2}\|u\|^{2}+bt^{4}\|u\|^{4}
-t^{p+1}\int_{\Omega}h(x)|u|^{p+1}\,dx-\lambda\int_{\Omega} f(x,|tu|)|tu|\,dx, \\
\label{2.6}
\begin{aligned}
\langle \psi'_{\lambda}(tu),tu \rangle
&=2at^{2}\|u\|^{2}+4bt^{4}\|u\|^{4}-(p+1)t^{p+1}\int_{\Omega}h(x)|u|^{p+1}\,dx\\
&\quad -\lambda\int_{\Omega} f_{u}(x,|tu|)|tu|^{2}\,dx
-\lambda\int_{\Omega} f(x,|tu|)|tu|\,dx.
\end{aligned}
\end{gather}
Notice that $\psi_{\lambda}(tu)=0$ if and only if
$tu\in \mathcal{N}_{\lambda}(\Omega)$. And we divide
$\mathcal{N}_{\lambda}(\Omega)$ into three parts:
\begin{gather*}
\mathcal{N}^{-}_{\lambda}(\Omega)=\{u\in \mathcal{N}_{\lambda}(\Omega):
\langle\psi'_{\lambda}(u),u \rangle<0\},\\
\mathcal{N}^{+}_{\lambda}(\Omega)=\{u\in \mathcal{N}_{\lambda}(\Omega):
\langle\psi'_{\lambda}(u),u \rangle>0\},\\
\mathcal{N}^{0}_{\lambda}(\Omega)=\{u\in \mathcal{N}_{\lambda}(\Omega):
\langle\psi'_{\lambda}(u),u \rangle=0\}.
\end{gather*}
Then we have the following results.
\begin{lemma} \label{lem2.1}
There exists a constant $\lambda_1>0$, for $0<\lambda<\lambda_1$, such that
$\mathcal{N}^{0}_{\lambda}(\Omega)=\emptyset$.
\end{lemma}
\begin{proof}
By contradiction, suppose $u\in \mathcal{N}^{0}_{\lambda}(\Omega)$, we obtain
\begin{align*}
\langle \psi'_{\lambda}(u),u \rangle
&= 2a\|u\|^{2}+4b\|u\|^{4}-(p+1)\int_{\Omega}h(x)|u|^{p+1}\,dx\\
&\quad -\lambda\int_{\Omega} f_{u}(x,|u|)|u|^{2}\,dx
-\lambda\int_{\Omega} f(x,|u|)|u|\,dx=0.
\end{align*}
On one hand, from \eqref{2.1}, \eqref{2.3}, \eqref{2.6} and (F2), one deduces that
\begin{align*}
a\|u\|^{2}+3b\|u\|^{4}
&= p\int_{\Omega}h(x)|u|^{p+1}\,dx+\lambda\int_{\Omega} f_{u}(x,|u|)u^{2}\,dx\\
&\leq L\|u\|^{p+1}+\lambda L'\|u\|^{2},
\end{align*}
where $L=p\|h\|_{\infty}S_{p+1}^{p+1}$,
$L'=\|f_{u}(x,|u|)\|_{L^{\infty}}S_2^{2}$,
then
\[
L\|u\|^{p+1}\geq (a-\lambda L')\|u\|^{2}+3b\|u\|^{4}\geq (a-\lambda L')\|u\|^{2},
\]
consequently,
\begin{equation}\label{2.7}
\|u\|^{2}\geq \Big(\frac{a-\lambda L'}{L}\Big)^{\frac{2}{p-1}}.
\end{equation}
On the other hand, by \eqref{2.1}, \eqref{2.3}, \eqref{2.6} and (F3), we obtain
\begin{align*}
a(p-1)\|u\|^2+(bp-3)\|u\|^4
&\leq \lambda \Big(\int_{\Omega}(pf(x,|u|)-f_{u}(x,|u|)|u|)|u|\,dx\Big)\\
&\leq c_2\lambda \int_{\Omega}(|u|+|u|^2)\,dx\\
&\leq \lambda c_2|\Omega|^{\frac{1}{2}}S_1 \|u\| +\lambda c_2 S_2^{2}\|u\|^2,
\end{align*}
then
\[
\lambda c_2|\Omega|^{\frac{1}{2}}S_1 \|u\| +\lambda c_2 S_2^{2}\|u\|^2
\geq a(p-1)\|u\|^2,
\]
thus one has
\begin{equation}\label{2.8}
\|u\|^2\leq \Big(\frac{\lambda c_2 S_1|\Omega|^{1/2}}{a(p-1)
-c_2\lambda S_2^{2}}\Big)^2.
\end{equation}
It follows from \eqref{2.7} and \eqref{2.8} that
\[
\Big(\frac{a-\lambda L'}{L}\Big)^\frac{2}{p-1}
\leq \|u\|^2\leq \Big(\frac{\lambda c_2 S_1|\Omega|^{1/2}}{a(p-1)
-c_2\lambda S_2^{2}}\Big)^2,
\]
which is a contradiction when $\lambda$ is small enough.
So there exists a constant $\lambda_1>0$ such that
$\mathcal{N}^{0}_{\lambda}(\Omega)=\emptyset$. The proof is complete.
\end{proof}
\begin{lemma} \label{lem2.2}
There exists a constant $\lambda_2>0$, for $0<\lambda<\lambda_2$, such
that $\mathcal{N}^{\pm}_{\lambda}(\Omega)\neq \emptyset$.
\end{lemma}
\begin{proof}
For $u\in H^{1}_0(\Omega)$, $u\neq0$, let
\begin{gather*}
A_{u}(t)=\frac{a}{2}t^{2}\|u\|^2+\frac{b}{4}t^{4}\|u\|^4
-\frac{t^{p+1}}{p+1}\int_{\Omega}h(x)|u|^{p+1}\,dx, \\
K_{u}(t)=\int_{\Omega}F(x,|tu|)\,dx,
\end{gather*}
then $I_{\lambda}(tu)= A_{u}(t)-\lambda K_{u}(t)$,
hence if $\psi_{\lambda}(tu)=\langle I'_{\lambda}(tu),tu\rangle = 0$,
then $A'_{u}(t)-\lambda K'_{u}(t)=0$,
where
\begin{gather*}
A'_{u}(t)=at^{2}\|u\|^2+bt^{3}\|u\|^4-t^{p}\int_{\Omega}h(x)|u|^{p+1}\,dx, \\
K'_{u}(t)=\int_{\Omega}f(x,|tu|)|u|\,dx.
\end{gather*}
By (F1), one obtains
\begin{equation}\label{2.9}
K'_{u}(t)=\int_{\Omega}f(x,|tu|)|u|\,dx
\leq \int_{\Omega}c_2(1+|tu|^{q})|u|\,dx.
\end{equation}
We consider the following two cases:
\smallskip
\noindent\textbf{Case 1.}
When $H(u)\leq 0$ and $\int_{\Omega}f(x,t|u|)u^2\,dx>0$, we have
$A'_{u}(t)>0$, $A_{u}(0)=0$ and $A_{u}(t)$ increases sharply when
$t\to\infty$. At the same time, $K'_{u}(t)>0$, $K_{u}(0)$ is a positive constant
and $K_{u}(t)$ increases relatively slowly when $t\to\infty$ since \eqref{2.9}.
When $H(u)\leq 0$ and $\int_{\Omega}f(x,t|u|)u^2\,dx\leq0$, we have
$K'_{u}(t)\leq0$, $K_{u}(0)$ is a positive constant and $K_{u}(t)$
decreases slowly when $t\to\infty$ since \eqref{2.9}.
Through the above discussion, we obtain there exists $t_1$ such that
$t_1 u\in \mathcal{N}_{\lambda}(\Omega)$ to every situation.
When $0