\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 202, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/202\hfil Multiple positive solutions] {Multiple positive solutions for Kirchhoff problems with sign-changing potential} \author[G.-S. Liu, C.-Y. Lei, L.-T. Guo, H. Rong \hfil EJDE-2015/202\hfilneg] {Gao-Sheng Liu, Chun-Yu Lei, Liu-Tao Guo, Hong Rong} \address{Gao-Sheng Liu \newline School of Science, Guizhou Minzu University, Guiyang 550025, China} \email{772936104@qq.com} \address{Chun-Yu Lei (corresponding author)\newline School of Science, Guizhou Minzu University, Guiyang 550025, China} \email{leichygzu@sina.cn, Phone +86 15985163534 } \address{Liu-Tao Guo \newline School of Science, Guizhou Minzu University, Guiyang 550025, China} \email{350630542@qq.com} \address{Hong Rong \newline School of Science, Guizhou Minzu University, Guiyang 550025, China} \email{402453552@qq.com} \thanks{Submitted June 22, 2015. Published August 4, 2015.} \subjclass[2010]{35D05, 35J60, 58J32} \keywords{Kirchhoff type equation; sign-changing potential; Nehari manifold} \begin{abstract} In this article, we study the existence and multiplicity of positive solutions for a class of Kirchhoff type equations with sign-changing potential. Using the Nehari manifold, we obtain two positive solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction and statement of main result} Consider the Kirchhoff type problems with Dirichlet boundary value conditions \begin{equation}\label{1} \begin{gathered} -(a+b\int_\Omega(|\nabla u|^2+v(x)u^2)\,dx)(\Delta u-v(x)u) =h(x)u^{p}+{\lambda}f(x,u) \quad \text{in }\Omega, \\ u=0 \quad\text{on }\partial\Omega, \end{gathered} \end{equation} where $\Omega$ is a smooth bounded domain in $\mathbb{R}^{3}$, $a>0$, $b>0$, $\lambda>0$, $30$, and $f(x,u)$ satisfies the following two conditions: \begin{itemize} \item[(F1)] $f(x,u)\in{C^1(\Omega\times \mathbb{R})}$ with $f(x,0)\geq0$, and $f(x,0)\neq0$. There exists a constant $c_1>0$, such that $f(x,u)\leq c_1(1+u^q)$ for $00$, such that $pf(x,u)-uf_{u}(x,u)\leq c_2(1+u)$, for all $(x,u)\in \Omega \times \mathbb{R}^+$. \item[(F4)] $F(x,u)-\frac{1}{p+1}f(x,u)u\leq c_2(1+u^2)$, for all $(x,u)\in \Omega \times \mathbb{R}^+$, where $F(x,u)$ is defined by $F(x,u)=\int_0^{u}f(x,s)ds$ for $x\in \Omega$, $u\in \mathbb{R}$. \end{itemize} \end{remark} In recent years, the existence and multiplicity of solutions to the nonlocal problem \begin{equation}\label{1.2} \begin{gathered} -\Big(a+b\int_\Omega|\nabla u|^2\,dx\Big)\Delta u=g(x,u) \quad \text{in }\Omega, \\ u=0, \quad\text{on } \partial\Omega, \end{gathered} \end{equation} have been studied by various researchers and many interesting and important results can be found. For instance, positive solutions could be obtained in \cite{CF,CX,TJ}. Especially, Chen et al \cite{CT} discussed a Kirchhoff type problem when $g(x,u)=f(x)u^{p-2}u+\lambda g(x)|u|^{q-2}u$, where $14$, $0<\lambda<\lambda_0(a)$. Researchers, such as Mao and Zhang \cite{AZ}, Mao and Luan \cite{AS}, found sign-changing solutions. As for infinitely many solutions, we refer readers to \cite{JX,LX}. He and Zou \cite{XW} considered the class of Kirchhoff type problem when $g(x,u)=\lambda f(x,u)$ with some conditions and proved a sequence of a.e. positive weak solutions tending to zero in $L^{\infty}(\Omega)$. In addition, problems on unbounded domains have been studied by researchers, such as Figueiredo and Santos Junior \cite{GJ}, Li et al. \cite{YF}, Li and Ye \cite{GH}. Our main result read as follows. \begin{theorem} \label{thm1.1} Assume that conditions {\rm (F1)} and {\rm (F2)} hold. Then there exists $\lambda^{*}>0$ such that for any $\lambda\in (0,\lambda^{*})$, problem \eqref{1} has at least two positive solutions. \end{theorem} The article is organized as following: Section 2 contains notation and preliminaries. Section 3 contains the proof of Theorem \ref{thm1.1}. \section{Preliminaries} Throughout this article, we use the following notation: The space $H_0^{1}(\Omega)$ is equipped with the norm $\|u\|^2=\int_{\Omega}(|\nabla u|^2+v(x)|u|^2)\,dx$. Let $S_r$ be the best Sobolev constant for the embedding of $H_0^{1}(\Omega)$ into $L^{r}(\Omega)$, where $1\leq r < 6$, then \begin{equation}\label{2.1} \frac{1}{S_{p+1}^{2(p+1)}} \leq \frac{\|u\|^{2(p+1)}}{(\int_{\Omega}|u|^{p+1})^2} . \end{equation} We define a functional $I_{\lambda}(u)$: $H_0^{1}(\Omega)\to \mathbb{R}$ by \begin{equation}\label{2.2} I_{\lambda}(u)=\frac{a}{2}\|u\|^2+\frac{b}{4}\|u\|^4 -\frac{1}{p+1}H(u)-\lambda\int_{\Omega}F(x,|u|)\,dx \quad\text{for } u\in H_0^{1}(\Omega) , \end{equation} where \[ H(u)=\int_{\Omega}h(x)|u|^{p+1}\,dx. \] The weak solutions of \eqref{1} is the critical points of the functional $I_{\lambda}$. Generally speaking, a function $u$ is called a solution of \eqref{1} if $u\in H_0^{1}(\Omega)$ and for all $\varphi\in H_0^{1}(\Omega)$ it holds \[ (a+b\|u\|^2)\int_{\Omega}(\nabla u \cdot \nabla \varphi+v(x)u\varphi)\,dx =\int_{\Omega}h(x)|u|^{p-1}|u|\varphi \,dx+\lambda\int_{\Omega}f(x,|u|)\varphi \,dx. \] As $I_{\lambda}(u)$ is unbounded below on $H_0^{1}(\Omega)$, it is useful to consider the functional on the Nehari manifold: \[ \mathcal{N}_\lambda(\Omega) =\{u\in H_0^{1}(\Omega)\backslash{\{0\}}: \langle I'_{\lambda}(u),u\rangle=0 \}. \] It is obvious that the Nehari manifold contains all the nontrivial critical points of $I_{\lambda}$, thus, for $u\in \mathcal{N}_\lambda(\Omega)$, if and only if \begin{equation}\label{2.3} (a+b\|u\|^2)\|u\|^2-\int_{\Omega}h(x)|u|^{p+1} \,dx -\lambda\int_{\Omega}f(x,|u|)|u|\,dx=0. \end{equation} Define \[ \psi_{\lambda}(u)=\langle I'_{\lambda}(u),u \rangle, \] then it follows that \begin{gather}\label{2.4} I_{\lambda}(tu)=\frac{a}{2}t^{2}\|u\|^{2}+\frac{b}{4}t^{4}\|u\|^{4} -\frac{t^{p+1}}{p+1}\int_{\Omega}h(x)|u|^{p+1}\,dx-\lambda\int_{\Omega} F(x,|tu|)\,dx,\\ \label{2.5} \psi_{\lambda}(tu)=at^{2}\|u\|^{2}+bt^{4}\|u\|^{4} -t^{p+1}\int_{\Omega}h(x)|u|^{p+1}\,dx-\lambda\int_{\Omega} f(x,|tu|)|tu|\,dx, \\ \label{2.6} \begin{aligned} \langle \psi'_{\lambda}(tu),tu \rangle &=2at^{2}\|u\|^{2}+4bt^{4}\|u\|^{4}-(p+1)t^{p+1}\int_{\Omega}h(x)|u|^{p+1}\,dx\\ &\quad -\lambda\int_{\Omega} f_{u}(x,|tu|)|tu|^{2}\,dx -\lambda\int_{\Omega} f(x,|tu|)|tu|\,dx. \end{aligned} \end{gather} Notice that $\psi_{\lambda}(tu)=0$ if and only if $tu\in \mathcal{N}_{\lambda}(\Omega)$. And we divide $\mathcal{N}_{\lambda}(\Omega)$ into three parts: \begin{gather*} \mathcal{N}^{-}_{\lambda}(\Omega)=\{u\in \mathcal{N}_{\lambda}(\Omega): \langle\psi'_{\lambda}(u),u \rangle<0\},\\ \mathcal{N}^{+}_{\lambda}(\Omega)=\{u\in \mathcal{N}_{\lambda}(\Omega): \langle\psi'_{\lambda}(u),u \rangle>0\},\\ \mathcal{N}^{0}_{\lambda}(\Omega)=\{u\in \mathcal{N}_{\lambda}(\Omega): \langle\psi'_{\lambda}(u),u \rangle=0\}. \end{gather*} Then we have the following results. \begin{lemma} \label{lem2.1} There exists a constant $\lambda_1>0$, for $0<\lambda<\lambda_1$, such that $\mathcal{N}^{0}_{\lambda}(\Omega)=\emptyset$. \end{lemma} \begin{proof} By contradiction, suppose $u\in \mathcal{N}^{0}_{\lambda}(\Omega)$, we obtain \begin{align*} \langle \psi'_{\lambda}(u),u \rangle &= 2a\|u\|^{2}+4b\|u\|^{4}-(p+1)\int_{\Omega}h(x)|u|^{p+1}\,dx\\ &\quad -\lambda\int_{\Omega} f_{u}(x,|u|)|u|^{2}\,dx -\lambda\int_{\Omega} f(x,|u|)|u|\,dx=0. \end{align*} On one hand, from \eqref{2.1}, \eqref{2.3}, \eqref{2.6} and (F2), one deduces that \begin{align*} a\|u\|^{2}+3b\|u\|^{4} &= p\int_{\Omega}h(x)|u|^{p+1}\,dx+\lambda\int_{\Omega} f_{u}(x,|u|)u^{2}\,dx\\ &\leq L\|u\|^{p+1}+\lambda L'\|u\|^{2}, \end{align*} where $L=p\|h\|_{\infty}S_{p+1}^{p+1}$, $L'=\|f_{u}(x,|u|)\|_{L^{\infty}}S_2^{2}$, then \[ L\|u\|^{p+1}\geq (a-\lambda L')\|u\|^{2}+3b\|u\|^{4}\geq (a-\lambda L')\|u\|^{2}, \] consequently, \begin{equation}\label{2.7} \|u\|^{2}\geq \Big(\frac{a-\lambda L'}{L}\Big)^{\frac{2}{p-1}}. \end{equation} On the other hand, by \eqref{2.1}, \eqref{2.3}, \eqref{2.6} and (F3), we obtain \begin{align*} a(p-1)\|u\|^2+(bp-3)\|u\|^4 &\leq \lambda \Big(\int_{\Omega}(pf(x,|u|)-f_{u}(x,|u|)|u|)|u|\,dx\Big)\\ &\leq c_2\lambda \int_{\Omega}(|u|+|u|^2)\,dx\\ &\leq \lambda c_2|\Omega|^{\frac{1}{2}}S_1 \|u\| +\lambda c_2 S_2^{2}\|u\|^2, \end{align*} then \[ \lambda c_2|\Omega|^{\frac{1}{2}}S_1 \|u\| +\lambda c_2 S_2^{2}\|u\|^2 \geq a(p-1)\|u\|^2, \] thus one has \begin{equation}\label{2.8} \|u\|^2\leq \Big(\frac{\lambda c_2 S_1|\Omega|^{1/2}}{a(p-1) -c_2\lambda S_2^{2}}\Big)^2. \end{equation} It follows from \eqref{2.7} and \eqref{2.8} that \[ \Big(\frac{a-\lambda L'}{L}\Big)^\frac{2}{p-1} \leq \|u\|^2\leq \Big(\frac{\lambda c_2 S_1|\Omega|^{1/2}}{a(p-1) -c_2\lambda S_2^{2}}\Big)^2, \] which is a contradiction when $\lambda$ is small enough. So there exists a constant $\lambda_1>0$ such that $\mathcal{N}^{0}_{\lambda}(\Omega)=\emptyset$. The proof is complete. \end{proof} \begin{lemma} \label{lem2.2} There exists a constant $\lambda_2>0$, for $0<\lambda<\lambda_2$, such that $\mathcal{N}^{\pm}_{\lambda}(\Omega)\neq \emptyset$. \end{lemma} \begin{proof} For $u\in H^{1}_0(\Omega)$, $u\neq0$, let \begin{gather*} A_{u}(t)=\frac{a}{2}t^{2}\|u\|^2+\frac{b}{4}t^{4}\|u\|^4 -\frac{t^{p+1}}{p+1}\int_{\Omega}h(x)|u|^{p+1}\,dx, \\ K_{u}(t)=\int_{\Omega}F(x,|tu|)\,dx, \end{gather*} then $I_{\lambda}(tu)= A_{u}(t)-\lambda K_{u}(t)$, hence if $\psi_{\lambda}(tu)=\langle I'_{\lambda}(tu),tu\rangle = 0$, then $A'_{u}(t)-\lambda K'_{u}(t)=0$, where \begin{gather*} A'_{u}(t)=at^{2}\|u\|^2+bt^{3}\|u\|^4-t^{p}\int_{\Omega}h(x)|u|^{p+1}\,dx, \\ K'_{u}(t)=\int_{\Omega}f(x,|tu|)|u|\,dx. \end{gather*} By (F1), one obtains \begin{equation}\label{2.9} K'_{u}(t)=\int_{\Omega}f(x,|tu|)|u|\,dx \leq \int_{\Omega}c_2(1+|tu|^{q})|u|\,dx. \end{equation} We consider the following two cases: \smallskip \noindent\textbf{Case 1.} When $H(u)\leq 0$ and $\int_{\Omega}f(x,t|u|)u^2\,dx>0$, we have $A'_{u}(t)>0$, $A_{u}(0)=0$ and $A_{u}(t)$ increases sharply when $t\to\infty$. At the same time, $K'_{u}(t)>0$, $K_{u}(0)$ is a positive constant and $K_{u}(t)$ increases relatively slowly when $t\to\infty$ since \eqref{2.9}. When $H(u)\leq 0$ and $\int_{\Omega}f(x,t|u|)u^2\,dx\leq0$, we have $K'_{u}(t)\leq0$, $K_{u}(0)$ is a positive constant and $K_{u}(t)$ decreases slowly when $t\to\infty$ since \eqref{2.9}. Through the above discussion, we obtain there exists $t_1$ such that $t_1 u\in \mathcal{N}_{\lambda}(\Omega)$ to every situation. When $0t_1$, we have $\psi_{\lambda}(tu)>0$, then $t_1 u$ is the local minimizer of $I_{\lambda}(u)$, so $t_1 u\in \mathcal{N}^{+}_{\lambda}(\Omega)$. In conclusion, when $H(u)\leq 0$, one has $\mathcal{N}^{+}_{\lambda}(\Omega)\neq \emptyset$. \smallskip \noindent\textbf{Case 2.} When $H(u)>0$ and $\int_{\Omega}f(x,t|u|)u^2\,dx>0$, we have $A'_{u}(t)>0$ as $t\to 0$ and $A'_{u}(t)<0$ for $t\to \infty$, so $A_{u}(t)$ increases as $t\to 0$ and then decreases as $t\to \infty$. At the same time, $K'_{u}(t)>0$, $K_{u}(0)$ is a positive constant and $K_{u}(t)$ increases relatively slowly when $t\to\infty$ since \eqref{2.9}. When $H(u)>0$ and $\int_{\Omega}f(x,t|u|)u^2\,dx<0$, we have $A'_{u}(t)>0$ as $t\to 0$ and $A'_{u}(t)<0$ for $t\to \infty$, so $A_{u}(t)$ increases as $t\to 0$ and then decreases as $t\to \infty$. At the same time, $K'_{u}(t)<0$, $K_{u}(0)$ is a positive constant and $K_{u}(t)$ decreases slowly when $t\to\infty$ since \eqref{2.9}. Through the above discussion, if $\lambda$ is small enough, there exists $t_10$, and for $t>t_2$, $\psi_{\lambda}(tu)<0$. Thus $t_1 u$ is the local minimizer of $I_{\lambda}(u)$ and $t_2 u$ is the local maximizer of $I_{\lambda}(u)$. So there exists $\lambda_2>0$, when $\lambda< \lambda_2$, one gets $t_1 u\in \mathcal{N}^{+}_{\lambda}(\Omega)$ and $t_2 u\in \mathcal{N}^{-}_{\lambda}(\Omega)$. Therefore one concludes that when $H(u)>0$ and $\lambda$ is small enough, $\mathcal{N}^{\pm}_{\lambda}(\Omega)\neq \emptyset$. This completes the proof. \end{proof} \begin{lemma} \label{lem2.3} Operator $I_{\lambda}$ is coercive and bounded below on $\mathcal{N}_\lambda(\Omega)$. \end{lemma} \begin{proof} From \eqref{2.1}, \eqref{2.2}, \eqref{2.3} and (F4), one has \begin{align*} I_{\lambda}(u) &= a\Big(\frac{1}{2}-\frac{1}{p+1}\Big)\|u\|^2 +b \Big(\frac{1}{4}-\frac{1}{p+1}\Big)\|u\|^4\\ &\quad -\lambda\int_{\Omega}(F(x,|u|-\frac{1}{p+1}f(x,|u|)|u|)\,dx\\ &\geq a \Big(\frac{1}{2}-\frac{1}{p+1}\Big)\|u\|^2 +b \Big(\frac{1}{4}-\frac{1}{p+1}\Big)\|u\|^4 -\lambda c_3 \int_{\Omega}(1+|u|^2)\,dx\\ &\geq a \Big(\frac{1}{2}-\frac{1}{p+1}\Big)\|u\|^2 +b \Big(\frac{1}{4}-\frac{1}{p+1}\Big)\|u\|^4 -\lambda c_3\Big(|\Omega|+S_2^{2}\|u\|^2\Big)\\ &\geq \Big(\frac{a(p-1)}{2(p+1)} -\lambda c_3 S_2^{2}\Big)\|u\|^2 +b \Big(\frac{1}{4}-\frac{1}{p+1}\Big)\|u\|^4-\lambda c_3|\Omega|. \end{align*} By $30$, such that $I_{\lambda}(tu)>0$, for $\lambda<\lambda_3$. \end{lemma} \begin{proof} For every $u\in H^{1}_0(\Omega)$, $u\neq0$, if $H(u)\leq 0$, by \eqref{2.4}, we obtain $I_{\lambda}(tu)>0$ when $t$ is large enough. Assume $H(u)>0$, and let \[ \phi_1(t)=\frac{a}{2}t^{2}\|u\|^{2}-\frac{t^{p+1}}{p+1}H(u). \] Through calculations, one obtains that $\phi_1(t)$ takes on a maximum at \[ t_{\rm max}=\Big(\frac{a\|u\|^2}{H(u)}\Big)^{\frac{1}{p-1}}. \] It follows that \begin{align*} \phi_1(t_{\rm max}) &=\frac{p-1}{2(p+1)}\Big( \frac{(a\|u\|^2)^{p+1}} {(\int_{\Omega}h(x)|u|^{p+1}\,dx)^2}\Big)^{\frac{1}{p-1}}\\ &\geq \frac{p-1}{2(p+1)}\Big( \frac{a^{p+1}}{\|h^{+}\|_{\infty}^{2}S_{p+1}^{2(p+1)}} \Big)^{\frac{1}{p-1}}:=\delta_1. \end{align*} When $1\leq r<6$, one has \begin{equation}\label{2.10} \begin{aligned} (t_{\rm max})^{r}\int_{\Omega}|u|^{r}\,dx &\leq S_{r}^{r}\Big(\frac{a\|u\|^2}{H(u)}\Big)^{\frac{r}{p-1}} (\|u\|^{2})^{r/2}\\ &= S_{r}^{r}a^{-\frac{r}{2}} \Big(\frac{(a\|u\|^2)^{p+1}}{(H(u))^{2}} \Big)^{\frac{r}{2(p-1)}}\\ &= S_{r}^{r}a^{-\frac{r}{2}} \Big(\frac{2(p+1)}{p-1}\Big)^{r/2} \Big(\phi_1(t_{\rm max})\Big)^{r/2}\\ &= c\big(\phi_1(t_{\rm max})\big)^{r/2}. \end{aligned} \end{equation} Then by (F1) and (F4), we deduce that \begin{equation}\label{2.11} \begin{aligned} &\int_{\Omega}F(x,t_{\rm max}|u|)\,dx\\ &\leq \frac{1}{p+1}\int_{\Omega}c_4 (2+|t_{\rm max}u|^2)\,dx +\int_{\Omega}c_1(|t_{\rm max}u|+|t_{\rm max}u|^{q+1})\\ &\leq B_0+B_1 \phi_1(t_{\rm max}) +B_2 (\phi_1(t_{\rm max}))^{1/2} +B_3 \phi_1(t_{\rm max})^\frac{q+1}{2}. \end{aligned} \end{equation} Since \[ I_{\lambda}(t_{\rm max}u)=A_{u}(t_{\rm max}) -\lambda K_{u}(t_{\rm max})\geq \phi_1(t_{\rm max}) -\lambda \int_{\Omega}F(x,t_{\rm max}|u|)\,dx, \] according to \eqref{2.4}, \eqref{2.10} and \eqref{2.11}, one obtains \begin{align*} I_{\lambda}(t_{\rm max}u) &\geq \phi_1(t_{\rm max})-\lambda \int_{\Omega}F(x,t_{\rm max}|u|)\,dx\\ &\geq \phi_1(t_{\rm max})-\lambda\Big[ B_0+B_1 \phi_1(t_{\rm max}) +B_2 (\phi_1(t_{\rm max}))^{1/2} +B_3 \phi_1(t_{\rm max})^\frac{q+1}{2}\Big]\\ &\geq \delta_1\Big[1-\lambda\Big(B_0\delta^{-1}+B_1 +B_2\delta^{-\frac{1}{2}}+B_3\delta^{\frac{q-1}{2}}\Big)\Big]. \end{align*} So, if $\lambda < \lambda_3=(2(B_0\delta^{-1}+B_1 +B_2\delta^{-\frac{1}{2}}+B_3\delta^{\frac{q-1}{2}}))^{-1}$, we obtain $I_{\lambda}(t_{\rm max}u)>0$. \end{proof} \begin{remark} \label{rmk2.4} \rm If $\lambda < \lambda_3$ and $u\in \mathcal{N}_{\lambda}^{-}(\Omega)$, by (F2), we conclude that there is a global maximum on $u$ for $I_{\lambda}(u)$, then $I_{\lambda}(u)>I_{\lambda}(t_{\rm max}u)>0$. \end{remark} \begin{lemma} \label{lem2.5} If $u\in H_0^{1}(\Omega)\backslash \{0\}$, there exists a constant $\lambda_4>0$ such that $\psi_{\lambda}(tu)=\langle I'_{\lambda}(tu),tu \rangle>0$ when $\lambda<\lambda_4$. \end{lemma} \begin{proof} For every $u\in H^{1}_0(\Omega)$, $u\neq0$, if $H(u)\leq 0$, by \eqref{2.5}, we get $\psi_{\lambda}(tu)>0$ when $t$ is large enough. Assume $H(u)>0$, and let \[ \psi_1(t)=at^{2}\|u\|^{2}-t^{p+1}H(u). \] Through calculations, we obtain that $\psi_1(t)$ takes on a maximum at \[ \tilde{t}_{\rm max}=\Big(\frac{2a\|u\|^2}{(p+1)H(u)}\Big)^{\frac{1}{p-1}}. \] It follows that \begin{align*} \psi_1(\tilde{t}_{\rm max}) &= \Big(\frac{2a}{p+1}\Big)^{\frac{2}{p-1}}\Big(\frac{p-1}{p+1}\Big) \Big( \frac{(\|u\|^2)^{p+1}}{(\int_{\Omega}h(x)|u|^{p+1}\,dx)^2}\Big)^{\frac{1}{p-1}}\\ &\geq \Big(\frac{2a}{p+1}\Big)^{\frac{2}{p-1}}\Big(\frac{p-1}{p+1}\Big) \Big( \frac{1}{\|h^{+}\|_{\infty}^{2}S_{p+1}^{2(p+1)}}\Big)^{\frac{1}{p-1}} :=\delta_2. \end{align*} Similar to the proof of Lemma \ref{lem2.4}, when $1\leq r<6$, one obtains \begin{equation}\label{2.12} (\tilde{t}_{\rm max})^{r}\int_{\Omega}|u|^{r}\,dx \leq \tilde{c}\left(\psi_1(\tilde{t}_{\rm max})\right)^{r/2}.\\ \end{equation} According to (F1), we deduce that \begin{equation}\label{2.13} \begin{aligned} \int_{\Omega}f(x,\tilde{t}_{\rm max}|u|)|\tilde{t}_{\rm max}u|\,dx &\leq c_1 \int_{\Omega}\left(|\tilde{t}_{\rm max}u| +|\tilde{t}_{\rm max}u|^{q+1}\right)\,dx\\ &\leq b_0\left(\psi_1(\tilde{t}_{\rm max})\right)^{1/2} +b_1\left(\psi_1(\tilde{t}_{\rm max})\right)^\frac{q+1}{2}, \end{aligned} \end{equation} then, by \eqref{2.5}, \eqref{2.12} and \eqref{2.13}, it follows that \begin{align*} \psi_{\lambda}(\tilde{t}_{\rm max}u) &\geq \psi_1(\tilde{t}_{\rm max}) - \lambda \int_{\Omega}f(x,\tilde{t}_{\rm max}|u|)|\tilde{t}_{\rm max}u|\,dx\\ &\geq (\psi_1(\tilde{t}_{\rm max}))^{\frac{1+q}{2}} \left(\psi_1(\tilde{t}_{\rm max}))^{\frac{1-q}{2}} -\lambda (b_0(\psi_1(\tilde{t}_{\rm max}))^{-\frac{q}{2}}+b_1)\right)\\ &\geq \delta_2^\frac{1+q}{2}\left( \delta_2^{\frac{1-q}{2}} -\lambda (b_0\delta_2^{-\frac{q}{2}}+b_1) \right), \end{align*} consequently, when $\lambda < \lambda_{4} = \delta_2^{\frac{1-q}{2}}/2(b_0\delta_2^{-\frac{q}{2}}+b_1)$, we obtain $\psi_{\lambda}(\tilde{t}_{\rm max}u)>0$. \end{proof} \begin{remark} \label{rmk2.5} \rm We claim that: (1) If $H(u)\leq 0$ for every $u \in H_0^{1}(\Omega)\backslash \{0\}$, there exists $t_1$ such that $I_{\lambda}(t_1u)<0$ for $t_1u \in \mathcal{N}_{\lambda}^{+}(\Omega)$. Indeed, obviously, in this condition, $\psi_{\lambda}(0)<0$ and $\lim_{t\to\infty}\psi_{\lambda}(tu)=+\infty $, therefore, there exists $t_1>0$ such that $\psi_{\lambda}(tu)=0$. Because of $\psi_{\lambda}(tu)<0$ for $00$ for $t>t_1$, we obtain that $t_1u \in \mathcal{N}_{\lambda}^{+}(\Omega)$ and $I_{\lambda}(t_1u)0$ for $0<\lambda< \lambda_1$, there exists $t_10$ such that $\psi_{\lambda}(Tu)>0$, therefore, we could obtain there exists $00$ for $u\in \mathcal{N}_{\lambda}^{-}(\Omega)$, so it follows that $\inf_{u\in \mathcal{N}_{\lambda}^{-}(\Omega)}I_{\lambda}(u)>0$. Similarly to step 1, we define a sequence $\{u_{n}\}$ as a minimizing for $I_{\lambda}(u)$ on $\mathcal{N}_{\lambda}^{-}(\Omega)$, and there exists $u_2\in H_0^{1}(\Omega)$ such that \begin{gather*} u_n\rightharpoonup u_2,\quad \text{weakly in } H_0^{1}(\Omega),\\ u_n\to u_2,\quad \text{strongly in } L^p(\Omega)\; (1\leq p<6),\\ u_n(x)\to u_2,\quad\text{a.e. in }\Omega. \end{gather*} We claim that $H(u_{n})>0$. By contradiction, assume $H(u_{n})\leq0$, then $-pH(u_{n})\geq0 $, from $u_{n}\in \mathcal{N}_{\lambda}^{-}(\Omega)$, by \eqref{2.1}, \eqref{2.4}, \eqref{2.5} and (F2), it follows that \begin{align*} a\|u_{n}\|^2&0$. Therefore $H(u_2)>0$ as $n\to \infty$. Similar to the proof of step 1, one can get $u_{n}\to u_2$ in $H_0^{1}(\Omega)$. Therefore, \[ I_{\lambda}(u_2)=\alpha^{-}_\lambda =\lim_{n\to \infty}I_{\lambda}(u_{n}) =\inf_{u\in \mathcal{N}_{\lambda}^{-}(\Omega)}I_{\lambda}(u)>0. \] From above discussion, we obtain that $I_{\lambda}(u)$ has a minimizer on $\mathcal{N}_{\lambda}^{-}(\Omega)$. By Step 1 and Step 2, there exist $u_1 \in \mathcal{N}_{\lambda}^{+}(\Omega)$ and $u_2 \in \mathcal{N}_{\lambda}^{-}(\Omega)$ such that $I_{\lambda}(u_1)= \alpha^{+}_\lambda<0$ and $ I_{\lambda}(u_2)= \alpha^{-}_\lambda>0$. It follows that $u_1$ and $u_2$ are nonzero solutions of (1.1). Because of $I_{\lambda}(u)=I_{\lambda}(|u|)$, one gets $u_1, u_2\geq0$. Therefore, by the Harnack inequality (see \cite[Theorem 8.20]{DN}), we have $u_1, u_2>0$ a.e. in $\Omega$. Consequently the proof of Theorem \ref{thm1.1} is complete. \subsection*{Acknowledgments} This research was supported by the Research Foundation of Guizhou Minzu University (No. 15XJS013; No. 15XJS012). \begin{thebibliography}{99} \bibitem{AS} A. M. Mao, S. X. Luan; \emph{Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems}, J. Math. Anal. Appl. 383 (2011), 239--243. \bibitem{AZ} A. M. Mao, Z. T. Zhang; \emph{Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition}, Nonlinear Anal. 70 (2009), 1275--1287. \bibitem{CF} C. O. Alves, F. J. S. A. Corr\'ea, T. F. Ma; \emph{Positive solutions for a quasilinear elliptic equation of Kirchhoff type}, Comput. Math. Appl. 49 (2005), 85--93. \bibitem{CT} C. Chen, Y. Kuo, T. Wu; \emph{The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions}, J. Differential Equations. 250 (2011), 1876--1908. \bibitem{CX} C. T. Cheng, X. Wu; \emph{Existence results of positive solutions of Kirchhoff type problems}, Nonlinear Anal. 71 (2009), 4883--4892. \bibitem{DN} D. Gilbarg, N. S. Trudinger; \emph{Elliptic Partial Differential Equations of Second Order}, Springer-Verlag, Berlin, 2001. \bibitem{EI} I. Ekeland; \emph{On the variational principle}, J. Math. Anal. Appl. 47 (1974), 324--353. \bibitem{GH} G. B. Li, H. Y. Ye; \emph{Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^{3}$}, J. Differential Equations. 257 (2014), 566--600. \bibitem{GJ} G. M. Figueiredo, J. R. Santos Junior; \emph{Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth}, Diff. Integral Equations. 25 (2012), 853--868. \bibitem{JW} J. J. Nie, X. Wu; \emph{Existence and multiplicity of non-trivial solutions for Schr\"odinger-Kirchhoff-type equations with radial potential}, Nonlinear Anal. 75 (2012), 3470--3479. \bibitem{JX} J. H. Jin, X. Wu; \emph{Infinitely many radial solutions for Kirchhoff-type problems in $\mathbb{R}^N$}, J. Math. Annal. Appl. 369 (2010), 564--574. \bibitem{LX} L. Wei, X. M. He; \emph{Multiplicity of high energy solutions for superlinear Kirchhoff equations}, J. Appl. Math. Comput. 39 (2012), 473--487. \bibitem{TJ} T. F. Ma, J. E. M. Rivera; \emph{Positive solutions for a nonlinear nonlocal elliptic transmission problem}, Appl. Math. Lett. 16 (2003), 243--248. \bibitem{XW} X. M. He, W. M. Zou; \emph{Infinitely many positive solutions for Kirchhoff-type problems}, Nonlinear Analysis. 70 (2009), 1407--1414. \bibitem{YF} Y. H. Li, F. Y. Li, J. P. Shi; \emph{Existence of a positive solution to Kirchhoff type problems without compactness conditions}, J. Differential Equations. 253 (2012), 2285--2294. \end{thebibliography} \end{document}