\documentclass[reqno]{amsart} \usepackage{hyperref} \usepackage{amssymb} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 207, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/207\hfil Multiple solutions] {Multiple solutions for p-Laplacian boundary-value problems with impulsive effects} \author[H. Shi, H. Chen \hfil EJDE-2015/207\hfilneg] {Hongxia Shi, Haibo Chen} \address{Hongxia Shi \newline School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan, China} \email{shihongxia5617@163.com} \address{Haibo Chen (corresponding author)\newline School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan, China} \email{math\_chb@163.com, math\_chb@csu.edu.cn} \thanks{Submitted March 15, 2015. Published August 10, 2015.} \subjclass[2010]{34A37, 34B37} \keywords{Boundary value problems; impulsive effects; nontrivial solutions; \hfill\break\indent Morse theory; local linking} \begin{abstract} In this article we study a class of boundary value problems with impulsive effects. First by using Morse theory in combination with local linking arguments, the existence result of at least two nontrivial solutions are obtained. Next we prove that the problems have $k$ distinct pairs of solutions by using the Clark theorem. Recent results from the literature are improved and extended. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction and statement of main results} In this article, we consider the impulsive boundary value problem \begin{equation} \begin{gathered} -(\rho(x)\Phi_{p}(u'(x)))'+s(t)\Phi_{p}(u(x))=f(x,u(x)),\quad \text{a.e. } x\in(a,b),\\ \Delta(\rho(x_j)\Phi_{p}(u'(x_j)))=\iota_j(u(x_j)),\quad j=1,2,\ldots,m,\\ \alpha_1u'(a^{+})-\alpha_2u(a)=0,\quad \beta_1u'(b^{-})+\beta_2u(b)=0, \end{gathered} \label{e1.1} \end{equation} where $\Phi_{p}(u)=|u|^{p-2}u$, $p>1$, $\rho, s\in L^{\infty}[a,b]$ with $\operatorname{ess\,inf}_{[a,b]}\rho>0$, $\operatorname{ess\,inf}_{[a,b]}s>0$, $0<\rho(a), \rho(b)<\infty$, $\alpha_1, \alpha_2, \beta_1, \beta_2>0$, $a=x_{0}0$ and $0\leq \gamma_j0$ and $0\leq\alpha0$, $0F(x,u)\geq c_2 |u|^{\gamma},\quad r\leq|u|\leq r_{0} \quad \text{a.e. } x\in[a,b], $$ here and in the sequel $F(x,u)=\int_{0}^{u}f(x,s)ds$, furthermore, $S_{p}$ is the Sobolev constant from $W^{1,p}([a,b])$ to $L^{p}([a,b])$; \item[(F3)] $f(x,-u)=-f(x,u)$. \end{itemize} Now, we are ready to state the main results of this article. \begin{theorem}\label{the1.1} Assume that {\rm (I1), (F1), (F2)} hold. Then \eqref{e1.1} has at least two nontrivial solutions. \end {theorem} \begin{theorem}\label{the1.2} Assume that {\rm (I1), (I2), (F1)--(F3)} hold. Then \eqref{e1.1} has at least $k$ distinct pairs of solutions. \end{theorem} The remainder of this article is organized as follows. In Section \ref{sec2}, some preliminary results are presented. In Section \ref{sec3}, we give the proof of our main result. Finally, an example is given to demonstrate the applicability of our main results in Section \ref{sec4}. Furthermore, we want to point out that a similar approach can be used to study different elliptic problems, such as in the paper \cite{d1}. \section{Preliminaries and variational setting} \label{sec2} Throughout this article, $C$, $C_{i}$ denotes positive constants which may vary; $\to$ denotes the strong and $\rightharpoonup$ the weak convergence; $B_{r}$ denotes the ball of radius $r$ and $E^{*}$ denotes the dual space of $E$. The Sobolev space $E=W^{1,p}([a,b])$ is equipped with the norm $$ \|u\|=\Big(\int_{a}^{b}\rho(x)|u'(x)|^{p}+s(x)|u(x)|^{p}\Big)^{1/p}, $$ which is equivalent to the usual one. As usual, for $1\leq p< +\infty$, we let \begin{gather*} \|u\|_{p}=\Big(\int_{a}^{b}|u(x)|^{p}dx\Big)^{1/p},\quad u\in L^{p}([a,b]), \\ \|u\|_{\infty}=\text{max}_{x\in [a,b]} |u(x)|, \quad u\in C([a,b]). \end{gather*} \begin{lemma}[{\cite[Lemma 2.6]{t2}}] \label{lem2.1} For $u\in E$, then we have $\|u\|_{\infty}\leq C_1\|u\|$, where \begin{equation*} C_1=2^{1/q}\max\Big\{\frac{1}{(b-a)^{1/p} (\operatorname{ess\,inf}_{[a,b]}s)^{1/p}}, \frac{(b-a)^{1/q}}{(\operatorname{ess\,inf}_{[a,b]}\rho)^{1/p}}\Big\} ,\quad \frac{1}{p}+\frac{1}{q}=1. \end{equation*} \end{lemma} Now we begin describing the variational formulation of problem \eqref{e1.1}. Consider the functional $\varphi:E\to \mathbb{R}$ defined by \begin{equation} \begin{aligned} \varphi(u)&=\frac{\|u\|^{p}}{p} +\sum_{j=1}^{m}I_j(u(x_j))+\frac{\rho(a)\alpha_2^{p-1}}{p\alpha_1^{p-1}}|u(a)|^{p} +\frac{\rho(b)\beta_2^{p-1}}{p\beta_1^{p-1}}|u(b)|^{p}\\ &\quad -\int_{a}^{b}F(x,u)dx. \end{aligned}\label{e2.1} \end{equation} Since $f$ and $\iota_j(j=1,2,\dots,m)$ are continuous, we deduce that $\varphi$ is of class $C^{1}$ and its derivative is given by \begin{equation} \begin{aligned} \varphi'(u)v &= \int_{a}^{b}\rho(x)\Phi_{p}(u'(x))v'(x)dx + \int_{a}^{b}s(x)\Phi_{p}(u(x))v(x)dx \\ &\quad + \rho(a)\Phi_{p}(\frac{\alpha_2u(a)}{\alpha_1})v(a) + \rho(b)\Phi_{p}(\frac{\beta_2u(b)}{\beta_1})v(b) + \sum_{j=1}^{m}\iota_j(u(x_j))v(x_j) \\ &\quad - \int_{a}^{b}f(x,u(x))v(x)dx, \end{aligned}\label{e2.2} \end{equation} for all $u,v\in E$. Then we can infer that $u\in E$ is a critical point of $\varphi$ if and only if it is a solution of \eqref{e1.1}. We will use Morse theory in combination with local linking arguments to obtain the critical points of $\varphi$. Now, it is necessary to recall the following definitions and results. \begin{definition}\label{def2.1} \rm Let $E$ be a real reflexive Banach space. We say that $\varphi$ satisfies the (PS)-condition, i.e. every sequence $\{u_{n}\}\subset E$ satisfying $\varphi(u_{n})$ bounded and $\lim_{n\to\infty}\varphi'(u_{n})=0$ contains a convergent subsequence. \end{definition} Let $E$ be a real Banach space and $\varphi\in C^{1}(E,\mathbb{R})$. $K=\{u\in E:\varphi'(u)=0\}$, then the q-th critical group of $\varphi$ at an isolated critical point $u\in K$ with $\varphi(u)=c$ is defined by $$ C_{q}(\varphi,u):=H_{q}(\varphi^{c}\cap U,\varphi^{c}\cap U\setminus \{u\}), \quad q\in \mathbb{N}:=\{0,1,2,\dots\}, $$ where $\varphi^{c}=\{u\in E: \varphi (u)\leq c\}$, $U$ is a neighborhood of $u$, containing the unique critical point, $H_{*}$ is the singular relative homology with coefficient in an Abelian group $G$. We say that $u\in E$ is a homological nontrivial critical point of $\varphi$ if at least one of its critical groups is nontrivial. Now, we present the following propositions which will be used later. \begin{proposition}[{\cite[Proposition 2.1]{l3}}] \label{pro2.1} Assume that $\varphi$ has a critical point $u=0$ with $\varphi(0)=0$. Suppose that $\varphi$ has a local linking at 0 with respect to $E=V\oplus W$, $k=\dim V<\infty$; that is, there exists $\rho >0$ small such that \begin{equation*} %\label{1.1} \begin{gathered} \varphi(u)\leq 0,\quad u\in V,\quad \|u\|\leq\rho;\\ \varphi(u)> 0,\quad u\in W, \quad 0<\|u\|\leq\rho.\\ \end{gathered} \end{equation*} Then $C_{k}(\varphi,0)\ncong0$, hence 0 is a homological nontrivial critical point of $\varphi$. \end{proposition} \begin{proposition}[{\cite[Theorem 2.1]{l3}}] \label{pro2.2} Let $E$ be a real Banach space and let $\varphi\in C^{1}(E,\mathbb{R})$ satisfy the (PS)-condition and is bounded from below. If $\varphi$ has a critical point that is homological nontrivial and is not a minimizer of $\varphi$, then $\varphi$ has at least three critical points. \end{proposition} \begin{proposition}[{\cite[Theorem 9.1]{r1}}] \label{pro2.3} Let $E$ be a real Banach space, $\varphi\in C^{1}(E,\mathbb{R})$ with $\varphi$ even, bounded from below, and satisfying (PS)-condition. Suppose $\varphi(0)=0$, there is a set $K\subset E$ such that $K$ is homeomorphic to $S^{j-1}$ by an odd map, and $\sup_{K}\varphi<0$. Then $\varphi$ possesses at least $j$ distinct pairs of critical points. \end{proposition} \section{Proof of main results}\label{sec3} In this section, we prove Theorems \ref{the1.1} and \ref{the1.2}. To complete the proof, we need the following lemmas. \begin{lemma} \label{lem3.1} Suppose that $\varphi$ satisfies {\rm (I1), (F1)}, then $\varphi$ satisfies the (PS)-condi\-tion. \end{lemma} \begin{proof} We first prove that $\varphi$ is coercive. It follows from $(I1)$ and (F1) that \begin{align*} \varphi(u) &= \frac{\|u\|^{p}}{p} + \sum_{j=1}^{m}I_j(u(x_j)) + \frac{\rho(a)\alpha_2^{p-1}}{p\alpha_1^{p-1}}|u(a)|^{p} + \frac{\rho(b)\beta_2^{p-1}}{p\beta_1^{p-1}}|u(b)|^{p} - \int_{a}^{b}F(x,u)dx\\ &\geq \frac{\|u\|^{p}}{p}+\frac{\rho(a)\alpha_2^{p-1}}{p\alpha_1^{p-1}}|u(a)|^{p} + \frac{\rho(b)\beta_2^{p-1}}{p\beta_1^{p-1}}|u(b)|^{p} -\int_{a}^{b}c_1|u|^{\alpha+1}dx\\ &\geq \frac{\|u\|^{p}}{p}+\frac{\rho(a)\alpha_2^{p-1}}{p\alpha_1^{p-1}}|u(a)|^{p} + \frac{\rho(b)\beta_2^{p-1}}{p\beta_1^{p-1}}|u(b)|^{p}-C_2\|u\|^{\alpha+1} \end{align*} Since $\alpha+10$ such that \begin{equation} \|u_n\|\leq M,\quad\forall n\in \mathbb{N}. \label{e3.1} \end{equation} Going to a subsequence, if necessary, we can assume that $u_n\rightharpoonup u_0$ in $E.$ Hence, by compact embedding theorem of Sobolev space, we have $$ u_n\to u_0 \text{ in } L^{p}([a,b]),\quad u_n\to u_0 \text{ a.e. } x\in[a,b]. $$ By \eqref{e2.2}, we have \begin{equation} \begin{aligned} & (\varphi'(u_{n})-\varphi'(u_{0}),u_{n}-u_{0})\\ &= \int_{a}^{b}\rho(x)(\Phi_{p}(u'_{n}(x)) - \Phi_{p}(u_{0}'(x)))(u'_{n}(x)-u_{0}'(x))dx\\ &\quad + \int_{a}^{b}s(x)(\Phi_{p}(u_{n}(x)) - \Phi_{p}(u_{0}(x)))(u_{n}(x) - u_{0}(x))dx\\ &\quad +\rho(a)(\Phi_{p}(\frac{\alpha_2u_{n}(a)}{\alpha_1}) - \Phi_{p}(\frac{\alpha_2u_{0}(a)}{\alpha_1}))(u_{n}(a) - u_{0}(a))\\ & \quad +\rho(b)(\Phi_{p}(\frac{\beta_2u_{n}(b)}{\beta_1}) - \Phi_{p}(\frac{\beta_2u_{0}(b)}{\beta_1}))(u_{n}(b) - u_{0}(b))\\ &\quad +\sum_{j=1}^{m}(\iota_j(u_{n}(x_j))-\iota_j(u_{0}(x_j)))(u_{n}(x_j)-u_{0}(x_j))\\ &\quad -\int_{a}^{b}(f(t,u_{n}(x)) - f(t,u_{0}(x)))(u_{n}(x) - u_{0}(x))dx. \end{aligned}\label{e3.2} \end{equation} If $p\geq2$, it is easy to show that for any $x,y\in\mathbb{R}$, there exists $c_{p}>0$ such that \[ (|x|^{p-2}x-|y|^{p-2}y)(x-y)\geq c_{p}|x-y|^{p},\quad p\geq 2. \] Combining this inequality with \eqref{e3.2}, we have \begin{align*} c_{p}\|u_{n}-u_{0}\|^{p} &\leq \|\varphi'(u_{n})-\varphi'(u_{0})\|\|u_{n}-u_{0}\|\\ &\quad -\rho(a)(\Phi_{p}(\frac{\alpha_2u_{n}(a)}{\alpha_1}) -\Phi_{p}(\frac{\alpha_2u_{0}(a)}{\alpha_1}))(u_{n}(a)-u_{0}(a)) \\ &\quad -\rho(b)(\Phi_{p}(\frac{\beta_2u_{n}(b)}{\beta_1}) -\Phi_{p}(\frac{\beta_2u_{0}(b)}{\beta_1}))(u_{n}(b)-u_{0}(b))\\ &\quad-\sum_{j=1}^{l}(\iota_j(u_{n}(x_j))-\iota_j(u_{0}(x_j)))(u_{n}(x_j) -u_{0}(x_j))\\ &\quad+\int_{a}^{b}(f(x,u_{n}(x))-f(x,u_{0}(x)))(u_{n}(x)-u_{0}(x))dx. \end{align*} It follows directly that $u_n\to u_0$ in $E$. If $10$ such that \begin{align*} &\int_{a}^{b}\rho(x)(\Phi_{p}(u'_{n}(x)) - \Phi_{p}(u_{0}'(x)))(u'_{n}(x) - u_{0}'(x))dx \\ & + \int_{a}^{b}s(x)(\Phi_{p}(u_{n}(x)) - \Phi_{p}(u_{0}(x)))\\ &\geq\frac{d_{p}2^{p-2}\|u_{n}-u_{0}\|^{2}}{(\|u_{n}\|+\|u_{0}\|)^{2-p}} \end{align*} Similarly, we can obtain that $u_{n}\to u_{0}$ in $E$, i.e. $\varphi$ satisfies the (PS)-condition. \end{proof} We choose an orthogonal basis $\{e_j\}$ of $E$ and define $X_j:=\operatorname{span}\{e_j\}$, $j=1,2,\dots$, $Y_{k}:=\oplus_{j=1}^{k} X_j$, $Z_{k}=\overline{\oplus_{j=k+1}^{\infty} X_j}$, then $E=Y_{k}\oplus Z_{k}$. \begin{lemma} \label{lem3.2} Suppose that $\Phi$ satisfies {\rm (I1), (F2)}, then there exists $k_{0}\in \mathbb{N}$ such that $C_{k_{0}}(\varphi, 0)\ncong0$. \end{lemma} \begin{proof} Since $F(x,0)=0$ and $I_j(0)=0 (j=1,2,\dots,m)$, then the zero function is a critical point of $\varphi$. So we only need to prove that $\varphi$ has a local linking at 0 with respect to $E=Y_{k}\oplus Z_{k}$. \smallskip \noindent\textbf{Step 1.} Take $u\in Y_{k}$, since $Y_{k}$ is finite dimensional, we have that for given $r_{0}$, there exists $0<\rho<1$ small such that $$ u\in Y_{k}, \quad \|u\|\leq\rho\Rightarrow |u|r_{0}\}$, then $[a,b]=\bigcup_{i=1}^{3}\Omega_{i}$. For the sake of simplicity, let $G(x,u)=F(x,u)-c_2|u|^{\gamma}$. Therefore, it follows form (I1) and (F2) that \begin{align*} \varphi(u)&\leq\frac{1}{p}\|u\|^{p}+\sum_{j=1}^{m}a_j|u|^{\gamma_j+1} +\frac{\rho(a)\alpha_2^{p-1}}{p\alpha_1^{p-1}}|u(a)|^{p} +\frac{\rho(b)\beta_2^{p-1}}{p\beta_1^{p-1}}|u(b)|^{p}\\ &\quad-\int_{a}^{b}c_2|u|^{\gamma}dx -\Big(\int_{\Omega_1}+\int_{\Omega_2}+\int_{\Omega_{3}}\Big)G(x,u)dx\\ &\leq\frac{1}{p}\|u\|^{p}+\sum_{j=1}^{m}a_j\|u\|^{\gamma_j+1} +\frac{\rho(a)\alpha_2^{p-1}}{p\alpha_1^{p-1}}|u(a)|^{p} +\frac{\rho(b)\beta_2^{p-1}}{p\beta_1^{p-1}}|u(b)|^{p}\\ &\quad-\int_{a}^{b}c_2|u|^{\gamma}dx-\int_{\Omega_1}G(x,u)dx. \end{align*} Note that the norms on $Y_{k}$ are equivalent to each other, $\|u\|_{p}$ is equivalent to $\|u\|$ and $\int_{\Omega_1}G(x,u)dx\to0$ as $r\to0$. Since $0<\gamma0$, there exists $0<\rho<1$ small such that $$ u\in Z_{k}, \; \|u\|\leq\rho\Rightarrow |u|<\varepsilon, \quad x\in [a,b]. $$ Therefore, it follows from (I1) and (F2) that $$ \varphi(u)\geq\frac{1}{p}\|u\|^{p}-\int_{a}^{b}c_{3}|u|^{p}dx \geq\frac{1}{p}\|u\|^{p}-\frac{1}{p}\|u\|^{p}>0. $$ The proof is complete. \end{proof} \begin{proof}[Proof of Theorem \ref{the1.1}] By Lemma \ref{lem3.1}, $\varphi$ satisfies the (PS)-condition and is bounded from below. By Lemma \ref{lem3.2} and Proposition \ref{pro2.1}, the trivial solution $u=0$ is homological nontrivial and is not a minimizer. Then it follows immediately from Proposition \ref{pro2.2} that \eqref{e1.1} has at least two nontrivial solutions. \end{proof} \begin{proof}[Proof of Theorem \ref{the1.2}] By (I2) and (F3), we can easily check the functional $\varphi$ is even. Lemma \ref{lem3.1} shows that $\varphi$ satisfies the (PS)-condition and is bounded from below. For $\rho>0$, let $K=S_{\rho}=\{u\in Y_{k}:\|u\|=\rho\}$. Thus, just as shown in the proof of Lemma \ref{lem3.2}, if $\rho>0$ is small enough, we have that $$ \sup_{K}\varphi(u)\leq 0. $$ By the definition of $Y_{k}$, we have $\dim Y_{k}=k$, then by Proposition \ref{pro2.3}, we have that $\varphi$ has at least $k$ distinct pairs of critical points. Therefore, \eqref{e1.1} has at least $k$ distinct pairs of solutions. \end{proof} \section{An example}\label{sec4} In this section, we illustrate our main results with an example. In problem \eqref{e1.1}, let $p=2$, $\rho(x)=s(x)=1$, \begin{gather*} f(x,u)=\frac{1+\sin^{2}x}{1+e^{|x|}}\cdot\frac{2n-2}{n}|u|^{-\frac{2}{n}}u, \\ \iota_j(u)=\frac{2n-1}{n}|u|^{-\frac{1}{n}}u(j=1,2,\dots,m), \end{gather*} then $$ F(x,u)=\frac{1+\sin^{2}x}{1+e^{|x|}}|u|^{\frac{2n-2}{n}}, \quad I_j(u)=|u|^{\frac{2n-1}{n}}. $$ When $n$ is an integer (large enough), we know that $f$ satisfies the conditions (F1) and (F2) and impulses $\iota_j$ $(j=1,2,\dots,m)$ fulfill (I1). By Theorem \ref{the1.1}, the problem has at least two nontrivial solutions. Furthermore, we can show that the nonlinearity $f$ and the impulses $\iota_j$ $(j=1,2,\dots,m)$ are all even. Thus by Theorem \ref{the1.2}, the problem has $k$ distinct pairs of solutions. \subsection*{Acknowledgments} This research was supported by Natural Science Foundation of China 11271372, by the Fundamental Research Funds for the Central Universities of Central South University 2015zzts010 and by the Mathematics and Interdisciplinary Sciences project of CSU. The authors are grateful to the anonymous referees for their valuable comments and suggestions. \begin{thebibliography}{00} \bibitem{a1} R. P. Agarwal, T. Gnana Bhaskar, K. Perera; \newblock{Some results for impulsive problems via Morse theory,} \newblock\emph{J. Math. Anal. Appl.} ,\textbf{409} (2014), 752--759. \bibitem{a2} B. Ahmad, J.J. Nieto; \newblock {Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions,} \newblock \emph{Nonlinear Analysis: TMA}, \textbf{69} (2008), 3291--3298. \bibitem{a3} A. Ambrosetti, P. H. Rabinowitz; \newblock{Dual variational methods in critical point theory and applications,} \newblock{ \em J. Funct. Anal.}, \textbf{14} (1973), 349--381. \bibitem{b1} L. Bai, B. Dai; \newblock{Three solutions for a p-Laplacian boundary value problem with impulsive effects,} \newblock \emph{Appl. Math. Comput.}, \textbf{217} (2011), 9895--9904. \bibitem{b2} T. Bartsch, S. J. Li; \newblock{Critical point theory for asymptotically quadratic functionals and applications to problems with resonance,} \newblock\emph{Nonlinear Analysis,} \textbf{28} (1997), 419--441. \bibitem{c1} K. Chang; \newblock{Infinite Dimensional Morse Theory and Multiple Solution Prolems,} \newblock\emph{Birkh$\ddot{a}$user, Boston,} \textbf{1993}. \bibitem{c2} H. Chen, J. Sun; \newblock {An application of variational method to second-order impulsive differential equation on the half-line, } \newblock \emph{Appl. Math. Comput.}, \textbf{217(5)} (2010), 1863--1869. \bibitem{c3} S. Chen, C. Wang; \newblock{Existence of multiple nontrivial solutions for a Schr\"{o}dinger-Poisson system,} \newblock \emph{J. Math. Anal. Appl.}, \textbf{411} (2014), 787--793. \bibitem{c4} J. Chu, J. J. Nieto; \newblock{Impulsive periodic solutions of first-order singular differential equations,} \newblock \emph{Bull. London. Math. Soc.}, \textbf{40} (2008), 143--150. \bibitem{d1} G. D'Agu\`{\i}, G. Molica Bisci, \newblock{Three non-zero solutions for elliptic Neumann problems,} \newblock \emph{Anal. Appl.}, \textbf{9(4)} (2011), 383--394. \bibitem{f1} M. Ferrara, G. Molica Bisci, B. Zhang; \newblock{Existence of weak solutions for non-local fractional problems via morse theory,} \newblock\emph{Dis. Contin. Dyn. Sys.-Ser. B.}, \textbf{19} (2014), 2483--2499. \bibitem{j1} M. Jiang, M. Sun; \newblock{Some qualitative results of the critical groups for the p-Laplacian equations,} \newblock \emph{Nonlinear Analysis: TMA} \textbf{75} (2012), 1778--1786. \bibitem{l1} K. Li, S. Wang, Y. Zhao; \newblock{Multiple periodic solutions for asymptotically linear Duffing equations with resonance (II),} \newblock\emph{J. Math. Anal. Appl.}, \textbf{397} (2013), 156--160. \bibitem{l2} Y. Li; \newblock{Positive periodic solutions of nonlinear differential systems with impulses,} \newblock \emph{Nonlinear Analysis: TMA}, \textbf{68} (2008), 2389--2405. \bibitem{l3} J. Q. Liu, J. B. Su; \newblock{Remarks on multiple nontrivial solutions for quasi-linear resonant problems,} \newblock\emph{J. Math. Anal. Appl.}, \textbf{258} (2001), 209--222. \bibitem{l4} S. B. Liu; \newblock{Existence of solutions to a superlinear p-Laplacian equation,} \newblock\emph{Electron. J. Differential Equations}, \textbf{66} (2001), 1--6. \bibitem{l5} Z. Liu, H. Chen; \newblock {Variational methods to the second-order impulsive differential equation with Dirichlet boundary value problem,} \newblock \emph{Comput. Math. Appl.}, \textbf{61} (2011), 1687--1699. \bibitem{n1} J.J. Nieto; \newblock {Impulsive resonance periodic problems of first order,} \newblock \emph{Appl. Mat. Lett.}, \textbf{15} (2002), 489--493. \bibitem{n2} J. J. Nieto, D. O'Regan; \newblock{Variational approach to impulsive differential equations,} \newblock \emph{Nonlinear Analysis: RWA}, \textbf{10} (2009), 680-690. \bibitem{n3} J. J. Nieto, R. Rodr\'{\i}guez-L\'{o}pez; \newblock {Boundary value problems for a class of impulsive functional equations, } \newblock \emph{Comput. Math. Appl.}, \textbf{55} (2008), 2715--2731. \bibitem{n4} J. J. Nieto, R. Rodr\'{\i}guez-L\'{o}pez; \newblock{New comparison results for impulsive integro-differential equations and applications,} \newblock \emph{J. Math. Anal. Appl.}, \textbf{328} (2007), 1343--1368. \bibitem{r1} P. H. Rabinowitz; \newblock{Minimax Methods in Critical Point Theory with Applications to Differential Equations,} \newblock\emph{CBMSReg. Conf. Ser. Math.}, vol. 65, Amer. Math. Soc., Providence, RI (1986). \bibitem{s1} H. Shi, H. Chen; \newblock{ Multiple solutions for fractional Schr\"{o}dinger equations,} \newblock{ \em Elec. J. Differ. Equa.} \textbf{25} (2015), 1--11. \bibitem{s2} J. Su; \newblock{Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues,} \newblock\emph{Nonlinear Analysis,} \textbf{48} (2002), 881--895. \bibitem{s3} J. Sun, H. Chen; \newblock{Multiplicity of solutions for a class of impulsive differential equations with Dirichlet boundary conditions via variant fountain theorems,} \newblock \emph{Nonlinear Analysis: RWA}, \textbf{11(5)} (2010), 4062--4071. \bibitem{s4} J. Sun, H. Chen, J. J. Nieto, M. Otero-Novoa; \newblock{The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects,} \newblock \emph{Nonlinear Analysis: TMA}, \textbf{72} (2010), 4575--4586. \bibitem{s5} J. Sun, H. Chen, L. Yang; \newblock{The existence and multiplicity of solutions for an impulsive differential equation with two parameters via a variational method,} \newblock \emph{Nonlinear Analysis: TMA}, \textbf{73} (2010), 440--449. \bibitem{s6} M. Sun; \newblock{Multiplicity of solutions for a class of the quasilinear elliptic equations at resonance,} \newblock \emph{J. Math. Anal. Appl.}, \textbf{386} (2012), 661--668. \bibitem{t1} Z. Tan, F. Fang; \newblock{On superlinear p(x)-Laplacian problems without Ambrosetti and Rabinowitz condition,} \newblock\emph{Nonlinear Analysis}, \textbf{75} (2012), 3902--3915. \bibitem{t2} Y. Tian, W. G. Ge; \newblock{ Applications of variational methods to boundary value problem for impulsive differential equations,} \newblock \emph{Proc. Edinb. Math. Soc.}, \textbf{51} (2008), 509--527. \bibitem{t3} Y. Tian, W. G. Ge; \newblock{ Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations,} \newblock \emph{Nonlinear Analysis: TMA}, \textbf{72} (2010), 277--287. \bibitem{x1} J. Xiao, J. J. Nieto, Z. Luo; \newblock{ Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods, } \newblock \emph{Commun. Nonlinear. Sci. Numer.Simulat.}, \textbf{17} (2012), 426--432. \bibitem{z1} G. Zeng, F. Wang, J. J. Nieto; \newblock{ Complexity of a delayed predator-prey mode with impulsive harvest and holling type II functional response,} \newblock \emph{Adv. Complex. Syst.}, \textbf{11} (2008), 77--97. \bibitem{z2} H. Zhang, L. Chen, J. J. Nieto; \newblock{A delayed epidemic model with stage-structure and pulses for pest management strategy,} \newblock \emph{Nonlinear Analysis: RWA}, \textbf{9} (2008), 1714--1726. \bibitem{z3} Z. Zhang, R. Yuan; \newblock{An application of variational methods to Dirichlet boundary value problem with impulsive,} \newblock \emph{Nonlinear Analysis: RWA}, \textbf{11} (2010), 155--162. \bibitem{z4} J. Zhou, Y. Li; \newblock{Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects,} \newblock \emph{Nonlinear Analysis: TMA}, \textbf{71} (2009), 2856--2865. \end{thebibliography} \end{document}