\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 208, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/208\hfil Quenching for a semilinear diffusion] {Quenching of a semilinear diffusion equation with convection and reaction} \author[Q. Zhou, Y. Nie, X. Zhou, W. Guo \hfil EJDE-2015/208\hfilneg] {Qian Zhou, Yuanyuan Nie, Xu Zhou, Wei Guo} \address{Qian Zhou \newline School of Mathematics, Jilin University, Changchun 130012, China} \email{zhouqian@jlu.edu.cn} \address{Yuanyuan Nie \newline School of Mathematics, Jilin University, Changchun 130012, China} \email{nieyy@jlu.edu.cn} \address{Xu Zhou \newline College of Computer Science and Technology, Jilin University, Changchun 130012, China} \email{zhouxu0001@163.com} \address{Wei Guo \newline School of Mathematics and Statistics, Beihua University, Jilin 132013, China} \email{guoweijilin@163.com} \thanks{Submitted April 16, 2015. Published August 10, 2015.} \subjclass[2010]{35K20, 35B40} \keywords{Quenching; critical length} \begin{abstract} This article concerns the quenching phenomenon of the solution to the Dirichlet problem of a semilinear diffusion equation with convection and reaction. It is shown that there exists a critical length for the spatial interval in the sense that the solution exists globally in time if the length of the spatial interval is less than this number while the solution quenches if the length is greater than this number. For the solution quenching at a finite time, we study the location of the quenching points and the blowing up of the derivative of the solution with respect to the time. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} In this article, we consider the problem \begin{gather} \label{a-1.1} \frac{\partial u}{\partial t}-\frac{\partial^2 u}{\partial x^2}+b(x) \frac{\partial u}{\partial x}=f(u),\quad (x,t) \in (0,a)\times(0,T),\\ \label{a-1.2} u(0,t)=0=u(a,t),\quad t \in (0,T),\\ \label{a-1.3} u(x,0)=0,\quad x \in (0,a), \end{gather} where $a>0$, $b\in C^1([0,+\infty))\cap L^\infty([0,+\infty))$ and $f\in C^1([0,c))$ with $c>0$ satisfies \begin{equation} \label{aa0} f(0)>0,\quad f'(s)>0 \quad \text{for }00)$, Levine (\cite{Levine2}) in 1989 proved that the solution can not quench in infinite time by finding the explicit form of the minimum steady-state soluton. Since \cite{Kawarada}, there are many interesting results on quenching phenomena for semilinear uniformly parabolic equations (see, e.g., \cite{AW,Boni,DL,Levine1,LL,LM}), singular or degenerate semilinear parabolic equations (see, e.g., \cite{C1,CHK,C6,C2,GH}) and quasilinear diffusion equations (\cite{DX,NW,Winkler,YYJ}). In this article, we study the quenching phenomenon of the solution to \eqref{a-1.1}--\eqref{a-1.3}. Since there is a convection term in \eqref{a-1.1}, it can describe more diffusion phenomena. By constructing suitable super and sub solutions, we prove the existence of the critical length. For the solution quenching at a finite time, we also study the location of the quenching points and the blowing up of the derivative of the solution with respect to the time at the quenching time by energy estimates and many kinds of super and sub solutions. Due to the existence of the convection term in \eqref{a-1.1}, we have to overcome some technical difficulties when doing estimates and constructing super and sub solutions. This paper is arranged as follows. The existence of the critical length is proved in $\S 2$. Subsequently, in $\S 3$ we study the quenching properties for the quenching solution, including the location of the quenching points and the blowing up of the derivative of the solution with respect to the time at the quenching time. \section{Critical length} Thanks to the classical theory on parabolic equations, problem \eqref{a-1.1}--\eqref{a-1.3} is well-posed locally in time. Denote \begin{align*} T_*=\sup\Big\{&T>0: \text{problem \eqref{a-1.1}--\eqref{a-1.3} admits a solution } \\ &u\in C^{2,1}((0,a)\times(0,T))\cap C([0,a]\times[0,T]) \text{ and } \sup_{(0,a)\times(0,T)}u0$ and $\frac{\partial u}{\partial t}>0$ in $(0,a)\times(0,T_*)$. \end{proposition} \begin{proof} Clearly, the existence and uniqueness follow from the local well-posedness and a standard extension process. Set \[ v(x,t)=\frac{\partial u}{\partial t}(x,t),\quad(x,t)\in[0,a]\times[0,T_*). \] Then $v$ solves \begin{gather*} \frac{\partial v}{\partial t}-\frac{\partial^2 v}{\partial x^2} +b(x)\frac{\partial v}{\partial x}=f'(u(x,t))v,\quad (x,t) \in (0,a)\times(0,T_*), \\ v(0,t)=0=v(a,t),\quad t \in (0,T_*),\\ v(x,0)=f(0),\quad x \in (0,a). \end{gather*} The strong maximal principles for $u$ and $v$ show that $u>0$ and $v>0$ in $(0,a)\times(0,T_*)$. \end{proof} If $T_*=+\infty$, then $u$ exists globally in time. If $T_*<+\infty$, then $u$ must quench at a finite time. Let us study the relation between $T_*$ and $a$ below. For convenience, we denote $u_a$ to be the solution to \eqref{a-1.1}--\eqref{a-1.3} and $T_*(a)$ to be its life span. \begin{lemma} \label{lemma-3.1} If $a>0$ is sufficiently small, then $T_*(a)=+\infty$, and \[ \sup_{(0,a)\times(0,+\infty)}u_a0$ is sufficiently large, then $T_*(a)<+\infty$. \end{lemma} \begin{proof} Set $$ \underline u_a(x,t)=\frac{t}{4T}{f(0)}x(a-x),\quad(x,t)\in [0,a]\times[0,T] $$ with $T=\max\big\{\frac1{4}a^{2},{a(\|b\|_{L^\infty([0,+\infty))}+1)}\big\}$. Then, $\underline u_a$ satisfies \begin{align*} \frac{\partial \underline u_a}{\partial t}-\frac{\partial^2\underline u_a}{\partial x^2} +b(x)\frac{\partial \underline u_a}{\partial x} &=\frac{1}{4T}{f(0)}x(a-x)+\frac{t}{2T}{f(0)}+\frac{t}{4T}{f(0)}b(x)(a-2x) \\ &\leq f(0)\le f(\underline u_a),\quad(x,t)\in(0,a)\times(0,T). \end{align*} The comparison principle shows $u_a\ge\underline u_a$ in $(0,a)\times(0,T)$. Particularly, $u_a(a/2,T)\ge\frac1{16}{f(0)a^2}$, which yields $T_*(a)<+\infty$ if $a\ge 4\sqrt{c}/\sqrt{f(0)}$. \end{proof} \begin{lemma} \label{lemma-3.3} For any $00$ for each $t\in(0,T_*(a_2))$. Set $$ w(x,t)=u_{a_1}(x,t)-u_{a_2}(x,t),\quad (x,t)\in [0,a_1]\times[0,T_*(a_2)). $$ Then $w$ solves \begin{gather*} \frac{\partial w}{\partial t}-\frac{\partial^2 w}{\partial x^2}+b(x) \frac{\partial w}{\partial x}=h(x,t)w,\quad (x,t) \in (0,a_1)\times(0,T_*(a_2)), \\ w(0,t)=0,\quad w(a_1,t)=u_{a_2}(a_1,t)>0,\quad t \in (0,T_*(a_2)), \\ w(x,0)=0,\quad x \in (0,a_1), \end{gather*} where \[ h(x,t)=\int_0^1f'(\sigma u_{a_1}(x,t)+(1-\sigma)u_{a_2}(x,t)) d\sigma, \quad (x,t)\in (0,a_1)\times(0,T_*(a_2)). \] The strong maximum principle leads to $w<0$ in $(0,a_1)\times(0,T_*(a_2))$, and thus the Hopf Lemma yields $\frac{\partial w}{\partial x}(0,\cdot)<0$ in $(0,T_*(a_2))$. \end{proof} \begin{lemma}\label{lemma-3.3new} There exists at most one $a>0$ such that $u_a$ quenches at the infinite time. \end{lemma} \begin{proof} Assume that $u_{a_0}$ quenches at the infinite time for some $a_0>0$. For each $a>a_0$, let us show that $u_{a}$ quenches at a finite time by contradiction. Otherwise, Lemma \ref{lemma-3.3} shows that $u_{a}$ must quench at the infinite time. Proposition \ref{existencere} and Lemma \ref{lemma-3.3} yield \begin{gather} \label{aa2} u_a(a_0,t)>u_a(a_0,1)>0,\quad t\in(1,+\infty), \\ \label{aa3} u_a(x,1)>u_{a_0}(x,1),\quad x\in(0,a_0) \text{ and }\frac{\partial u_a}{\partial x}(0,t)>\frac{\partial u_{a_0}}{\partial x}(0,t),\quad t\in(1,+\infty). \end{gather} Let $$ \underline u_a(x,t)=u_{a_0}(x,t)+\delta\int_0^x \exp \Big\{\int_0^y b(s)ds\Big\}dy,\quad (x,t)\in [0,a_0]\times[1,+\infty). $$ By \eqref{aa2} and \eqref{aa3}, there exists $\delta>0$ such that \begin{gather} \label{aa4} u_a(a_0,t)>\underline u_a,\quad t\in(1,+\infty), \quad u_a(x,1)>\underline u_a(x,1),\quad x\in(0,a_0). \end{gather} Note that $\underline u_a$ satisfies \begin{gather} \label{aa5} \frac{\partial \underline u_a}{\partial t}-\frac{\partial^2 \underline u_a}{\partial x^2}+b(x)\ pd {\underline u_a}x= f(u_{a_0})0$ such that \begin{itemize} \item[(i)] $T_*(a)=+\infty$ and $\sup_{(0,a)\times(0,+\infty)}u_{a}a_*$. \end{itemize} \end{theorem} \begin{proof} Set $$ S=\big\{a>0: T_*(a)=+\infty \text{ and }\sup_{(0,a)\times(0,+\infty)}u_aa_*$, the definition of $S$ shows that $T_*(a)<+\infty$ or $u_a$ quenches at the infinite time. Let us prove that the latter case is impossible by contradiction. Otherwise, assume that $u_{a_0}$ quenches at the infinite time for some $a_0>a_*$. From the definition of $S$ and Lemma \ref{lemma-3.3}, $u_{\tilde a}$ must quench at the infinite time for each $a_*<\tilde a0,\quad(x,t) \in (0,a)\times(0,T_*). \end{equation} Let $z$ be the solution to the linear problem \begin{gather} \label{www-b5} \frac{\partial z}{\partial t}-\frac{\partial^2 z}{\partial x^2}+b(x) \frac{\partial z}{\partial x}=0,\quad (x,t)\in (x_1,x_4)\times(T_*/2,T_*), \\ \label{www-b6} z(x_1,t)=z(x_4,t)=0,\quad t\in(T_*/2,T_*),\\ \label{www-b7} z(x,T_*/2)=\delta\sin\Big(\frac{\pi(x-x_1)}{x_4-x_1}\Big),\quad x\in(x_1,x_4) \end{gather} with $\delta=\min_{(x_1,x_4)}v(\cdot,T_*/2)$. Owing to \eqref{www-b3} and \eqref{www-b4}, $v$ is a supersolution to \eqref{www-b5}--\eqref{www-b7}. The comparison principle and the maximum principle give \begin{equation}\label{www-b9} v(x,t)\ge z(x,t)\ge\gamma,\quad(x,t)\in(x_1,x_4)\times(T_*/2,T_*) \end{equation} with some $\gamma>0$. Set $$ w(x,t)=v(x,t)-\kappa f(u(x,t)),\quad(x,t)\in[x_2,x_3]\times[T_*/2,T_*). $$ By \eqref{www-b1} and \eqref{www-b9}, there exists $\kappa>0$ such that \begin{equation} \label{www-b10} w(x,t)\ge 0,\quad(x,t)\in \{x_2,x_3\}\times[T_*/2,T_*) \cup [x_1,x_2]\times\{T_*/2\}. \end{equation} Thanks to \eqref{a-1.1} and \eqref{www-b3}, $v$ solves \begin{gather*} \frac{\partial w}{\partial t}-\frac{\partial^2 w}{\partial x^2}+b(x)\frac{\partial w}{\partial x}-f'(u)w =\kappa f''(u)\Big(\frac{\partial w}{\partial x}\Big)^2\ge0,\\ (x,t)\in(x_2,x_3)\times(T_*/2,T_*). \end{gather*} Then, it follows from the maximal principle with \eqref{www-b10} that $w\ge0$ in $(x_2,x_3)\times[T_*/2,T_*)$, which, together with \eqref{www-b1}, yields $\lim_{t\to T_*^-}\sup_{(x_2,x_3)}v(\cdot,t)=+\infty$. \end{proof} \begin{remark} \label{remark3} \rm As in Remark \ref{remark2}, we note that Theorems \ref{th3.3} and \ref{th3.4} remain valid if $b\in L^\infty([0,+\infty))$. \end{remark} \begin{thebibliography}{99} \bibitem{AW} A. Acker, W. Walter; \emph{The quenching problem for nonlinear parabolic equations}, Lecture Notes in Mathematics, 564, Springer-Verlag, New York, 1976. \bibitem{Boni} T. Boni; \emph{On quenching of solutions for some semilinear parabolic equations of second order}, Bull. Belg. Math. Soc. Simon Stevin, {\bf 7} (1)(2000), 73--95. \bibitem{C1} C. Y. Chan, P. C. Kong; \emph{Quenching for degenerate semilinear parabolic equations}, Appl. Anal., {\bf 54} (1994), 17--25. \bibitem{CHK} C. Y. Chan, H. G. Kapper; \emph{Quenching for semilinear singular parabolic problems}, SIAM J. Math. Anal., {\bf 20} (1989), 558--566. \bibitem{C6} C. Y. Chan, X. O. Jiang; \emph{Quenching for a degenerate parabolic problem due to a concentrated nonlinear source}, Quart. Appl. Math., {\bf 62} (2004), 553--568. \bibitem{C2} W. Y. Chan; \emph{Quenching of the solution for a degenerate semilinear parabolic equation}, Neural Parallel Sci. Comput., {\bf 16} (2008), 237--252. \bibitem{DL} K. Deng, H. A. Levine; \emph{On the blow up of $u_t$ at quenching}, Proc. of Amer. Math. Soc., {\bf 106} 4(1989), 1049--1056. \bibitem{DX} K. Deng, M. X. Xu; \emph{Quenching for a nonlinear diffusion equation with a singular boundary condition}, Z. Angew. Math. Phys., {\bf 50} (4)(1999), 574--584. \bibitem{GH} J. S. Guo, B. Hu; \emph{The profile near quenching time for the solution of a singular semilinear heat equation}, Proc. Edinburgh Math. Soc., {\bf 40} (1997), 437--456. \bibitem{Kawarada} H. Kawarada; \emph{On solutions of initial-boundary problem for $u_t=u_{xx}+1/(1-u)$}, Publ. RIMS. Kyoto Univ., {\bf 10} (1975), 729--736. \bibitem{Levine1} H. A. Levine; \emph{The quenching of solutions of linear hyperbolic and parabolic with nonlinear boundary conditions}, SIAM J. Math. Anal., {\bf 14} (1983), 1139--1153. \bibitem{Levine2} H. A. Levine; \emph{Quenching, nonquenching, and beyond quenching for solution of some parabolic quations}, Ann. Mat. Pura Appl, {\bf 155} (4)(1989), 243--260. \bibitem{LL} H. A. Levine, G. M. Lieberman; \emph{Quenching of solutions of parabolic equations with nonlinear boundary conditions in several dimensions}, J. Reine Ang. Math., {\bf 345} (1983), 23--38. \bibitem{LM} H. A. Levine, J. T. Montgomery; \emph{Quenching of solutions of some nonlinear parabolic problems}, SIAM J. Math. Anal., {\bf 11} (1980), 842--847. \bibitem{NW} Y. Y. Nie, C. P. Wang, Q. Zhou; \emph{Quenching for singular and degenerate quasilinear diffusion equations}. Electronic J. Differ. Eq., {\bf 2013} (131)(2013), 1--14. \bibitem{Winkler} M. Winkler; \emph{Quenching phenomena in strongly degenerate diffusion equations with strong absorption}, J. Math. Anal. Appl., {\bf 288} (2)(2003), 481-504. \bibitem{YYJ} Y. Yang, J X. Yin, C. H. Jin; \emph{A quenching phenomenon for one-dimensional $p$-Laplacian with singular boundary flux}, Appl. Math. Lett., {\bf 23} (9)(2010), 955--959. \end{thebibliography} \end{document} First author: First name is Qian, Last name is Zhou, her e-mail address is zhouqian@jlu.edu.cn; Second author: First name is Yuanyuan, Last name is Nie, his e-mail address is nieyy@jlu.edu.cn; Third author(the corresponding author): First name is Xu, Last name is Zhou, his e-mail address is zhouxu0001@163.com; Last author: First name is Wei, Last name is Guo, her e-mail address is guoweijilin@163.com.