\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 211, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{8mm}} \begin{document} \title[\hfilneg EJDE-2015/211\hfil Critical exponent ] {Critical exponent for a damped wave system with fractional integral} \author[ M. Wu, S. Li, L. Lu \hfil EJDE-2015/211\hfilneg] {Mijing Wu, Shengjia Li, Liqing Lu} \address{Mijing Wu \newline School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China} \email{mjwu@sxu.edu.cn} \address{Shengjia Li \newline School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China} \email{sjli@sxu.edu.cn} \address{Liqing Lu (corresponding author) \newline School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China} \email{lulq@sxu.edu.cn} \thanks{Submitted July 24, 2015. Published August 12, 2015.} \subjclass[2010]{35B33} \keywords{Damped wave equation; fractional integral; critical exponent; \hfill\break\indent global solution} \begin{abstract} We shall present the critical exponent $$ F(p, q,\alpha):=\max\big\{\alpha+\frac{(\alpha+1)(p+1)}{pq-1}, \alpha+\frac{(\alpha+1)(q+1)}{pq-1}\big\}-\frac{1}{2} $$ for the Cauchy problem \begin{gather*} u_{tt}-u_{xx}+u_t=J_{0|t}^{\alpha}(|v|^{p}), \quad (t,x)\in\mathbb{R}^{+}\times\mathbb{R},\\ v_{tt}-v_{xx}+v_t=J_{0|t}^{\alpha}(|u|^{q}), \quad (t, x)\in\mathbb{R}^{+}\times\mathbb{R},\\ (u(0,x), u_t(0,x))=(u_0(x),u_1(x)), \quad x\in \mathbb{R},\\ (v(0,x), v_t(0,x))=(v_0(x),v_1(x)), \quad x\in \mathbb{R},\\ \end{gather*} where $p,q\geq 1, pq>1$ and $0<\alpha<1/2$; that is, the small data global existence of solutions can be derived to the problem above if $F(p, q, \alpha)<0$. Furthermore, in the case of $F(p, q, \alpha)\geq0$ the non-existence of global solution can be obtained with the initial data having positive average value. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction and statement of main results} In this article, we consider the Cauchy problem of damped wave system \begin{equation}\label{1.1} \begin{gathered} u_{tt}-u_{xx}+u_t=J_{0|t}^{\alpha}(|v|^{p}), \quad (t,x)\in\mathbb{R}^{+}\times\mathbb{R},\\ v_{tt}-v_{xx}+v_t=J_{0|t}^{\alpha}(|u|^{q}), \quad (t, x)\in\mathbb{R}^{+}\times\mathbb{R},\\ (u(0,x), u_t(0,x))=(u_0(x),u_1(x)), \quad x\in \mathbb{R},\\ (v(0,x), v_t(0,x))=(v_0(x),v_1(x)), \quad x\in \mathbb{R}, \end{gathered} \end{equation} where $p,q\geq 1, pq>1$ and $0<\alpha<1/2$. The initial values satisfy \begin{gather}\label{1.2} \operatorname{supp}\{u_i,v_i\}\subset\{|x|\leq K\}, \quad K>0,\; i=0,1, \\ \label{1.3} (u_0,u_1,v_0,v_1)\in H^{1}(\mathbb{R})\times L^{2}(\mathbb{R})\times H^{1}(\mathbb{R})\times L^{2}(\mathbb{R}). \end{gather} The notation $J_{0|t}^{\alpha}$ stands for the Riemann-Liouville fractional integral \cite{l2} \[ J_{0|t}^{\alpha}f(t):=\begin{cases} \frac{1}{\Gamma(\alpha)}\int_0^t(t-s)^{\alpha-1}f(s)ds, & \alpha>0,\\ f(t), & \alpha=0, \end{cases} \] for $f\in L^p(0,T)(1\leq p\leq \infty)$ and $\Gamma(\cdot)$ is the Euler gamma function. In recent decades, nonlinear hyperbolic equations and systems have been studied extensively (see, for example, \cite{i1,i2,l2,m1,m2,y1,z1} and the rich references therein). Todorova and Yordanov \cite{t1} considered the semilinear wave equation \begin{equation}\label{1.4} \begin{gathered} u_{tt}-\Delta u+u_{t}=|u|^{p}, \quad (t,x)\in(0,\infty)\times\mathbb{R}^n,\\ u(x, 0) =u_0(x),\quad u_t(x,0)=u_1(x) , \quad x\in \mathbb{R}^n, \end{gathered} \end{equation} and proved that the critical exponent of \eqref{1.4} is $p_c(n)=1+2/n$. More precisely, if $p>p_{c}(n)$ there exists a unique global solution of \eqref{1.4} for sufficiently small initial data, while, if $11+2(1+\alpha)/(n-2\alpha)$, the blow up result was also derived under some positive data in any dimensional space. Comparing the results of \cite{t1} with that of \cite{f1}, we derive that the fractional integral $J_{0|t}^{\alpha}$ has an influence on the solution. The problems with the fractional integral term are interesting. The problem \eqref{1.1} with $\alpha=0$ can be considered as the following weakly coupled system \begin{equation}\label{1.6} \begin{gathered} u_{tt}-\Delta u+u_t=|v|^{p}, \quad (t, x)\in (0, \infty)\times\mathbb{R}^n, \\ v_{tt}-\Delta v+v_t=|u|^{q}, \quad (t, x)\in (0, \infty)\times\mathbb{R}^n,\\ (u(0,x), u_t(0,x))=(u_0(x),u_1(x)), \quad x\in \mathbb{R}^n,\\ (v(0,x), v_t(0,x))=(v_0(x),v_1(x)), \quad x\in \mathbb{R}^n. \end{gathered} \end{equation} Sun and Wang \cite{s1} considered \eqref{1.6} and obtained the critical exponent \begin{equation*} F(p, q,n):=\max\big\{\frac{p+1}{pq-1}, \frac{q+1}{pq-1}\big\}-\frac{n}{2}. \end{equation*} The authors proved that if $F(p, q, n)<0$, there exists a unique global solution of \eqref{1.6} with suitably small initial data for $n=1$ or $n=3$, and if $F(p, q, n)\geq 0$, any solution of \eqref{1.6} with initial data having positive integral values does not exist globally for any $n\geq 1$. Based on some conditions on nonlinear term, the asymptotic behavior of solutions of \eqref{1.6} was considered in \cite{n1}. Recently, Kenji and Yuta \cite{n2} showed that the number $F(p, q, n)$ is the critical exponent of \eqref{1.6} for any dimensional space. Motivated by the work of \cite{f1} and \cite{s1}, we aim at determining the critical exponent of \eqref{1.1}. The global result is proved by the weighted energy method (see \cite{t1}). For the non-existence of a global solution, we shall use the test function method (see \cite{f1}). Our basic definition of the solution to problem \eqref{1.1} is the following. \begin{definition} \label{def1} \rm Let $T>0$. We say that a pair of functions $(u,v)$ in $L^q((0, T), \\ L_{\rm loc}^q(\mathbb{R}))\times L^p((0, T), L_{\rm loc}^p(\mathbb{R}))$ is a weak solution of the Cauchy problem \eqref{1.1} with the initial data $(u_i, v_i)\in[L_{\rm loc}(\mathbb{R})]^2$ if $(u,v)$ satisfies \begin{equation}\label{1.7} \begin{split} &\int_{0}^{T}\int_{\mathbb{R}^n}u(\varphi_{tt}-\varphi_{xx} +\varphi_t)\,dx\,dt\\ &=\int_{0}^{T}\int_{\mathbb{R}^n}(J_{0|t}^{\alpha}|v|^{p})\varphi \,dx\,dt +\int_{\mathbb{R}^n}u_1(x)\varphi(0,x)dx +\int_{\mathbb{R}^n}u_0(x)(\varphi(0,x)-\varphi_t(0,x))dx, \\ &\int_{0}^{T}\int_{\mathbb{R}^n}v(\varphi_{tt}-\varphi_{xx} +\varphi_t)\,dx\,dt\\ &=\int_{0}^{T}\int_{\mathbb{R}^n}(J_{0|t}^{\alpha}|u|^q)\varphi \,dx\,dt +\int_{\mathbb{R}^n}v_1(x)\varphi(0,x)dx +\int_{\mathbb{R}^n}v_0(x)(\varphi(0,x)-\varphi_t(0,x))dx, \end{split} \end{equation} for all compactly supported test functions $\varphi\in C^2([0,T]\times\mathbb{R})$ with $\varphi(T,\cdot)=0$ and $\varphi_t(T,\cdot)=0$. If $T=\infty$, we say that $(u,v)$ is a global weak solution of \eqref{1.1}. \end{definition} We remark that the above definition of a weak solution is a very weak form which will be used in the proof of non-existence of a global solution. However, to prove the global result we need a much stronger form. We have the following local existence result. \begin{proposition}\label{local} Let $T>0$. Under assumptions \eqref{1.2} and \eqref{1.3}, there exists a unique solution $(u, v)\in X(T)\times X(T)$ for \eqref{1.1} satisfying $$ \operatorname{supp} \{u,v\}\subset B(t+K)=\{(t, x): |x|\leq t+K\},\; K>0 $$ where $X(T)=C([0,T); H^{1}(\mathbb{R}))\cap C^{1}([0,T); L^{2}(\mathbb{R}))$. \end{proposition} Using \cite[Proposition 2.3]{i3} and \cite[Proposition 1]{f1}, the local solvability and uniqueness of \eqref{1.1} can be established by a standard estimation and compactness theory. Denote $\|\cdot\|_{r}$ and $\|\cdot\|_{H^m}$ the norms of $L^{r}(\mathbb{R})$ and $H^{m}(\mathbb{R})$ respectively. Throughout this article, we use $C$ to stand for a generic positive constant which may be different from line to line. Set $$ F(p, q, \alpha):=\max\big\{\alpha+\frac{(\alpha+1)(p+1)}{pq-1}, \alpha+\frac{(\alpha+1)(q+1)}{pq-1}\big\}-\frac{1}{2}. $$ Based on Proposition \ref{local}, our main results read as follows \begin{theorem}\label{global} Assume that \eqref{1.2} and \eqref{1.3} hold. If $F(p, q, \alpha)<0$, then there is a small constant $\varepsilon$ such that under the conditions \begin{equation}\label{1.8} \begin{gathered} I_{0, u}=\|u_0\|_{H^1}+\|u_0\|_{1}+\|u_1\|_{2}+\|u_1\|_{1}<\varepsilon,\\ I_{0, v}=\|v_0\|_{H^1}+\|v_0\|_{1}+\|v_1\|_{2}+\|v_1\|_{1}<\varepsilon, \end{gathered} \end{equation} problem \eqref{1.1} admits a unique global solution $$ (u, v)\in[C((0, \infty); H^{1}(\mathbb{R}))\cap C^{1}((0, \infty); L^{2}(\mathbb{R}))]^2. $$ Moreover, \begin{equation}\label{1.9} \begin{gathered} \|Du(t)\|_{2}\leq(1+t)^{-\frac{(\alpha+1)(p+1)}{(pq-1)}-\frac{1}{4}}, \quad t\to\infty,\\ \|Dv(t)\|_{2}\leq(1+t)^{-\frac{(\alpha+1)(q+1)}{(pq-1)}-\frac{1}{4}}, \quad t\to\infty, \end{gathered} \end{equation} where $Du=(u_{t}, u_{x})$. \end{theorem} \begin{theorem} \label{blow up} Assumed that \eqref{1.2}, \eqref{1.3} hold and \begin{equation}\label{1.10} \int_{\mathbb{R}}u_{i}dx>0,\quad \int_{\mathbb{R}}v_{i}dx>0,\quad i=0, 1. \end{equation} If $F(p, q, \alpha)\geq0$, then the weak solution $(u, v)$ of \eqref{1.1} does not exist globally. \end{theorem} \begin{remark} \label{rmk1.1} \rm $F(p, q, \alpha)$ is the critical exponent of \eqref{1.1}. \end{remark} \begin{remark} \label{rmk1.2} \rm If $\alpha=0$, $F(p, q, \alpha)$ is consistent with the critical exponent of \eqref{1.6} for $n=1$. \end{remark} The remainder of this paper is organized as follows. In Section 2, some preliminaries are collected. We will prove our global result (Theorem \ref{global}) in Section 3. Section 4 is devoted to proving the blow up result (Theorem \ref{blow up}). \section{Preliminaries} We shall start this section with some basic definitions and properties on the Riemann-Liouville fractional calculus. We refer to \cite{k1}-\cite{f2} for more details. Let $AC[0,T]$ denote the space of all absolutely continuous functions on $[0,T]$. Then, if $f\in AC[0,T]$, the left-sided and the right-sided Riemann-Liouville fractional derivatives of the function $f$ of order $\alpha\in (0,1)$ are defined by $$ D_{0|t}^{\alpha}f(t):=\partial_tJ_{0|t}^{1-\alpha}f(t), \quad D_{t|T}^{\alpha}f(t):=-\frac{1}{\Gamma(1-\alpha)}\partial_t \int_t^T(s-t)^{-\alpha}f(s)ds. $$ Set $$ AC^{n+1}[0,T]:=\{f: [0,T]\to \mathbb{R}\\text{ and } \partial_{t}^{n}f\in AC[0,T]\}. $$ Then for all $f\in AC^{n+1}[0,T]$, the following propositions are obtained in \cite{k1,o1,p1}, respectively. \begin{proposition}[\cite{k1}] \label{frac1} Let $0<\alpha<1$ and $p\geq 1$. If $f\in L^p(0,T)$, $$ (D_{0|t}^{\alpha}J_{0|t}^{\alpha}f)(t)=f(t),\quad (-1)^n\partial_t^nD_{t|T}^{\alpha}f=D_{t|T}^{n+\alpha}f, $$ for almost everywhere on $[0, T]$. \end{proposition} \begin{proposition}[\cite{p1}] \label{frac2} Let $0<\alpha<1$. For every $f, g\in C([0,T])$ such that $(D_{0|t}^{\alpha}f)(t), (D_{t|T}^{\alpha}g)(t)$ exist and are continuous, the formula of integration by parts is \[ \int_0^T (D_{0|t}^{\alpha}f)(t)g(t)dt=\int_0^T f(t)(D_{t|T}^{\alpha}g)(t)dt,\quad t\in[0,T]. \] \end{proposition} \begin{proposition}[\cite{o1}] \label{frac3} Set $\varphi_2(t):=(1-t/T)_{+}^{\eta}$. Then $\varphi_2(t)$ satisfies \begin{gather*} D_{t|T}^{\alpha}\varphi_2(t)=CT^{-\eta}(T-t)_{+}^{\eta-\alpha},\quad D_{t|T}^{\alpha+1}\varphi_2(t)=CT^{-\eta}(T-t)_{+}^{\eta-\alpha-1},\\ D_{t|T}^{\alpha+2}\varphi_2(t)=CT^{-\eta}(T-t)_{+}^{\eta-\alpha-2}, \end{gather*} and \begin{gather*} D_{t|T}^{\alpha}\varphi_2(T)=0,\quad D_{t|T}^{\alpha}\varphi_2(0)=CT^{-\alpha},\\ D_{t|T}^{\alpha+1}\varphi_2(T)=0,\quad D_{t|T}^{\alpha+1}\varphi_2(0)=CT^{-\alpha-1}. \end{gather*} \end{proposition} Consider the linear damped wave equation \begin{equation}\label{2.1} \begin{gathered} U_{tt}-U_{xx}+U_t=0, \quad (t, x)\in (0,\infty)\times\mathbb{R},\\ (U(0, x), U_t(0, x))=(U_0(x),U_1(x)), \quad x\in \mathbb{R}. \end{gathered} \end{equation} When $U_0=0$, the unique solution $U(t, x)$ to \eqref{2.1} can be denoted by $S(t)U_1$. Then the Duhamel's principle implies the solution to \eqref{1.4} solves the integral system \begin{equation}\label{2.2} \begin{split} u(t,x)&=S(t)(u_0+u_1)+\partial_t(S(t)u_0) +\int_0^{t}S(t-\tau)J_{0|\tau}^{\alpha}(|v|^p)d\tau\\ &=u_{L}+\int_0^{t}S(t-\tau)J_{0|\tau}^{\alpha}(|v|^p)d\tau,\\ v(t,x)&=S(t)(v_0+v_1)+\partial_t(S(t)v_0) +\int_0^{t}S(t-\tau)J_{0|\tau}^{\alpha}(|u|^q)d\tau\\ &=v_L+\int_0^{t}S(t-\tau)J_{0|\tau}^{\alpha}(|u|^q)d\tau. \end{split} \end{equation} The following lemmas will be used in the proof of Theorem \ref{global}. \begin{lemma}[{\cite[Proposition2.5]{t1}}] \label{linear estimate} Let $m\in [1, 2]$. Then \begin{equation}\label{2.3} \|\partial_t^{k}\nabla_{x}^{\nu}S(t)f\|_2 \leq C(1+t)^{n/4-n/(2m)-|\nu|/2-k}(\|f\|_{m}+\|f\|_{H^{k+|\nu|-1}}), \end{equation} for each $f\in L^m(\mathbb{R}^n)\bigcap H^{k+|\nu|-1}\mathbb({R}^n)$. \end{lemma} \begin{lemma}[{\cite[Proposition2.4]{t1}}] \label{weighted inequality} Let $\theta(r)=n(1/2-1/r)$ and $0\leq \theta(r)\leq 1, 0<\delta\leq 1$. If $u\in H^{1}(\mathbb{R}^n)$ with $\operatorname{supp} u\subset B(t+K)$, then \begin{equation}\label{2.4} \|e^{\delta\psi(t, \cdot)}u\|_{r}\leq C(1+t)^{(1-\theta(r))/2}\|e^{\psi(t, \cdot)} \nabla u\|_2^{\delta}\|\nabla u\|_2^{1-\delta}, \end{equation} where $\psi(t,x)=(t+K-\sqrt{(t+K)^2-|x|^2})/2$. \end{lemma} \begin{lemma}[\cite{c1}] \label{int} Suppose that $0\leq\theta<1,a\geq 0$ and $b\geq 0$. Then there exists a constant $C>0$ depending only on $a,b$ and $\theta$ such that for all $t>0$, \begin{align*} &\int_{0}^{t}(t-\tau)^{-\theta}(1+t-\tau)^{-a}(1+\tau)^{-b}d\tau\\ &\leq \begin{cases} C(1+t)^{-\min\{a+\theta,b\}}, & \max\{a+\theta,b\}>1,\\ C(1+t)^{-\min\{a+\theta,b\}}\ln(2+t), & \max\{a+\theta,b\}=1,\\ C(1+t)^{1-\theta-a-b}, & \max\{a+\theta,b\}<1. \end{cases} \end{align*} \end{lemma} \section{Proof of Theorem \ref{global}} Let $T_{\rm max}$ be the maximal existence time of the local solution of $(u, v)$ to the problem \eqref{1.1}. Denote \begin{equation}\label{3.1} M(t)=\sup _{0\leq \tau< t}((1+\tau)^{k}\|Du(\tau)\|_{2}+(1+\tau)^{j}\|Dv(\tau)\|_{2}), \quad \forall t\in[0, T_{\rm max}), \end{equation} where $k, j$ will be determined later. We will prove the estimate \begin{equation}\label{3.2} M(t)\leq C(\varepsilon+M(t)^p+M(t)^q),\quad \forall t\in[0, T_{\rm max}), \end{equation} with $C$ is independent of $\varepsilon$. Taking $\varepsilon$ and $C_1$ sufficiently small such that \begin{equation*} C\varepsilon0$. Obviously, \begin{equation}\label{3.7} \|v(\tau, \cdot)\|_{2p}^{p}\leq (\tau+K)^{1/4}\|e^{\delta\psi(\tau, \cdot)}v(\tau)\|_{2p}^{p}. \end{equation} From \eqref{3.5}-\eqref{3.7}, we obtain \begin{equation}\label{3.8} \begin{split} & \int_{0}^{t}\|DS(t-\tau)J_{0|\tau}^{\alpha}(|v|^p)(\tau)\|_{2}d\tau\\ &\leq C\sup_{[0,t)}\left[(1+\tau)^{\beta_1}\|e^{\delta\psi(\tau, \cdot)}v(\tau)\|_{2p}\right]^{p}\\ &\quad \times \int_{0}^{t}(1+t-\tau)^{-3/4} \int_{0}^{\tau}(\tau-s)^{-(1-\alpha)}(1+s)^{-(p\beta_1-1/4)}dsd\tau. \end{split} \end{equation} Taking $\beta_1=(\alpha+1)(q+1)/(pq-1)-1/4p$ such that $1/40$. this implies the exponent of $T$ in \eqref{4.15} is negative. Letting $T\to \infty$ in \eqref{4.15}, we derive that \begin{equation}\label{4.16} \int_{0}^{\infty}\int_{-\infty}^{+\infty}|u(t,x)|^{p}\,dx\,dt=0, \end{equation} which implies $u(t, x)=0$ for all $t$ and $x\in\mathbb{R}$ a.e.. This is a contradiction to \eqref{1.10}. \smallskip \noindent\textbf{Case ii}. $F(p, q, \alpha)=0$, we have \begin{equation}\label{4.17} \lim_{T\to\infty}J_p=\int_{0}^{\infty}\int_{\mathbb{R}}|u(x,t)|^{p}\,dx\,dt \leq D. \end{equation} It follows from \eqref{4.12} that for any $\epsilon>0$ there exists $T_1$, such that \begin{equation}\label{4.18} J_{q}\leq C\epsilon^{1/p} T^{-(1+\alpha)+3(p-1)/2p},\quad T>T_1, \end{equation} where $C$ is independent of $\epsilon$. Combining \eqref{4.10} and \eqref{4.18}, we get that \begin{equation} J_{p}\leq C\epsilon^{1/(pq)}, \end{equation} and the constant $C$ is also independent of $\epsilon$. The arbitrary of $\epsilon$ yields a contradiction with \eqref{1.10}. This completes the proof of Theorem \ref{blow up}. \subsection*{Acknowledgments} This work is supported by the National Science Foundation of China (Nos. 61174082, 61473180, 11401351). \begin{thebibliography}{00} \bibitem{c1} S. Cui; \emph{Local and global existence of solutions to semilinear parabolic initial value problems}, Nonlinear Anal. 43 (2001), 293-323. \bibitem{f1} A. Z. Fino; \emph{Critical exponent for damped wave equations with nonlinear memory}, Nonlinear Anal. 74 (2011), 5495-5505. \bibitem{f2} A. Z. Fino, M. Kirane; \emph{Qualitative proterties of solutions to a time-space fractional euolution equation}, J. Quart. Appl. Math., hal-00398110v6. \bibitem{i1} R. Ikehata, K. Tanizawa; \emph{Global existence for solutions for semilinear damped wave equation in $\mathbf{R}^{N}$ with noncompactly supported initial data}, Nonlinear Anal. 61 (2005), 1189-1208. \bibitem{i2} R. Ikehata, G. Todorova, B. Yordanov; \emph{Optimal decay rate of the energy for wave equations with critical potential}, J. Math. Soc. Japan 65 (2013), 183-263. \bibitem{i3} R. Ikehata, M. Ohta; \emph{Critical exponents for semilinear dissipative wave equations in $\mathbb{R}^N$}, J. Math. Anal. Appl. 269(2002) 87-97. \bibitem{k1} A. A. Killbas, H. M. Srivastava, J. J. Trujillo; \emph{Theory and Applications of Fractional Differential Equations}, 2006. \bibitem{l1} T. T. Li, Y. Zhou; \emph{Breakdown of solutions to $\Box u+u_t=|u|^{1+\alpha}$}, Discrete Contin. Dyn. Syst., 1 (1995), 503-520. \bibitem{l2} A. Lotfi, M. Dehghan, S. A. Yousefi; \emph{A numerical technique for solving fractional optimal control problems}, Comput Math Appl. 62(3) (2011), 1055-1067. \bibitem{m1} A. Matsumura; \emph{On the asymptotic behavior of solutions of semi-linear wave equations}, Publ. RIMS Kyoto Univ., 121 (1976), 169-197. \bibitem{m2} P. Marcati, K. Nishihara; \emph{The $L^p-L^q$ estimates of solutions to one-dimentional damped wave equations and their application to the compressible flow through porpous media}, J. Differential Equations 191(2003), 445-469. \bibitem{n1} K. Nishihara; \emph{Asymptotic behavior of solutions for a system of semilinear heat equations and corresponding damped wave system}, Osaka J. Math. 49(2012) 331-348. \bibitem{n2} K. Nishihara, Y. Wakasugi; \emph{Critical exponent for the Cauchy problem to the weakly coupled damped wave system}, Nonlinear Anal. 108(2014) 249-259. \bibitem{o1} K. B. Oldham, J. Spaniner; \emph{The Fractional Calculus}, ACad.Press, New York, 1974. \bibitem{p1} I. Podlubny; \emph{Fractional Differential Equation}, In: Math.IN SCi and Eng., vol. 198, Acad. PRess, New York,London, 1999. \bibitem{s1} F. Sun, M. Wang; \emph{Existence and nonexistence of global solutions for a nonlinear hyperbolic system with damping}, Nonlinear Anal. 66(2007) 2889-2910. \bibitem{t1} G. Todorova, B. Yordanov; \emph{Critical exponent for a nonlinear wave equation with damping}, J. Differential Equations 174 (2001) 464-489. \bibitem{y1} Z. J. Yang; \emph{Global existence, asymptotic behavior and blow up of solutions for a class of nonlinear wave equations with dissipative term}, J. Differential Equations 187 (2003), 520-540. \bibitem{z1} Q. S. Zhang; \emph{The quantizing effect of potentials on the critical number of reaction-diffusion equations}, J.Differential Equations 170 (2001) 188-214. \bibitem{z2} Q. S. Zhang; \emph{A blow up result for a nonlinear wave equation with damping: the critical case}, C. R. Acad. Sci. Paris, 333(2) (2001), 109-114. \end{thebibliography} \end{document}