\documentclass[reqno]{amsart} \usepackage[notref,notcite]{showkeys} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 222, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/222\hfil Mild solutions] {Mild solutions for non-autonomous impulsive semi-linear differential equations with iterated deviating arguments} \author[A. Chadha, D. N. Pandey \hfil EJDE-2015/222\hfilneg] {Alka Chadha, Dwijendra N. Pandey} \address{Alka Chadha \newline Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India} \email{alkachadda23@gmail.com} \address{Dwijendra N. Pandey \newline Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India} \email{dwij.iitk@gmail.com} \thanks{Submitted November 20, 2014. Published August 27, 2015.} \subjclass[2010]{34K37, 34K30, 35R11, 47N20} \keywords{Iterated deviated argument; analytic semigroup; \hfill\break\indent Banach fixed point theorem; impulsive differential equation} \begin{abstract} In this work, we consider an impulsive non-autonomous semi-linear equation with iterated deviating arguments in a Banach space. We establish the existence and uniqueness of a mild solution. Also we present an example that illustrates our main result. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \allowdisplaybreaks \section{Introduction} In the previous decades, impulsive differential equations have received much attention of researchers mainly because its demonstrated applications in widespread fields of science and engineering. Differential equation systems which are characterized by the occurrence of an abrupt change in the state of the system are known as impulsive differential equations. These changes occur at certain time instants over a period of negligible duration. Such process is investigated in various fields such as biology, physics, control theory, population dynamics, economics, chemical technology, medicine and so on. Impulsive differential equations are an appropriate model to hereditary phenomena for which a delay argument arises in the modelling equations. For more details for impulsive differential equation, we refer to the monographs \cite{ben1,laks} and papers \cite{ben2, ben3, card,cue, kumar, liu, mach, sam} and references given therein. In this article, we investigate the existence and uniqueness of solution for impulsive differential equation with iterated deviating arguments in a complex Banach space $(E,\|\cdot\|)$. We study the differential equation \begin{gather}\label{geq1} \begin{aligned} \frac{d}{dt}[u(t)+G(t,u(a(t)))] &= -A(t)[u(t)+G(t,u(a(t)))] \\ &\quad +F(t,u(t),u(h_1(t,u(t)))),\quad t>0 \end{aligned}\\ u(0)= u_0,\quad u_0\in E, \\ \Delta u(t_i)= I_i(u(t_i)),\quad i=1,\dots,\delta\in \mathbb{N}, \label{geq2} \end{gather} where $h_1(t,u(t))=b_1(t, u(b_2(t,\dots,u(b_\delta(t,u(t)))\dots)))$ and $-A(t):D(A(t))\subseteq E\to E$, $t\geq 0$ is a closed densely defined linear operator. The functions $F$, $b_i$, $G$, $I_i:E\to E\;(i=1,\dots,\delta)$ are appropriate functions to be mentioned later. Here, $0=t_00,\\ u(0)= u_0,\quad u_0\in E, \end{gather} in a Banach space $(E,\|\cdot\|)$. Where $-A$ generates an analytic semigroup of bounded linear operators on $E$ and the function $F:[0,\infty)\times E_\alpha\times E_{\alpha-1}\to E$, $h:E_\alpha\times[0,\infty)\to[0,\infty)$ are H\"older continuous with exponent $\mu_1\in(0,1]$ and $\mu_2\in(0,1]$ respectively. For $0<\alpha\leq 1$, $E_\alpha$ denotes the domain of $(-A)^\alpha$ which is a Banach space with the norm $\|u\|_{\alpha}=\|(-A)^\alpha u\|$, $u\in D((-A)^\alpha)$. In \cite{haloi}, authors considered the following problem in a Banach space $(E,\|\cdot\|)$, \begin{gather}\label{req1} u'(t)+A(t)u(t)= F(t,u(t),u(h(u(t),t))),\quad t>0,\\ u(0)= u_0,\quad u_0\in E, \end{gather} where $A$ is a closed, densely defined linear operator with domain $D(A)\subset E$. In \eqref{req1}, $-A$ generates an analytic semigroup of bounded linear operators on Banach space $E$. The function $F:\mathbb{R}\times E_\alpha\times E_{\alpha-1}\to E$, $h:E_\alpha\times\mathbb{R}_{+}\to[0,\infty)$ are appropriated functions. The authors have established the existence of the solution for \eqref{req1} by using Banach fixed point theorem. The rest of this article is organized as follows: Section $2$ provides some basic definitions, lemmas and theorems, assumptions as these are useful for proving our results. Section $3$ focuses on the existence of a mild solution to problem \eqref{geq1}-\eqref{geq2}. Section $4$ present an example to illustrate the theory. \section{Preliminaries} In this section, we provide basic definitions, preliminaries, lemmas and assumptions which are useful for proving main result in later section. Throughout the work, we assume that $(E,\|\cdot\|)$ is a complex Banach space. The notation $C([0,T],E)$ stands for the space of $E$-valued continuous functions on $[0,T]$ with the norm $\|z\|=\sup\{\|z(\tau)\|, \tau\in[0,T]\}$ and $L^1([0,T],E)$ denotes the space of $E$-valued Bochner integrable functions on $[0,T]$ endowed with the norm $\|\mathcal{F}\|_{L^1}=\int^T_0\|\mathcal{F}(t)\|dt,\;\mathcal{F}\in L^1([0,T],E)$. We denote by $C^\beta([0,T];E)$ the space of all uniformly H\"older continuous functions from $[0,T]$ into $E$ with exponent $\beta>0$. It is easy to verify that $C^\beta([0,T];E)$ is a Banach space with the norm \begin{equation} \|y\|_{C^\beta([0,T];E)}=\sup_{0\leq t\leq T}\|y(t)\| +\sup_{0\leq t,s\leq T,\;t\ne s}\frac{\|y(t)-y(s)\|}{|t-s|^{\beta}}. \end{equation} Let $\{A(t):0\leq t\leq T\}$, $T\in[0,\infty)$ be a family of closed linear operators on the Banach space $E$. We impose following restrictions as \cite{fri}: \begin{itemize} \item[(P1)] The domain $D(A)$ of $\{A(t): t\in[0,T]\}$ is dense in $E$ and $D(A)$ is independent of $t$. \item[(P2)] For each $0\leq t\leq T $ and $\operatorname{Re}\lambda\leq 0$, the resolvent $R(\lambda; A(t))$ exists and there exists a positive constant $K$ (independent of $t$ and $\lambda$) such that $$ \| R(\lambda;A(t))\|\leq K /(|\lambda|+1),\quad \operatorname{Re} \lambda\leq 0,\; t\in[0,T]. $$ \item[(P3)] For each fixed $\xi\in [0,T]$, there are constants $K>0$ and $0<\mu\leq 1$ such that \begin{equation} \|[A(\tau)-A(s)]A^{-1}(\xi)\|\leq K|\tau-s|^{\mu},\quad \text{for all } \tau,s\in[0,T] \end{equation} where $\mu$ and $K$ are independent of $\tau,s$ and $\xi$. \end{itemize} The assumptions (P1)--(P3) allow the existence of a unique linear evolution system (linear evolution operator) $U(t,s)$, $0\leq s\leq t\leq T$ which is generated by the family $\{A(t):t\in[0, T]\}$ and there exists a family of bounded linear operators $\{\Phi(t,s):0\leq s\leq t\leq T\}$ such that $\|\Phi(t,s)\|\leq \frac{K}{|t-s|^{1-\mu}}$. We also have that $U(t,s)$ can be written as \begin{equation} U(t,s)=e^{-(t-s)A(t)}+\int^t_s e^{-(t-\tau)A(\tau)}\Phi(\tau,s)d\tau. \end{equation} Assumption (P2) guarantees that $-A(s),\;s\in[0,T]$ is the infinitesimal generator of a strongly continuous analytic semigroup $\{e^{-t A(s)}:t\geq 0\}$ in $B(E)$, where the symbol $B(E)$ stands for the Banach algebra of all bounded linear operators on $E$. The assumptions (P1)--(P3) allow the existence of a unique fundamental solution $\{U(t,s):0\leq s\leq t\leq T\}$ for the homogenous Cauchy problem such that \begin{itemize} \item[(i)] $U(t,s)\in B(E)$ and the mapping $(t,s)\to U(t,s)z$ is continuous for $z\in E$, i.e., $U(t,s)$ is strongly continuous in $t,s$ for all $0\leq s\leq t\leq T$. \item[(ii)] For each $z\in E$, $U(t,s)z\in D(A)$, for all $0\leq s\leq t\leq T$. \item[(iii)] $U(t,\tau)U(\tau,s)=U(t,s)$ for all $0\leq s\leq \tau\leq t\leq T$. \item[(iv)] For each $0\leq s< t\leq T$, the derivative $\frac{\partial U(t,s)}{\partial t}$ exists in the strong operator topology and an element of $B(E)$, and strongly continuous in $t$, where $s0,\\ \|A(t)U(t,\tau)\| \leq K|t-\tau|^{-1}, \;\;0\leq \tau\leq t\leq T. \end{gather} for all $\tau\in[0,T]$. Where $d$ is a positive constant. For $\alpha>0$, we may define the negative fractional powers $A(t)^{-\alpha}$ as \begin{equation} A(t)^{-\alpha}=\frac{1}{\Gamma(\alpha)}\int^\infty_0 s^{\alpha-1}e^{-sA(t)}ds. \end{equation} Then, the operator $A(t)^{-\alpha}$ is a bounded linear and one to one operator on $E$. Therefore, it implies that there exists an inverse of the operator $A(t)^{-\alpha}$. We can define $A(t)^{\alpha}\equiv [A(t)^{-\alpha}]^{-1}$ which is the positive fractional powers of $A(t)$. The operator $A(t)^{\alpha}\equiv [A(t)^{-\alpha}]^{-1}$ is a closed densely defined linear operator with domain $D(A(t)^\alpha)\subset E$ and for $\alpha<\beta$, we get $D(A(t)^\beta)\subset D(A(t)^\alpha)$. Let $E_\alpha=D(A(0)^\alpha)$ be a Banach space with the norm $\|y\|_\alpha=\|A(0)^\alpha y\|$. For $0<\omega_1\leq \omega_2$, we have that the embedding $E_{\omega_2}\hookrightarrow E_{\omega_1}$ is continuous and dense. For each $\alpha>0$, we may define $E_{-\alpha}=(E_\alpha)^*$, which is the dual space of $E_\alpha$. The dual space is a Banach space with natural norm $\|y\|_{-\alpha}=\|A(0)^{-\alpha}y\|$. In particular, by the assumption (P3), we conclude a constant $K>0$, such that \begin{equation} \|A(t)A(s)^{-1}\|\leq K, \quad \text{for all }0\leq s,t\leq T. \end{equation} For $0< \alpha\leq 1$, let $U_\alpha$ and $U_{\alpha-1}$ be open sets in $E_\alpha$ and $E_{\alpha-1}$, respectively. For every $v'\in U_\alpha$ and $v''\in U_{\alpha-1}$, there exist balls such that $B_\alpha(v', r')\subset U_\alpha$ and $B_{\alpha-1}(v'', r'')\subset U_{\alpha-1}$, for some positive numbers $r'$ and $r''$. Let $F$, $a$, $h$ and $I_i\;(i=1,\dots,\delta)$ be the continuous functions satisfying following conditions: \begin{itemize} \item[(P4)] The nonlinear map $F:[0,T]\times U_\alpha\times U_{\alpha-1}\to E$ is a H\"older continuous and there exist positive constants $L_F\equiv L_F(t,v',v'',r',r'')$ and $0<\mu_1\leq 1$ such that \begin{equation}\label{Feq1} \begin{aligned} &\|F(t,z_1,w_1)-F(s,z_2, w_2)\|\\ &\leq L_F(|t-s|^{\mu_1}+\|z_1-z_2\|_{\alpha}+\|w_1-w_2\|_{\alpha-1}), \end{aligned} \end{equation} for all $(z_1,w_1), (z_2,w_2)\in B_\alpha\times B_{\alpha-1}$ and $s,t\in[0,T]$. \item[(P5)] The functions $b_i:[0,\infty)\times U_{\alpha-1}\to[0,\infty)$, $(i=1,\dots, \delta)$ are continuous functions and there are positive constants $L_{b_i}\equiv L_{b_i}(t,v', r')$ and $0<\mu_2\leq 1$ such that \begin{equation}\label{aeq1} |b_i(t,z)-b_i(s,w)|\leq L_{b_i}(|t-s|^{\mu_2}+\|z-w\|_{\alpha-1}), \end{equation} for all $(t,z),\;(s, w)\in [0,T]\times B_\alpha$. \item[(P6)] For $0\leq\alpha<\beta<1$, $G:[0,T]\times U_{\alpha-1}\to E_\beta$ is a continuous map and there exists a positive constant $L_G=L_G(t,v'',r'',\beta)$ such that \begin{gather} \|A^\beta G(t_1, z_1)-A^\beta G(t_2, z_2)\| \leq L_G[|t_1-t_2|+\|z_1-z_2\|_{\alpha-1}],\\ 4L_G\|A(0)^{\alpha-\beta-1}\|<1, \end{gather} for each $(t_1,z_1),\;(t_2,z_2)\in [0,T]\times B_{\alpha-1}$. \item[(P7)] The function $a:[0,T]\to[0,T]$ is a continuous function and satisfies the following conditions: \subitem(i) $a(t)\leq t$ for all $t\in[0,T]$. \subitem(ii) There exist a constant $L_a>0$ such that \begin{equation} |a(t_1)-a(t_2)|\leq L_a|t_1-t_2|, \end{equation} for all $t_1,t_2\in[0,T]$ and $L_a \|A^{-1}\|<1$. \item[(P8)] $I_i:U_\alpha\to U_\alpha\;(i=1,\dots,\delta)$ are continuous functions and there exist positive constants $L_i\equiv L_i(t,v',r')$ such that \begin{gather} \|I_i(z)-I_i(w)\|_\alpha\leq L_i\|z-w\|_\alpha, \quad i=1,\dots,\delta,\\ \|I_i(z)\|\leq C_i,\;\;i=1,\dots,\delta, \end{gather} for all $z,w\in B_\alpha$, where $C_i$ are positive constants. \end{itemize} Now, we turn to the Cauchy problem which is illustrated as follows, \begin{gather}\label{cheq1} u'(t)= -A(t)u(t)+f(t),\\ \label{cheq2} u(t_0)= u_0,\quad t\geq 0. \end{gather} \begin{theorem}[\cite{Pazy}]\label{thm1} Assume that {\rm (P1)--(P3)} hold. If $f$ is a H\"older continuous function from $[t_0,T]$ into $E$ with exponent $\beta$. Then, there exists a unique solution of the problem \eqref{cheq1}-\eqref{cheq2} given by \begin{equation} u(t)=U(t,t_0)u_0+\int^t_{t_0}U(t,s)f(s)ds,\quad \forall t_0\leq t\leq T. \end{equation} Indeed, $u:[t_0,T]\to E$ is strongly continuously differentiable solution on $(t_0, T]$. \end{theorem} We also have following results. \begin{lemma}[\cite{fri}] \label{lem1} Suppose that {\rm (P1)--(P3)} are satisfied. If $0\leq \gamma\leq 1$, $0\leq\beta\leq\alpha<1+\mu$, $0<\alpha-\gamma\leq1$, then for any $0\leq \tau0$ is a constant to be defined later. It is easy to see that $Y_{\alpha-1}$ is a Banach space under the supremum norm of $\mathcal{C}_\alpha^{T_0}=C(J,E_\alpha)$. Before expressing and demonstrating the main result, we present the definition of the mild solution to the problem \eqref{geq1}-\eqref{geq2}. \begin{definition} \label{def3.1} \rm A piecewise continuous function $u(\cdot):[0,T_0]\to E$ is called a mild solution for the problem \eqref{geq1}-\eqref{geq2} if $u(0)=u_0$ and $u(\cdot)$ satisfies the integral equation \begin{equation} \begin{aligned} u(t)&= U(t,0)[u_0+G(0,u_0)]-G(t,u(a(t))) \\ &\quad +\int^t_0 U(t,s)F(s,u(s), u(h_1(s, u(s))))ds +\sum_{0\tau_1$, then we have \begin{equation} \begin{aligned} \|Q u(\tau_2)-Q u(\tau_1)\|_{\alpha-1} &\leq \|[U(\tau_2,0)-U(\tau_1, 0)](u_0+G(0,u_0))\|_{\alpha-1} \\ &\quad +\|G(\tau_2, u(a(\tau_2)))-G(\tau_1, u(a(\tau_1)))\|_{\alpha-1} \\ &\quad +\Big\|\Big[\int^{\tau_2}_0U(\tau_2,s)F(s,u(s),u(h_1(u(s),s)))ds \\ &\quad -\int^{\tau_1}_0 U(\tau_1, s)F(s,u(s),u(h_1(u(s),s)))ds\Big]\Big\|_{\alpha-1} \\ &\quad +\sum_{00$ is a positive constant and $\varsigma<1-\alpha-\eta$. Thus, for $t\in[0,T_0]$, \begin{equation} \|Q u(t+h)-Q u(t)\|\leq P h^\eta, \end{equation} for $P>0$ defined as \begin{equation} \begin{aligned} P&= K\|u_0+G(0, u_0)\|{T_0}^{\beta-\alpha-\eta} +\|A(0)^{\alpha-\beta}\| L_G(1+L_a \mathcal{L})h^{1-\gamma} \\ &\quad +K(\alpha) N{T_0}^\varsigma h^{1-\alpha-\eta-\varsigma} (1+|\log(h)|)+K(\alpha)h^{\beta-\alpha-\eta}\|I_i(u(t_i^{-}))\|_\beta. \end{aligned} \end{equation} Hence $Q:\mathcal{S}_\alpha\to\mathcal{ S}_\alpha$. Now, it remains to show that $Q$ is a contraction map. For $z_1, z_2\in \mathcal{S}_\alpha$ and $t\in[0, T_0]$, we have \begin{equation} \label{conteq1} \begin{aligned} &\|(Q z_1)(t)-(Q z_2)(t)\|_\alpha \\ &\leq \|G(t,z_1(a(t)))-G(t,z_2(a(t)))\|_\alpha \\ &\quad +K(\alpha)\int^t_0(t-s)^{-\alpha}[\|F(s,z_1(s), z_1(h_1(s,z_1(s))))\\ &\quad -F(s, z_2(s), z_2(h_1(s,z_2(s))))\|]ds \\ &\quad +\sum_{00$. Similarly, \begin{equation}\label{geq3} \|G(t,z_1(a(t)))-G(t,z_2(a(t)))\|_\alpha \leq \|A(0)^{\alpha-\beta}\| L_G\big[\|z_1(t)-z_2(t)\|_\alpha\big]. \end{equation} Using inequalities \eqref{feq3}, \eqref{geq3} in \eqref{conteq1}, we deduce that \begin{equation} \begin{aligned} \|(Q z_1)(t)-(Q z_2)(t)\|_\alpha &\leq \Big{[}\|A(0)^{\alpha-\beta} \| L_G+K(\alpha)L_F(2+\mathcal{L} L_b) \frac{T_0^{1-\alpha}}{(1-\alpha)} \\ &\quad +K(\alpha)\sum_{i=1}^\delta L_i\Big{]}\sup_{t\in J}\|z_1(t)-z_2(t)\|_\alpha \end{aligned} \end{equation} Thus, for $t\in[0,T_0]$, \begin{align*} &\|(Q z_1)-(Q z_2)\|_{\mathcal{PC},\alpha}\\ &\leq \Big{[}\|A(0)^{\alpha-\beta}\| L_G+K(\alpha)L_F(2+\mathcal{L } L_b) \frac{T_0^{1-\alpha}}{(1-\alpha)} +K(\alpha)\sum_{i=1}^\delta L_i\Big{]}\|z_1-z_2\|_{\mathcal{PC},\alpha}. \end{align*} From inequality \eqref{thmeq1}, we get that $Q$ is a contraction map. Since $\mathcal{S}_\alpha$ is a closed subset of Banach space $Y=PC([0,T_0]; E_\alpha )$, therefore $\mathcal{S}_\alpha$ is a complete metric space. Thus, by Banach fixed point theorem, there exists a unique fixed point $u\in \mathcal{S}_\alpha$ of map $Q$ which is unique fixed point, i.e., $Q u(t)=u(t)$. From the Theorem \eqref{thm1}, we conclude that $u$ is a solution for system \eqref{geq1}-\eqref{geq2} on $[0,T_0]$. \end{proof} \section{Example} In this section, we consider an example to illustrate the discussed theory. We study the following differential equation with deviated argument \begin{gather} \label{example1} \begin{aligned} &\partial_t[v(t,x)+\partial_x \mathcal{F}_1(t,v(b(t),x))] -\partial_x(p(t,x)\partial_x)[v(t,x)+\partial_x \mathcal{F}_1(t,v(b(t),x))], \\ &= \widetilde{H}(x, v(t,x))+\widetilde{G}(t, x, v(t,x)); \quad 00,\\ v(0,x)= u_0(x),\quad x\in(0,1),\\ \label{example2} \Delta v|_{t=1/2}= \frac{ v(\frac{1}{2})^{-}}{5+v(\frac{1}{2})^{-}}, \end{gather} where \begin{gather*} \widetilde{H}(x,v(x,t))=\int^x_0 \mathcal{K}(x,y)v(y, N(t))dy, \\ N(t)=g_1(t)|v(x, g_2(t)|v(x, \dots g_\delta(t)| v(x,t)|)|)|, \end{gather*} and the map $\widetilde{G}\in C(\mathbb{R}_{+}\times [0,1]\times \mathbb{R}; \mathbb{R})$ is locally Lipschitz continuous in $v$, locally H\"older continuous in $t$, measurable and uniformly continuous in $x$. Here, we assume that functions $g_i:\mathbb{R}_{+}\to \mathbb{R}_{+},\;(i=1,2,\dots,\delta)$ are locally H\"older continuous in $t$ such that $g_i(0)=0$ and $\mathcal{K}:[0,1]\times[0,1]\to \mathbb{R}$ is continuously differentiable function i.e., $\mathcal{K}\in C^1([0,1]\times[0,1],\mathbb{R})$. We assume that $p$ is a function which is positive and has continuous partial derivative $p_x$ such that for each $\tau\in[0,\infty)$ and $00$. Let us consider $E=L^2((0,1);\mathbb{R})$ and $$ -\frac{\partial}{\partial x}(p(t,x)\frac{\partial}{\partial x}u(t,x))=A(t)u(t,x), $$ with $E_1=D(A(0))=H^2(0,1)\cap H^1_0(0,1),\;E_{1/2}=D((A(0))^{1/2})=H^1_0(0,1)$. Clearly, the family $\{A(t):t>0\}$ satisfies the hypotheses (P1)--(P3) on each bounded interval $[0,T]$. Now, we define the function $f:\mathbb{R}_{+}\times H^2(0,1)\times E_{-1/2}\to E$ as \begin{equation} f(t,\xi,\zeta)(x)=\widetilde{H}(x,\zeta)+\widetilde{G}(t,x,\xi),\quad \text{for }x\in(0,1), \end{equation} where $\widetilde{H}:[0,1]\times E_{-1/2}\to E$ is defined as \begin{equation} \widetilde{H}(x,\zeta)=\int^x_0 \mathcal{K}(x, y)\zeta(y)dy, \end{equation} and $\widetilde{G}:\mathbb{R}_+\times[0,1]\times E_{1/2}\to E$ satisfies following condition \begin{equation} \|\widetilde{G}(t, x,\xi)\|\leq W(x,t)(1+\|\xi\|_{1/2}), \end{equation} where $Q$ is continuous in $t$ and $Q(\cdot, t)\in X$. Also, we assume that the map $G:\mathbb{R}_+\times H^1_0(0,1)\to L^2(0,1)$ is such that $$ G(t, v(b(t)))(x)=\partial_x \mathcal{F}_1(t, v(b(t),x)) $$ and satisfies the assumption (P7). There are some possibilities of the map $b$ as follows: \begin{itemize} \item[(i)] $b(t)=l t$ for $t\in[0,T]$ and $0p(t,x)>p_0>0$, where $p_0$ is constant. Thus, we get $\lambda|y|^2_{L^2}\geq p_0\|v'\|^2_{L^2}>0$. So $\lambda>0$. In particular case for $p(t,x)=1$, we have \begin{equation} v''+\lambda v=0.\label{FQ1} \end{equation} \smallskip \noindent\textbf{Case 1} $\lambda=0$. Then solution of above equation is $v=C_1 x+C_2$. Using boundary condition $v(0)=v(1)=0$, we get $C_1=C_2=0$. Thus, $v(x)=0$ be the solution of $v''=0$, which is not an eigenfunction. \smallskip \noindent\textbf{Case 2} Let $\lambda=-\mu^2$ and $\mu\ne 0$. Then equation \eqref{FQ1} reduce to \begin{equation} [D^2-\mu^2]v=0\label{FQ2} \end{equation} whose auxiliary equation is $D^2-\mu^2=0$ i.e. $D=\pm\mu$. Thus solution of \eqref{FQ2} is \begin{equation} v(x)=C_1 e^{\mu x}+C_2 e^{-\mu x}, \label{FQ3} \end{equation} Using the boundary conditions, we get $C_1=C_2=0$. Thus, \eqref{FQ3} gives $v=0$ which is not an eigenfunction. \smallskip \noindent\textbf{Cases 3} Let $\lambda=\mu^2$ with $\mu\ne 0$. Thus, equation \eqref{FQ1} reduce to \begin{equation} [D^2+\mu^2]v=0.\label{FQ4} \end{equation} Therefore, the solution of \eqref{FQ4} is \begin{equation} y=C_1\sin(\mu x)+C_2\cos(\mu x).\label{FQ5} \end{equation} Using the condition $v(0)=v(1)=0$, we get $C_2=0$ and $C_1\sin(\mu)=0$. For the non-trivial solution, we have $C_1\ne 0$ and $\sin(\mu)=0$. Thus, $\mu=n\pi$. Therefore $\lambda_n=\mu^2=n^2\pi^2,\;n\in \mathbb{N}$. Hence, \eqref{FQ5} reduces to $v(x)=C_1\sin(n\pi x)$ for $n=1,\dots$, and then $\lambda=\mu^2=n^2\pi^2,\;n=1,2,\dots,$. Hence the required eigenfunction $v_n(x)$ with the corresponding eigenfunction $\lambda_n$ are given by $$ v_n=C_1\sin(\sqrt{\lambda_n} x),\quad \lambda_n=n^2\pi^2,\quad n=1,2,\dots. $$ Next, we show that $\widetilde{H}:[0,1]\times E_{-1/2}\to E$ is defined as \begin{equation} \widetilde{H}(x, \zeta(x,t))=\int^x_0 \mathcal{K}(x,y)\zeta(y,t)dy, \end{equation} where $\zeta(x,t)=v(x, h_1(t,v(x,t)))$. It is easy to verify that $f=\widetilde{H}+\widetilde{G}$ satisfies the assumption $(P4)$. Similarly, we show that the maps $b_i:[0,T]\times E_{-1/2}\to[0,T]$ defined as $b_i(t)=g_i(t)|\xi(x,\cdot)|$ for $i=1,2,\dots, \delta$ and satisfies the assumption (P5). For each $t\in[0,T]$, we get $$ |b_i(t,\xi)|=|g_i(t)||\xi(x,\cdot)| \leq |g_i|_{\infty}\|\xi\|_{L^\infty(0,1) }\leq N\|\xi\|_{-1/2}, $$ where $N$ is a positive constant, depending on the bounds on $g_i$'s and we use the embedding $H^1_0(0,1)\subset C[0,1]$. Since we have that $g_i$ satisfies the condition \begin{equation} |g_i(t)-g_i(s)|\leq L_{g_i}|t-s|^{\mu} ,\quad t,s\in[0,T], \end{equation} where $L_{g_i}$ is a positive constant and $\mu\in(0,1]$. For $z_1,z_2\in X_{-1/2}$ and $t\in[0,T]$ \begin{align*} |b_i(t,z_1)-b_i(t,z_2)| &\leq \|g_i\|_{\infty}\|z_1-z_2\|_{L^\infty(0,1)}+L_{g_i}|t-s|^{\mu} \|z_2\|_{L^\infty(0,1)}, \\ &\leq N\|g_i\|_{\infty}\|z_1-z_2\|_{-1/2}+L_{g_i}|t-s|^{\mu} \|z_2\|_{-1/2}, \\ &\leq \max\{N\|g_i\|_{\infty}, L_{g_i\|z_2\|_{\infty}}\} (\|z_1-z_2\|_{-1/2}+|t-s|^\mu). \end{align*} For $z_1, z_2\in D((-A)^{-1/2})$, then \begin{equation} \|I_i(z_1)-I_i(z_2)\|_{1/2} \leq\frac{\|z_1-z_2\|_{1/2}}{\|(5+z_1)(5+z_2)\|_{1/2}} \leq\frac{1}{25}\|z_1-z_2\|_{1/2}. \end{equation} Thus, we can apply the results of previous sections to obtain the existence result of the solution for \eqref{example1}-\eqref{example2}. \subsection*{Acknowledgments} The authors would like to thank the referee for the valuable comments and suggestions. The work of the first author is supported by the University Grants Commission (UGC), Government of India, New Delhi and Indian Institute of Technology, Roorkee. \begin{thebibliography}{00} \bibitem{bahuguna} Bahuguna, D.; Muslim, M.; A study of nonlocal history-valued retarded differential equations using analytic semigroup. \emph{Nonlinear Dynamics and Systems Theory}, \textbf{6}, 63-75 (2006). \bibitem{ben1} Benchohra, M.; Henderson, J.; Ntouyas, S. K.; Impulsive differential equations and inclusions. \emph{Contemporary Mathematics and Its Applications, Vol.2}, Hindawi Publishing Corporation, New York (2006). \bibitem{ben2} Benchohra, M.; Henderson, J.; Ntouyas, S. K.; Existence results for impulsive semilinear neutral functional differential equations in Banach spaces. \emph{Memoirs on Differential Equations and Mathematical Physics}, \textbf{5}, 105-120 (2002). \bibitem{ben3} Benchohra, M.; Ziane, M.; Impulsive Evolution Inclusions with State-Dependent Delay and Multivalued Jumps. \emph{Electronic Journal of Qualitative Theory of Differential Equations}, 2013 (2013), No-42, 1-21. \bibitem{card} Cardinali, T.; Rubbioni, P.; Impulsive mild solutions for semilinear differential inclusions with nonlocal conditions in Banach spaces. \emph{Nonlinear Analysis: TMA}, \textbf{75}, 871–879 (2012). \bibitem{cue} Cuevas, C.; Hern\'andez, E.; Rabelo M.; The existence of solutions for impulsive neutral functional differential equations. \emph{Computers and Mathematics with Applications}, \textbf{58}, 744-757 (2009). \bibitem{elgol} El'sgol'ts, L. E.; Norkin, S. B.; Introduction to the theory of differential equations with deviating arguments. Academic Press, 1973. \bibitem{fri} Friedman, A.; Partial Differential Equations. Holt, Rinehart, and Winston, New York (1969). \bibitem{fri2} Friedman, A.; Shinbrot, M.; Volterra integral equations in a Banach space. \emph{Trans. Amer. Math. Soc.}, \textbf{126}, 131-179 (1967). \bibitem{fu} Fu, X.; Existence of solutions for non-autonomous functional evolution equations with nonlocal conditions. \emph{Electronic Journal of Differential Equations}, Vol. \textbf{2012}, No. 110, pp. 1-15 (2012). \bibitem{gal} Gal, C. G.; Nonlinear abstract differential equations with deviated argument. \emph{Journal of Mathematical Analysis and Applications}, \textbf{333}, 971-983 (2007). \bibitem{gal2} Gal, C. G.; Semilinear abstract differential equation with deviated argument. \emph{International Journal of Evolution Equations}, \textbf{4}, 381-386 (2008). \bibitem{grimm} Grimm, L. J.; Existence and continuous dependence for a class of nonlinear neutral differential equations. \emph{Proceedings of the American Mathematical Society}, \textbf{29}, 525–536 (1971). \bibitem{haloi} Haloi, R.; Pandey, D. N.; Bahuguna, D.; Existence of solutions to a non-autonomous abstract neutral differential equation with deviated argument. \emph{Journal of Nonlinear Evolution Equations and Applications}, Vol. \textbf{2011}, No-5, 75-90 (2011). \bibitem{henry} Henry, D.; Geometric Theory of Semi-linear Parabolic Equations. Lecture Notes in Mathematics, Vol. 840, \emph{Springer-Verlag}, New-York, 1981. \bibitem{jan1} Jankowski, T.; Advanced differential equations with non-linear boundary conditions. \emph{Journal of Mathematical Analysis and Applications}, \textbf{304}, 490–503 (2005). \bibitem{jan2} Jankowski, T.; Kwapisz, M.; On the existence and uniqueness of solutions of systems of differential equations with a deviated argument. \emph{Annales Polonici Mathematici} \textbf{26}, 253–277 (1972). \bibitem{kar} Karunanithi, S.; Chandrasekaran, S.; Existence results for non-autonomous semilinear integro-differential systems. \emph{International Journal of Nonlinear Science}, \textbf{13}, 220-227 (2012). \bibitem{kumar} Kumar, P.; Pandey, D. N.; Bahuguna, D.; Existence of piecewise continuous mild solutions for impulsive functional differential equations with iterated deviating arguments. \emph{Electronic Journal of Differential Equations}, Vol. \textbf{2013}, No. 241, pp. 1-15 (2013). \bibitem{laks} Lakshmikantham, V.; Ba\v{i}nov, D.; Simeonov, P. S.; Theory of impulsive differential equations. Series in Modern Applied Mathematics. \emph{World Scientific Publishing Co., Inc.}, Teaneck, NJ (1989). \bibitem{liu} Liu, Z.; Liang, J.; A class of boundary value problems for first-order impulsive integro-differential equations with deviating arguments. \emph{Journal of Computational and Applied Mathematics}, \textbf{237}, 477-486 (2013). \bibitem{mach} Machado, J. A; Ravichandran, C.; Rivero, M.; Trujillo, J. J.; Controllability results for impulsive mixed-type functional integro-differential evolution equations with nonlocal conditions. \emph{Fixed Point Theory and Applications}, \textbf{2013}, pp-16 (2013). \bibitem{muslim} Muslim, M., Bahuguna, D.; Existence of solutions to neutral differential equations with deviated argument. \emph{Electronic Journal of Qualitative Theory of Differential Equations}, \textbf{27}, 1-12 (2008). \bibitem{oberg} Oberg, R. J.; On the local existence of solutions of certain functional-differential equations. \emph{Proceedings of the American Mathematical Society}, \textbf{20}, 295–302 (1969). \bibitem{pandey} Pandey, D. N.; Ujlayan, A.; Bahuguna, D.; On nonlinear abstract neutral differential equations with deviated argument. \emph{Nonlinear Dynamics and Systems Theory}, \textbf{10}, 283-294 (2010). \bibitem{Pazy} Pazy, A.; \emph{Semigroups of Linear Operators and Applications to Partial Differential Equations}, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. \bibitem{sam} Samuel, F. P.; Balachandran, K.; Existence of solutions for quasi-linear impulsive functional integro-differential equations in Banach spaces. \emph{Journal of Nonlinear Science and Applications}, \textbf{7}, 115-125 (2014). \bibitem{stev} Stevic, S.; Solutions converging to zero of some systems of nonlinear functional differential equations with iterated deviating arguments. \emph{Applied Mathematics and Computation}, \textbf{219}, 4031-4035 (2012). \bibitem{stev2} Stevic, S.; Globally bounded solutions of a system of nonlinear functional differential equations with iterated deviating argument. \emph{Applied Mathematics and Computation}, \textbf{219}, 2180-2185 (2012). \bibitem{tanabe} Tanabe, H.; On the equations of evolution in a Banach space. \emph{Osaka Math. J.}, \textbf{12}, 363-376 (1960). \bibitem{wang} Wang, R. N.; Zhu, P.X.; Non-autonomous evolution inclusions with nonlocal history conditions: Global integral solutions. \emph{Nonlinear Analysis: TMA}, \textbf{85}, 180–191 (2013). \end{thebibliography} \end{document}