\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 234, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/234\hfil Cyclic system of difference equations] {Long-term behavior of a cyclic max-type system of difference equations} \author[T. Stevi\'c, B. Iri\v{c}anin \hfil EJDE-2015/234\hfilneg] {Tatjana Stevi\'c, Bratislav Iri\v{c}anin} \address{Tatjana Stevi\'c \newline Faculty of Electrical Engineering, Belgrade University, Bulevar Kralja Aleksandra 73, 11000 Beograd, Serbia} \email{tanjas019@gmail.com} \address{Bratislav Iri\v{c}anin \newline Faculty of Electrical Engineering, Belgrade University, Bulevar Kralja Aleksandra 73, 11000 Beograd, Serbia} \email{iricanin@etf.rs} \thanks{Submitted June 6 2015. Published September 11, 2015.} \subjclass[2010]{39A10, 39A20} \keywords{Max-type system of difference equations; cyclic system; \hfill\break\indent positive solutions; boundedness character; global attractivity} \begin{abstract} We study the long-term behavior of positive solutions of the cyclic system of difference equations $$ x^{(i)}_{n+1}=\max\Big\{\alpha,\frac{(x^{(i+1)}_n)^p}{(x^{(i+2)}_{n-1})^q}\Big\}, \quad i=1,\ldots,k,\; n\in\mathbb{N}_0, $$ where $k\in\mathbb{N}$, $\min\{\alpha, p, q\}>0$ and where we regard that $x^{(i_1)}_n=x^{(i_2)}_n$ when $i_1\equiv i_2$ (mod $k$). We determine the set of parameters $\alpha$, $p$ and $q$ in $(0,\infty)^3$ for which all such solutions are bounded. In the other cases we show that the system has unbounded solutions. For the case $p=q$ we give some sufficient conditions which guaranty the convergence of all positive solutions. The main results in this paper generalize and complement some recent ones. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{remark}[theorem]{Remark} \allowdisplaybreaks \section{Introduction} Unlike the linear difference equations and systems, there is no unified theory for nonlinear ones. The lack of the theory, among other reasons, motivated numerous experts to study various concrete nonlinear equations and systems, which seem or look like good prototypes. Since the beginning of 1990's there have been published a lot of papers on such equations and systems (see, e.g., \cite{ad}-\cite{bs-jdea09}, \cite{dkk}, \cite{fp}, \cite{gl}-\cite{pss}, \cite{ps-cana}-\cite{yl}). Many of these papers study only positive solutions of the equations and systems. This is not so unexpected since many of the equations and systems appear in some applications (see, e.g., \cite{bc, gr, rr1, ijpam3,37264} and the references cited therein). After studying numerous special cases of rational equations of the form \begin{equation} x_{n+1}=\alpha+\frac{x_{n-k}}{x_{n-l}},\quad n\in\mathbb{N}_0, \label{c1} \end{equation} where $\alpha>0$, $k,l\in\mathbb{N}_0$, $k\ne l$ (see, e.g., \cite{ad, bs1, bs2, ijcm1, bs0, dkk, ddnsgut, tjm2, jdea1010, 53890, cma1, sx}), the topic began developing in a natural direction, that is, into the study of special cases of the non-rational difference equation \begin{equation} \label{s5} x_{n+1}=\alpha+\frac{x^p_{n-k}}{x_{n-l}^q},\quad n\in\mathbb{N}_0, \end{equation} where $k,l\in\mathbb{N}_0$, $k\ne l$, and $\min\{\alpha, p, q\}>0$. The critical moment for investigating positive solutions of equation \eqref{s5} seems the publication of paper \cite{jamc1}, where the case $p=q>0$, $k=l+1=1$ was studied, which was the initial motivation for further investigations. Since that time equation \eqref{s5} and its extensions have been extensively studied by several authors (see, e.g., \cite{jdea129, i-aaa2010, i-amc2010, amc213, pss, 53890, 40963, na2009, csf3}) The first problem studied was the boudedness character of positive solutions of equation \eqref{s5}. One of the first steps in the study was \cite[Theorem 2]{tjm2} where it was given an elegant proof for the boundedness of positive solutions of the following equation with a variable coefficient \begin{equation} x_{n+1}=\alpha_n+\frac{x_n}{x_{n-k}}, \quad n\in\mathbb{N}_0,\label{eqgen} \end{equation} where $k\in\mathbb{N}$ and $(\alpha_n)_{n\in\mathbb{N}_0}$ is a sequence of real numbers such that $00$, and where we regard that \begin{equation} x^{(i_1)}_n=x^{(i_2)}_n,\quad\text{when}\quad i_1\equiv i_2\; ({\rm mod}\; k).\label{s2} \end{equation} Note that $i+2>k$, for $i\in\{k-1,k\}$, but we will also have some situations in the paper where the superscript is bigger than $k+2$. Another topic of recent interest is the investigation of, so called, max-type difference equations and systems, which appeared for the first time in the mid of 1990's. For some results in the area up to 2004, see monograph \cite{gl}. A systematic study of non-rational max-type difference equations started in the mid of 2000's (see, e.g., \cite{40963, aml6, amc216-max, na4, um83-2, jmaa376, amc217-max, amc-maxpsde, amc-mtsde, amc219-ssmtde, amc235-psmtdce, yl}). The corresponding max-type system of difference equations to \eqref{mf} is \begin{equation} x^{(i)}_{n+1}=\max\Big\{\alpha,\frac{(x^{(i+1)}_n)^p}{(x^{(i+2)}_{n-1})^q}\Big\}, \quad i=1,\ldots,k,\; n\in\mathbb{N}_0,\label{main} \end{equation} where $k\in\mathbb{N}$, $\min\{\alpha, p, q\}>0$, and where we also accept the convention in \eqref{s2}. Motivated by above mentioned line of investigations and especially by papers \cite{amc219-ssmtde,amc219-nsosde,ejqtde-maxsde} here we study the long-term behavior of positive solutions of system \eqref{main}. Our results generalize and complement some results in these papers. For a solution $(\vec x_n)_{n\ge -1}=(x^{(1)}_n,\ldots,x^{(k)}_n)_{n\ge -1}$ of system \eqref{main} is said that is {\it bounded} if there is $L\ge 0$ such that \begin{equation} \sup_{n\ge -1}\|\vec x_n\|_2=\sup_{n\ge -1} \Big(\sum_{i=1}^k(x^{(i)}_n)^2\Big)^{1/2}\le L.\label{c6} \end{equation} Of course, in the definition, instead of the Euclidean norm in ${\mathbb R}^k$ we could use any equivalent one (for example, maximum norm). If we say that a solution $(\vec x_n)_{n\ge -1}$ of system \eqref{main} is positive, it will mean that $x^{(i)}_n>0$ for every $1\le i\le k$ and $n\ge -1$. \section{Boundedness character of system \eqref{main}} Prior to stating and proving our theorems we want to mention an obvious estimate which will be frequently used from now on. Namely, note that for any positive solution of system \eqref{main} the following estimate holds \begin{equation} x^{(i)}_n\ge \alpha,\label{a7} \end{equation} for every $1\le i\le k$ and $n\in\mathbb{N}$. \begin{theorem} \label{thm1} If $2\sqrt q\leq p<1+q$ and $q\in(0,1)$, then all positive solutions of \eqref{main} are bounded. \end{theorem} \begin{proof} It is easy to see that the conditions $2\sqrt q\leq p<1+q$ and $q\in (0,1)$, imply that $\lambda^2-p\lambda+q=(\lambda-\lambda_1)(\lambda-\lambda_2)$ for $\lambda_1$ and $\lambda_2$ such that $0<\lambda_2\le\lambda_1<1$. Hence $$ x^{(i)}_{n+1}=\max\Big\{\alpha,\frac{(x^{(i+1)}_n)^{\lambda_1+\lambda_2}} {(x^{(i+2)}_{n-1})^{\lambda_1\lambda_2}}\Big\}. $$ From this and \eqref{a7}, for every positive solution of system \eqref{main} we have \begin{equation} \begin{aligned} \frac{x^{(i)}_{n+1}}{(x^{(i+1)}_n)^{\lambda_1}} &=\max\Big\{ \frac \alpha{(x^{(i+1)}_n)^{\lambda_1}}, \Big(\frac{x^{(i+1)}_{n}}{(x^{(i+2)}_{n-1})^{\lambda_1}} \Big)^{\lambda_2}\Big\} \\ &\leq \max\Big\{ \alpha^{1-\lambda_1}, \Big(\frac{x^{(i+1)}_{n}}{(x^{(i+2)}_{n-1})^{\lambda_1}} \Big)^{\lambda_2}\Big\} \end{aligned}\label{mod} \end{equation} for every $1\le i\le k$ and $n\in\mathbb{N}$. Let $$ y^{(i)}_n=\frac{x^{(i)}_{n+1}}{(x^{(i+1)}_n)^{\lambda_1}},\quad i=1,\ldots,k,\quad n\in\mathbb{N}_0, $$ and \begin{equation} z_n=k\alpha^{1-\lambda_1}+kz_{n-1}^{\lambda_2},\quad n\in\mathbb{N},\label{ips} \end{equation} where \begin{equation} z_0=\sum_{i=1}^k y^{(i)}_0.\label{s3} \end{equation} From \eqref{mod} it follows that \begin{equation} \begin{aligned} \sum_{i=1}^ky^{(i)}_n &\le \sum_{i=1}^k\max\Big\{\alpha^{1-\lambda_1},(y^{(i)}_{n-1})^{\lambda_2}\Big\} \le k\alpha^{1-\lambda_1} +\sum_{i=1}^k (y^{(i)}_{n-1})^{\lambda_2} \\ &\le k\alpha^{1-\lambda_1} +k\Big(\sum_{i=1}^k y^{(i)}_{n-1}\Big)^{\lambda_2},\quad\text{for } n\in\mathbb{N}. \end{aligned}\label{s6} \end{equation} Since the function $f(x)=k\alpha^{1-\lambda_1}+kx^{\lambda_2}$ is nondecreasing on the interval $(0,\infty)$ and by using \eqref{s3} in \eqref{s6} with $n=1$, we obtain $$ \sum_{i=1}^ky^{(i)}_1\le z_1. $$ From this, by using \eqref{s6}, a simple inductive argument yields \begin{equation} \sum_{i=1}^ky^{(i)}_n\leq z_n,\quad n\in \mathbb{N}_0.\label{c10} \end{equation} On the other hand, since $\lambda_2\in (0,1)$, function $f$ is also concave on $(0,\infty)$. Hence, there is a unique solution $x^*$ of the equation $f(x)=x$, and \begin{equation} (f(x)-x)(x-x^*)<0,\quad x\in (0,\infty)\setminus\{x^*\}. \end{equation} Moreover, from $f(1)=k\alpha^{1-\lambda_1}+k>1$, it follows that $x^*>1$. So, if $z_0\in (0,x^*]$, then $(z_n)_{n\in\mathbb{N}_0}$ is nondecreasing and $z_n\le x^*$, $n\in\mathbb{N}_0$, while if $z_0\geq x^*$, it is nonincreasing and $z_n\ge x^*$, $n\in\mathbb{N}_0$. Hence, $(z_n)_{n\in\mathbb{N}_0}$ is bounded. This and \eqref{c10} imply the existence of $M_1\ge x^*>1$ such that $$ \sum_{i=1}^ky^{(i)}_n\le M_1,\quad n\in\mathbb{N}_0, $$ and consequently $$ x^{(i)}_{n+1}\leq M_1(x^{(i+1)}_n)^{\lambda_1}, $$ for every $1\le i\le k$ and $n\in\mathbb{N}_0$. Hence $$ \sum_{i=1}^kx^{(i)}_n\leq kM_1\Big(\sum_{i=1}^kx^{(i)}_{n-1}\Big)^{\lambda_1},\quad n\in\mathbb{N}, $$ from which we have \[ \sum_{i=1}^kx^{(i)}_n \leq (kM_1)^{\frac{1-{\lambda_1}^n}{1-{\lambda_1}}} \Big(\sum_{i=1}^kx^{(i)}_0\Big)^{{\lambda_1}^n} \leq(kM_1)^{\frac 1{1-{\lambda_1}}}\max\Big\{1, \sum_{i=1}^kx^{(i)}_0\Big\}, \] from which the boundedness of any positive solution follows. \end{proof} Before we state the next result we introduce a notation in order to save some space in writing some long formulas. Namely, if $a_j$, $j=1,\ldots,l$, are nonnegative numbers and $r$ is a positive real number then the notation $$ \max\{a_1,a_2,\ldots,a_l\}^r$$ has the same meaning as $(\max\{a_1,a_2,\ldots,a_l\})^r$, that is, as $\max\{a_1^r,a_2^r,\ldots,a_l^r\}.$\bigskip \begin{theorem} \label{thm2} If $p^2<4q$, then all positive solutions of system \eqref{main} are bounded. \end{theorem} \begin{proof} Since \eqref{main} is cyclic it is sufficient to prove the boundedness of $(x^{(1)}_n)_{n\ge -1}$. Let $p_0=0$ and \begin{equation} p_{k+1}=\frac q{p-p_k},\quad k\in\mathbb{N}_0.\label{defpk} \end{equation} We have \begin{equation} \label{p2r} \begin{aligned} x^{(1)}_{n+1} &=\max\Big\{\alpha,\frac{(x^{(2)}_n)^p}{(x^{(3)}_{n-1})^q}\Big\} =\max\Big\{\alpha,\Big(\frac{x^{(2)}_n}{(x^{(3)}_{n-1})^{\frac qp}}\Big)^p\Big\}\\ &=\max\Big\{\alpha,\Big(\frac{x^{(2)}_n}{(x^{(3)}_{n-1})^{p_1}}\Big)^p\Big\}\\ &=\max\Big\{\alpha,\max\Big\{\frac \alpha{(x^{(3)}_{n-1})^{p_1}}, \frac{(x^{(3)}_{n-1})^{p-p_1}}{(x^{(4)}_{n-2})^q}\Big\}^p\Big\}\\ &=\max\Big\{\alpha,\max\Big\{\frac \alpha{(x^{(3)}_{n-1})^{p_1}}, \Big(\frac{x^{(3)}_{n-1}}{(x^{(4)}_{n-2})^{\frac{q}{p-p_1}}} \Big)^{p-p_1}\Big\}^p\Big\}\\ &=\max\Big\{\alpha,\max\Big\{\frac \alpha{(x^{(3)}_{n-1})^{p_1}}, \Big(\frac{x^{(3)}_{n-1}}{(x^{(4)}_{n-2})^{p_2}}\Big)^{p-p_1}\Big\}^p\Big\}\\ &=\max\Big\{\alpha,\max\Big\{\frac\alpha{(x^{(3)}_{n-1})^{p_1}}, \max\Big\{\frac\alpha{(x^{(4)}_{n-2})^{p_2}}, \frac{(x^{(4)}_{n-2})^{p-p_2}}{(x^{(5)}_{n-3})^q}\Big\}^{p-p_1}\Big\}^p\Big\}. \end{aligned} \end{equation} Now assume that for some $m$ such that $1\le m\le n+1$ we have proved the following \begin{equation} x^{(1)}_{n+1} =\max\Big\{\alpha,\ldots,\max\Big\{\frac{\alpha}{(x^{(m)}_{n-m+2})^{p_{m-2}}}, \frac{(x^{(m)}_{n-m+2})^{p-p_{m-2}}}{(x^{(m+1)}_{n-m+1})^q}\Big\}^{p-p_{m-3}} \ldots\Big\}.\label{s7} \end{equation} Then by using \eqref{main} in \eqref{s7} we have \begin{align*} &x^{(1)}_{n+1}\\ &=\max\Big\{\alpha,\ldots,\max\Big\{\frac{\alpha}{(x^{(m)}_{n-m+2})^{p_{m-2}}}, \Big(\frac{x^{(m)}_{n-m+2}}{(x^{(m+1)}_{n-m+1})^\frac{q}{p-p_{m-2}}} \Big)^{p-p_{m-2}}\Big\}^{p-p_{m-3}}\ldots\Big\}\\ &=\max\Big\{\alpha,\ldots,\max\Big\{\frac{\alpha}{(x^{(m)}_{n-m+2})^{p_{m-2}}}, \Big(\frac{x^{(m)}_{n-m+2}}{(x^{(m+1)}_{n-m+1})^{p_{m-1}}}\Big)^{p-p_{m-2}} \Big\}^{p-p_{m-3}}\ldots\Big\}\\ &=\max\Big\{\alpha,\ldots, \max\Big\{\frac{\alpha}{(x^{(m+1)}_{n-m+1})^{p_{m-1}}}, \frac{(x^{(m+1)}_{n-m+1})^{p-p_{m-1}}}{(x^{(m+2)}_{n-m})^q} \Big\}^{p-p_{m-2}}\ldots\Big\}. \end{align*} From this, \eqref{p2r} and the method of induction we see that \eqref{s7} holds for every $1\le m\le n+2$. We have to say that if $p_m=p$ for some $m\in\mathbb{N}$, then the above (iterating) procedure is stopped. If $p^2\leq q$, which is equivalent to $p\le p_1$, by using \eqref{a7} and \eqref{p2r} for $n\ge 3$, we obtain $$ x^{(1)}_{n+1}=\max\Big\{\alpha, \max\Big\{\frac \alpha{(x^{(3)}_{n-1})^{\frac qp}}, \frac{(x^{(3)}_{n-1})^{p-\frac qp}}{(x^{(4)}_{n-2})^q}\Big\}^p\Big\} \leq \max\Big\{\alpha,\frac 1{\alpha^{q-p}}, \frac 1{\alpha^{q-p^2+pq}}\Big\}, $$ which proves the boundedness of $x_n^{(1)}$ in this case. Since $0=p_00$, $p=q+1$ and $q\in(0,1)$, then all positive solutions of \eqref{main} are bounded. \end{theorem} \begin{proof} We may suppose $\alpha=1$, since the change of variables $$ x^{(i)}_n=\alpha\hat x^{(i)}_n,\quad i=1,\ldots,k,\quad n\ge -1, $$ transforms system \eqref{main} into the same with $\alpha=1$. Assume that sequences $(a_n)_{n\in\mathbb{N}_0}$ and $(b_n)_{n\in\mathbb{N}_0}$ are defined by \begin{equation} \label{a2} \begin{gathered} a_0=q,\quad b_0=q+1,\\ a_{2n+1}=(q+1)b_{2n}-a_{2n},\quad b_{2n+1}=qb_{2n},\quad n\in\mathbb{N}_0,\\ b_{2n+2}=(q+1)a_{2n+1}-b_{2n+1},\quad a_{2n+2}=qa_{2n+1},\quad n\in\mathbb{N}_0. \end{gathered} \end{equation} Using \eqref{main} and \eqref{a2} we have \begin{align} x^{(1)}_{n+1} &= \max\Big\{1,\frac{(x^{(2)}_n)^{q+1}}{(x^{(3)}_{n-1})^q}\Big\} =\max\Big\{1,\frac{(x^{(2)}_n)^{b_0}}{(x^{(3)}_{n-1})^{a_0}}\Big\} \nonumber\\ & = \max\Big\{1,\frac1{(x^{(3)}_{n-1})^{a_0}} \frac{(x^{(3)}_{n-1})^{(q+1)b_0-a_0}}{(x^{(4)}_{n-2})^{qb_0}}\Big\} \nonumber\\ &=\max\Big\{1,\frac1{(x^{(3)}_{n-1})^{a_0}} \frac{(x^{(3)}_{n-1})^{a_1}}{(x^{(4)}_{n-2})^{b_1}}\Big\} \label{s10} \\ &=\max\Big\{1,\frac1{(x^{(3)}_{n-1})^{a_0}}\frac1{(x^{(4)}_{n-2})^{b_1}}, \frac{(x^{(4)}_{n-2})^{(q+1)a_1-b_1}}{(x^{(5)}_{n-3})^{qa_1}}\Big\} \nonumber\\ &=\max\Big\{1,\frac1{(x^{(3)}_{n-1})^{a_0}}\frac1{(x^{(4)}_{n-2})^{b_1}}, \frac{(x^{(4)}_{n-2})^{b_2}}{(x^{(5)}_{n-3})^{a_2}}\Big\} \label{s11} \end{align} Now assume that for some $m$, $4\le 2m\le n$ we have proved the following two equalities \begin{align} &x^{(1)}_{n+1} \nonumber\\ &=\max\Big\{1,\frac1{(x^{(3)}_{n-1})^{a_0}}\frac1{(x^{(4)}_{n-2})^{b_1}}, \ldots,\frac1{(x^{(2m-1)}_{n-2m+3})^{a_{2m-4}}}, \frac{(x^{(2m-1)}_{n-2m+3})^{a_{2m-3}}}{(x^{(2m)}_{n-2m+2})^{b_{2m-3}}}\Big\} \label{s8}\\ &=\max\Big\{1,\frac1{(x^{(3)}_{n-1})^{a_0}}\frac1{(x^{(4)}_{n-2})^{b_1}}, \ldots,\frac1{(x^{(2m)}_{n-2m+2})^{b_{2m-3}}}, \frac{(x^{(2m)}_{n-2m+2})^{b_{2m-2}}}{(x^{(2m+1)}_{n-2m+1})^{a_{2m-2}}}\Big\} \label{s9}. \end{align} By using \eqref{main} in \eqref{s9} we obtain \begin{align*} &x^{(1)}_{n+1}\\ &= \max\Big\{1,\frac1{(x^{(3)}_{n-1})^{a_0}}\frac1{(x^{(4)}_{n-2})^{b_1}}, \ldots,\frac1{(x^{(2m)}_{n-2m+2})^{b_{2m-3}}}, \frac{(x^{(2m)}_{n-2m+2})^{b_{2m-2}}}{(x^{(2m+1)}_{n-2m+1})^{a_{2m-2}}}\Big\}\\ &= \max\Big\{1,\frac1{(x^{(3)}_{n-1})^{a_0}}\frac1{(x^{(4)}_{n-2})^{b_1}},\ldots, \frac1{(x^{(2m+1)}_{n-2m+1})^{a_{2m-2}}},\frac{(x^{(2m+1)}_{n-2m+1})^{(q+1) b_{2m-2}-a_{2m-2}}}{(x^{(2m+2)}_{n-2m})^{qb_{2m-2}}}\Big\}\\ &= \max\Big\{1,\frac1{(x^{(3)}_{n-1})^{a_0}}\frac1{(x^{(4)}_{n-2})^{b_1}},\ldots, \frac1{(x^{(2m+1)}_{n-2m+1})^{a_{2m-2}}},\frac{(x^{(2m+1)}_{n-2m+1})^{a_{2m-1}}} {(x^{(2m+2)}_{n-2m})^{b_{2m-1}}}\Big\}\\ &= \max\Big\{1,\frac1{(x^{(3)}_{n-1})^{a_0}}\frac1{(x^{(4)}_{n-2})^{b_1}},\ldots, \frac1{(x^{(2m+2)}_{n-2m})^{b_{2m-1}}},\frac{(x^{(2m+2)}_{n-2m})^{(q+1)a_{2m-1} -b_{2m-1}}}{(x^{(2m+3)}_{n-2m-1})^{qa_{2m-1}}}\Big\}\\ &= \max\Big\{1,\frac1{(x^{(3)}_{n-1})^{a_0}}\frac1{(x^{(4)}_{n-2})^{b_1}},\ldots, \frac1{(x^{(2m+2)}_{n-2m})^{b_{2m-1}}},\frac{(x^{(2m+2)}_{n-2m})^{b_{2m}}} {(x^{(2m+3)}_{n-2m-1})^{a_{2m}}}.\Big\} \end{align*} From this, \eqref{s10}, \eqref{s11} and by the method of induction we see that \eqref{s8} and \eqref{s9} hold for $4\le 2m\le n+2$. From the relations in \eqref{a2} it is easy to see that \begin{gather*} b_{2n}=\frac{a_{2n+1}+a_{2n}}{q+1},\quad n\in\mathbb{N}_0, \\ a_{2n+3}-(q^2+1)a_{2n+1}+q^2a_{2n-1}=0,\quad n\in\mathbb{N}, \end{gather*} from which we obtain \begin{equation} a_{2n+1}=\frac{1-q^{2n+3}}{1-q},\quad n\in\mathbb{N}_0.\label{a5} \end{equation} Letting $n\to+\infty$ in \eqref{a5} and \eqref{a2} we also obtain \begin{gather} \lim_{n\to+\infty}a_{2n}=\lim_{n\to+\infty}b_{2n+1}=\frac q{1-q},\label{s17}\\ \lim_{n\to+\infty}b_{2n}=\lim_{n\to+\infty}a_{2n+1}=\frac 1{1-q},\label{a10} \end{gather} (see \cite{ejqtde-maxsde} for a detailed explanation). Now note that from \eqref{s8} and \eqref{s9} we have that \begin{gather} x^{(1)}_{2n+1} =\max\Big\{1,\frac1{(x^{(3)}_{n-1})^{a_0}} \frac1{(x^{(4)}_{n-2})^{b_1}},\ldots,\frac1{(x^{(2n+2)}_0)^{b_{2n-1}}}, \frac{(x^{(2n+2)}_0)^{b_{2n}}}{(x^{(2n+3)}_{-1})^{a_{2n}}}\Big\}\label{s12} \\ x^{(1)}_{2n}=\max\Big\{1,\frac1{(x^{(3)}_{n-1})^{a_0}} \frac1{(x^{(4)}_{n-2})^{b_1}},\ldots, \frac1{(x^{(2n+1)}_0)^{a_{2n-2}}}, \frac{(x^{(2n+1)}_0)^{a_{2n-1}}}{(x^{(2n+2)}_{-1})^{b_{2n-1}}}\Big\},\label{s14} \end{gather} for $n\in\mathbb{N}$. Using that $$ \min_{i\in\mathbb{N}}x^{(i)}_n=\min_{1\le i\le k}x^{(i)}_n\ge 1,\quad\text{for } n\in\mathbb{N}, $$ \eqref{s17} and \eqref{a10}, in \eqref{s12} and \eqref{s14}, the boundedness of $(x^{(1)}_n)_{n\ge -1}$ follows, which along with the cyclicity of system \eqref{main} implies the boundedness of $(x^{(i)}_n)_{n\ge -1}$ for every $1\le i\le k$, as claimed. \end{proof} \begin{remark} \label{rmk1}\rm Note that from the proofs of Theorems \ref{thm2} and \ref{thm3} is seen that the value of superscript $i\in\mathbb{N}$ in $x_n^{(i)}$ does not influence at the many points. This is why we introduced the convention in \eqref{s2}. In fact, an important fact in the proof of Theorem \ref{thm2} is estimate \eqref{a7}, while the inequality $\min_{1\le i\le k}x^{(i)}_n\ge 1$, $n\in\mathbb{N}$, is the corresponding important fact in the proof of Theorem \ref{thm3}. \end{remark} \begin{theorem} \label{thm4} If $\alpha>0$, $p^2\geq 4q>4$, or $p>1+q$, $q\leq 1$, or $p=q+1=2$, then system \eqref{main} has positive unbounded solutions. \end{theorem} \begin{proof} Since from \eqref{main} we have \begin{equation} x^{(i)}_{n+1}\ge \frac{(x^{(i+1)}_n)^p}{(x^{(i+2)}_{n-1})^q},\quad i=1,\ldots,k,\; n\in\mathbb{N}_0,\label{ewa} \end{equation} the same arguments as in the proof of \cite[Theorem 2]{jdea205} can be used. So, we will only sketch the proof for the completeness. Let $y_n=\ln \prod_{i=1}^k x^{(i)}_n$, $n\ge -1$, then by using \eqref{ewa}, we obtain \begin{equation} y_{n+1}-py_n+qy_{n-1}\geq 0,\quad n\in\mathbb{N}_0.\label{ey} \end{equation} If $p^2\geq 4q>4$, then the polynomial $\lambda^2-p\lambda+q$ has two zeroes $\lambda_1$ and $\lambda_2$, such that $\lambda_1>1$ and $\lambda_2>0$, while if $p>1+q$, $q\leq 1$, then $\lambda_1>1>\lambda_2>0$. From \eqref{ey} and some simple iterations we obtain \begin{equation} \frac{\prod_{i=1}^k x^{(i)}_{n+1}}{(\prod_{i=1}^k x^{(i)}_n)^{\lambda_1}}\geq \Big(\frac{\prod_{i=1}^k x^{(i)}_0}{(\prod_{i=1}^k x^{(i)}_{-1})^{\lambda_1}}\Big)^{\lambda_2^{n+1}},\quad n\in\mathbb{N}_0.\label{xiter} \end{equation} If $x^{(i)}_{-1}, x^{(i)}_0$, $i=1,\ldots,k$, are chosen, for example, such that \begin{equation} \prod_{i=1}^k x^{(i)}_0>1\quad\text{and}\quad \prod_{i=1}^k x^{(i)}_0\ge \Big(\prod_{i=1}^k x^{(i)}_{-1}\Big)^{\lambda_1},\label{s15} \end{equation} then by employing \eqref{xiter} and \eqref{s15}, it is obtained \begin{equation} \prod_{i=1}^k x^{(i)}_n\ge \Big(\prod_{i=1}^k x^{(i)}_0\Big)^{\lambda_1^n}\to+\infty\quad\text{as } n\to\infty,\label{xiter1} \end{equation} which along with the inequality between the arithmetic and geometric means gives $\|\vec x_n\|_2\to+\infty$ as $n\to\infty$, showing the existence of unbounded solutions in these two cases. If $p = q + 1 = 2$, then we can get unbounded solutions by choosing the initial values satisfying the strict inequalities in \eqref{s15}. \end{proof} \section{Global attractivity} For the case $p=q$, we give here some sufficient conditions which guaranty the global attractivity of all positive solutions of system \eqref{main}. \begin{theorem} \label{thm5} If $p\in(0,1)$ and $\alpha\in (0,1)$, then every positive solution of \eqref{main} converges to the $k$-dimensional vector $(1,\ldots,1)$. \end{theorem} \begin{proof} Using \eqref{a7} in the equality \begin{equation} x^{(i)}_{n+1} =\max\Big\{\alpha,\frac{\alpha^p}{(x^{(i+2)}_{n-1})^p}, \frac1{((x^{(i+2)}_{n-1})^{1-p}(x^{(i+3)}_{n-2})^p)^p}\Big\},\quad i=1,\ldots,k,\; n\in\mathbb{N},\label{s16} \end{equation} which is obtained by iterating the relations in \eqref{main}, we obtain \begin{equation} \alpha\leq x^{(i)}_{n+1}\leq \max\Big\{\alpha, 1, \frac 1{\alpha^p}\Big\}=\frac 1{\alpha^p},\quad\text{for } n\geq 3.\label{step1} \end{equation} We write the equations in \eqref{main} as follows \begin{equation} \frac{x^{(i)}_{n+1}}{x^{(i+1)}_n}=\max\Big\{\frac \alpha{x^{(i+1)}_n}, \frac1{(x^{(i+1)}_n)^{1-p}(x^{(i+2)}_{n-1})^p}\Big\},\quad n\in\mathbb{N}_0,\label{main2} \end{equation} for $i=1,\ldots,k$. Using \eqref{a7} and \eqref{step1} in \eqref{main2}, and since $p\in(0,1)$, we obtain \begin{equation} \alpha^p\leq \frac{x^{(i)}_{n+1}}{x^{(i+1)}_n}\leq \frac 1{\alpha},\quad\text{for } n\geq 5;\label{maing} \end{equation} for $i=1,\ldots,k$. Using $p,\alpha\in(0,1)$ and \eqref{maing} in \eqref{main}, we obtain \begin{equation} \alpha^{p^2}\leq x^{(i)}_{n+1}\leq \frac 1{\alpha^p},\quad\text{for } n\geq 6;\label{step2}\end{equation} for $i=1,\ldots,k$. From \eqref{a7}, \eqref{main2} and \eqref{step2} it follows that \begin{equation} \alpha^p\leq \frac{x^{(i)}_{n+1}}{x^{(i+1)}_n}\leq \frac 1{\alpha^{p^2}},\quad\text{for } n\geq 8, \label{step31} \end{equation} for $i=1,\ldots,k$. Using \eqref{step31} in \eqref{main} it follows that $$ \alpha^{p^2}\leq x^{(i)}_{n+1}\leq \frac 1{\alpha^{p^3}},\quad\text{for } n\geq 9, $$ for $i=1,\ldots,k$. Assume that for some $m\in\mathbb{N}$ \begin{equation} \alpha^{p^{2m}}\leq \min_{1\le i\le k}x^{(i)}_{n+1}\le \max_{1\le i\le k}x^{(i)}_{n+1}\leq \frac 1{\alpha^{p^{2m+1}}},\label{k1} \end{equation} for $n\geq 6m+3$, and \begin{equation} \alpha^{p^{2m+2}}\leq \min_{1\le i\le k}x^{(i)}_{n+1}\le \max_{1\le i\le k}x^{(i)}_{n+1}\leq \frac 1{\alpha^{p^{2m+1}}},\label{k2} \end{equation} for $n\geq 6m+6$. Then, an induction argument shows that \eqref{k1} and \eqref{k2} hold for every $m\in\mathbb{N}_0$. Letting $m\to\infty$ in \eqref{k1}, \eqref{k2} and using $p\in(0,1)$, we obtain $$ \lim_{n\to\infty}\|(x^{(1)}_n,\ldots,x^{(k)}_n)-(1,\ldots,1)\|_2=0, $$ as desired. \end{proof} \subsection*{Acknowledgements} The work of the second author was supported by the Serbian Ministry of Education and Science, projects III 41025 and OI 171007. \begin{thebibliography}{00} \bibitem{ad} R.~M.~Abu-Saris, R.~DeVault; Global stability of $y_{n+1}=A+(y_n/y_{n-k})$, {\it Appl. Math. Lett.} \textbf{16} (2) (2003), 173-178. \bibitem{bs1} K.~S.~Berenhaut, J.~D.~Foley, S. Stevi\'c; Quantitative bound for the recursive sequence $y_{n+1}=A+(y_n/y_{n-k})$, {\it Appl. Math. Lett.} \textbf{19} (9) (2006), 983-989. \bibitem{bs2} K.~Berenhaut, J.~Foley, S.~Stevi\' c; The global attractivity of the rational difference equation $y_n=1+(y_{n-k}/y_{n-m})$, {\it Proc. Amer. Math. Soc.} \textbf{135} (2007), 1133-1140. \bibitem{ijcm1} K.~Berenhaut, J.~Foley, S.~Stevi\' c; Boundedness character of positive solutions of the difference equation $y_n=A+(y_{n-k}/y_{n-m})$, {\it Int. J. Comput. Math.} \textbf{87} (7) (2010), 1431-1435. \bibitem{bs0} K.~S.~Berenhaut, S.~Stevi\'c; A note on the difference equation $x_{n+1}=1/(x_nx_{n-1})+1/(x_{n-3}x_{n-4})$, {\it J. Differ. Equations Appl.} \textbf{11} (14) (2005), 1225-1228. \bibitem{jdea129} K.~Berenhaut, S.~Stevi\' c; The behaviour of the positive solutions of the difference equation $x_n=A+(x_{n-2}/x_{n-1})^p$, {\it J. Differ. Equations Appl.} \textbf{12} (9) (2006), 909-918. \bibitem{jdea128} L.~Berg, S.~Stevi\' c; Periodicity of some classes of holomorphic difference equations, {\it J. Difference Equ. Appl.} \textbf{12} (8) (2006), 827-835. \bibitem{amc218-sde} L.~Berg, S.~Stevi\' c; On some systems of difference equations, {\it Appl. Math. Comput.} \textbf{218} (2011), 1713-1718. \bibitem{bs-jdea09} L.~Berg, S.~Stevi\' c; On the asymptotics of the difference equation $y_n(1+y_{n-1}\cdots y_{n-k+1})=y_{n-k}$, {\it J. Differ. Equations Appl.} \textbf{17} (4) (2011), 577-586. \bibitem{bc} F.~Brauer, C.~Castillo-Chavez; {\it Mathematical Models in Population Biology and Epidemiology}, Springer, 2012. \bibitem{dkk} R.~DeVault, C.~Kent, W.~Kosmala; On the recursive sequence $x_{n+1}=p+(x_{n-k}/x_n)$, {\it J. Differ. Equations Appl.} \textbf{9} (8) (2003), 721-730. \bibitem{fp} N.~Fotiades, G.~Papaschinopoulos; Existence, uniqueness and attractivity of prime period two solution for a difference equation of exponential form, {\it Appl. Math. Comput.} \textbf{218} (2012), 11648-11653. \bibitem{gr} M.~Ghergu, V.~R\u{a}dulescu; {\it Nonlinear PDEs. Mathematical Models in Biology, Chemistry and Population Genetics,} Springer Monographs in Mathematics, Springer, Heidelberg, 2012. \bibitem{gl} E.~A.~Grove, G.~Ladas; Periodicities in Nonlinear Difference Equations, Chapman \& Hall, CRC Press, Boca Raton, 2005. \bibitem{ddnsgut} L.~Gutnik, S.~Stevi\' c; On the behaviour of the solutions of a second order difference equation {\it Discrete Dyn. Nat. Soc.} Vol. 2007, Article ID 27562, (2007), 14 pages. \bibitem{i-aaa2010} B.~Iri\v canin; On a higher-order nonlinear difference equation, {\it Abstr. Appl. Anal.} Vol. 2010, Article ID 418273, (2010), 8 pages. \bibitem{i-amc2010} B.~Iri\v canin; The boundedness character of two Stevi\'c-type fourth-order difference equations, {\it Appl. Math. Comput.} \textbf{217} (5) (2010), 1857-1862. \bibitem{dcdis4} B.~Iri\v canin, S.~Stevi\' c; Some systems of nonlinear difference equations of higher order with periodic solutions, {\it Dynam. Contin. Discrete Impuls. Systems} \textbf{13 a} (3-4) (2006), 499-508. \bibitem{amc215-854} B.~Iri\v{c}anin, S.~Stevi\' c; Eventually constant solutions of a rational difference equation, {\it Appl. Math. Comput.} \textbf{215} (2009), 854-856. \bibitem{amc213} B.~Iri\v canin, S.~Stevi\' c; On a class of third-order nonlinear difference equations, {\it Appl. Math. Comput.} \textbf{213} (2009), 479-483. \bibitem{k} G.~Karakostas; Asymptotic behavior of the solutions of the difference equation $x_{n+1}=x_n^2f(x_{n-1})$, {\it J. Differ. Equations Appl.} \textbf{9} (6) (2003), 599-602. \bibitem{kk} C.~M.~Kent, W.~Kosmala; On the nature of solutions of the difference equation $x_{n+1}=x_nx_{n-3}-1$, {\it Int. J. Nonlinear Anal. Appl.} \textbf{2} (2) (2011), 24-43. \bibitem{p3} G.~Papaschinopoulos, N.~Psarros, K.~B.~Papadopoulos; On a system of $m$ difference equations having exponential terms, {\it Electron. J. Qual. Theory Differ. Equ.} Vol. 2015, Article no. 5, (2015), 13 pages. \bibitem{prs} G.~Papaschinopoulos, M.~Radin, C.~J.~Schinas; Study of the asymptotic behavior of the solutions of three systems of difference equations of exponential form, {\it Appl. Math. Comput.} \textbf{218} (2012), 5310-5318. \bibitem{ps1} G.~Papaschinopoulos, C.~J.~Schinas; On a system of two nonlinear difference equations, {\it J. Math. Anal. Appl.} \textbf{219} (2) (1998), 415-426. \bibitem{ps2} G.~Papaschinopoulos and C.~J.~Schinas; On the behavior of the solutions of a system of two nonlinear difference equations, {\it Comm. Appl. Nonlinear Anal.} \textbf{5} (2) (1998), 47-59. \bibitem{ps3} G.~Papaschinopoulos, C.~J.~Schinas; Invariants for systems of two nonlinear difference equations, {\it Differential Equations Dynam. Systems} \textbf{7} (2) (1999), 181-196. \bibitem{ps4} G.~Papaschinopoulos, C.~J.~Schinas; Invariants and oscillation for systems of two nonlinear difference equations, {\it Nonlinear Anal. TMA} \textbf{46} (7) (2001), 967-978. \bibitem{ps-jdea2011} G.~Papaschinopoulos, C.~J.~Schinas; Oscillation and asymptotic stability of two systems of difference equations of rational form, {\it J. Difference Equat. Appl.} \textbf{7} (2001), 601-617. \bibitem{pss} G.~Papaschinopoulos, C.~J.~Schinas, G.~Stefanidou; On the nonautonomous difference equation $x_{n+1}=A_n+(x_{n-1}^p/x_n^q)$, {\it Appl. Math. Comput.} \textbf{217} (2011), 5573-5580. \bibitem{rr1} V.~R\u{a}dulescu, D.~Repov\v s; {\it Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis,} CRC Press, Taylor and Francis Group, Boca Raton FL, 2015. \bibitem{ps-cana} G. Stefanidou, G. Papaschinopoulos, C. J. Schinas; On a system of two exponential type difference equations, {\it Commun. Appl. Nonlinear Anal.} \textbf{17} (2) (2010), 1-13. \bibitem{ijpam1} S.~Stevi\'c; A global convergence results with applications to periodic solutions, {\it Indian J. Pure Appl. Math.} \textbf{33} (1) (2002), 45-53. \bibitem{ijpam3} S.~Stevi\'c; Asymptotic behaviour of a nonlinear difference equation, {\it Indian J. Pure Appl. Math.} \textbf{34} (12) (2003), 1681-1687. \bibitem{dcdis1} S.~Stevi\'c; On the recursive sequence $x_{n+1}=\alpha_n+(x_{n-1}/x_n)$ II, {\it Dynam. Contin. Discrete Impuls. Systems} \textbf{10a} (6) (2003), 911-917. \bibitem{tjm2} S.~Stevi\'c; On the recursive sequence $x_{n+1}=A/{\prod_{i=0}^k x_{n-i}} +1/{\prod_{j=k+2}^{2(k+1)}x_{n-j}}$, {\it Taiwanese J. Math.} \textbf{7} (2) (2003), 249-259. \bibitem{jdea1010} S.~Stevi\' c; A note on periodic character of a difference equation, {\it J. Differ. Equations Appl.} \textbf{10} (10) (2004), 929-932. \bibitem{jamc1} S.~Stevi\' c; On the recursive sequence $x_{n+1}=\alpha+(x_{n-1}^p/x_n^p)$, {\it J. Appl. Math. \& Computing} \textbf{18} (1-2) (2005), 229-234. \bibitem{37264} S.~Stevi\'c; A short proof of the Cushing-Henson conjecture, {\it Discrete Dyn. Nat. Soc.} Vol. 2006, Article ID 37264, (2006), 5 pages. \bibitem{53890} S.~Stevi\'c; On monotone solutions of some classes of difference equations, {\it Discrete Dyn. Nat. Soc.} Vol. 2006, Article ID 53890, (2006), 9 pages. \bibitem{40963} S.~Stevi\'c; On the recursive sequence $x_{n+1}=A+(x_n^p/x_{n-1}^r)$, {\it Discrete Dyn. Nat. Soc.} Vol. 2007, Article ID 40963, (2007), 9 pages. \bibitem{cma1} S.~Stevi\'c; On the difference equation $x_{n+1}=\alpha+(x_{n-1}/x_n)$, {\it Comput. Math. Appl.} \textbf{56} (5) (2008), 1159-1171. \bibitem{aml6} S.~Stevi\'c; On the recursive sequence $ x_{n+1}=\max\{c, {x^p_n}/{x_{n-1}^p}\}$, \textit{Appl. Math. Lett.} \textbf{21} (8) (2008), 791-796. \bibitem{na2009} S.~Stevi\'c; Boundedness character of a class of difference equations, {\it Nonlinear Anal. TMA} \textbf{70} (2009), 839-848. \bibitem{csf3} S.~Stevi\'c; On a class of higher-order difference equations, {\it Chaos Solitons Fractals} \textbf{42} (2009), 138-145. \bibitem{amc216-max} S.~Stevi\'c; Global stability of a max-type difference equation, {\it Appl. Math. Comput.} \textbf{216} (2010), 354-356. \bibitem{na4} S.~Stevi\' c; On a generalized max-type difference equation from automatic control theory, {\it Nonlinear Anal. TMA} \textbf{72} (2010), 1841-1849. \bibitem{um83-2} S.~Stevi\'c; Periodicity of max difference equations, {\it Util. Math.} \textbf{83} (2010), 69-71. \bibitem{jmaa376} S.~Stevi\'c; On a nonlinear generalized max-type difference equation, {\it J. Math. Anal. Appl.} \textbf{376} (2011), 317-328. \bibitem{amc218-sys1} S.~Stevi\'c; On a system of difference equations, {\it Appl. Math. Comput.} \textbf{218} (2011), 3372-3378. \bibitem{amc217-max} S.~Stevi\'c; Periodicity of a class of nonautonomous max-type difference equations, {\it Appl. Math. Comput.} \textbf{217} (2011), 9562-9566. \bibitem{amc-thos} S.~Stevi\'c; On a third-order system of difference equations, {\it Appl. Math. Comput.} \textbf{218} (2012), 7649-7654. \bibitem{amc-maxpsde} S.~Stevi\'c; On some periodic systems of max-type difference equations, {\it Appl. Math. Comput.} \textbf{218} (2012), 11483-11487. \bibitem{amc-218solsys} S.~Stevi\'c; On some solvable systems of difference equations, {\it Appl. Math. Comput.} \textbf{218} (2012), 5010-5018. \bibitem{amc-mtsde} S.~Stevi\'c; Solutions of a max-type system of difference equations, {\it Appl. Math. Comput.} \textbf{218} (2012), 9825-9830. \bibitem{amc219-ssmtde} S.~Stevi\'c; On a symmetric system of max-type difference equations, {\it Appl. Math. Comput.} \textbf{219} (2013) 8407-8412. \bibitem{jdea205} S.~Stevi\'c; On a cyclic system of difference equations, {\it J. Difference Equ. Appl.} \textbf{20} (5-6) (2014), 733-743. \bibitem{ejqtde-fib} S.~Stevi\'c; Representation of solutions of bilinear difference equations in terms of generalized Fibonacci sequences, {\it Electron. J. Qual. Theory Differ. Equ.} Vol. 2014, Article no. 67, (2014), 15 pages. \bibitem{ana-2015} S.~Stevi\'c; Solvable subclasses of a class of nonlinear second-order difference equations, {\it Adv. Nonlinear Anal.} (2015) (in press), DOI: 10.1515/anona-2015-0077. \bibitem{ejqtde1} S.~Stevi\' c, M.~A.~Alghamdi, A.~Alotaibi, N.~Shahzad; On a higher-order system of difference equations, {\it Electron. J. Qual. Theory Differ. Equ.} Vol. 2013, Atr. No. 47, (2013), 18 pages. \bibitem{amc219-nsosde} S.~Stevi\'c, M.~A.~Alghamdi, A.~Alotaibi, N.~Shahzad; On a nonlinear second order system of difference equations, {\it Appl. Math. Comput.} \textbf{219} (2013), 11388-11394. \bibitem{ejqtde-maxsde} S.~Stevi\'c, M.~A.~Alghamdi, A.~Alotaibi, N.~Shahzad; Boundedness character of a max-type system of difference equations of second order, {\it Electron. J. Qual. Theory Differ. Equ.} Vol. 2014, Article No. 45, (2014), 12 pages. \bibitem{amc235-psmtdce} S.~Stevi\'c, M.~A.~Alghamdi, A.~Alotaibi, N.~Shahzad; Long-term behavior of positive solutions of a system of max-type difference equations, {\it Appl. Math. Comput.} \textbf{235C} (2014), 567-574. \bibitem{ejde1} S.~Stevi\'c, J.~Diblik, B.~Iri\v canin, Z.~\v Smarda; Solvability of nonlinear difference equations of fourth order, {\it Electron. J. Differential Equations} Vol. 2014, Article No. 264, (2014), 14 pages. \bibitem{sx} T.~Sun, H.~Xi, C.~Hong; On boundedness of the difference equation $x_{n+1}=p_n+(x_{n-3s+1}/x_{n-s+1})$ with period-$k$ coefficients, {\it Appl. Math. Comput} \textbf{217} (2011), 5994-5997. \bibitem{yl} X.~Yang, X.~Liao; On a difference equation with maximum, \textit{Appl. Math. Comput.} \textbf{181} (2006), 1-5. \end{thebibliography} \end{document}