\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2015 (2015), No. 238, pp. 1--14.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2015 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2015/238\hfil Fourth-order discrete anisotropic BVPs] {Fourth-order discrete anisotropic boundary-value problems} \author[M. Leszczy\'nski \hfil EJDE-2015/238\hfilneg] {Maciej Leszczy\'nski} \address{Maciej Leszczy\'nski\newline Institute of Mathematics, Technical University of Lodz, Wolczanska 215, 90-924 Lodz, Poland} \email{165708@edu.p.lodz.pl} \thanks{Submitted May 15, 2015. Published September 17, 2015.} \subjclass[2010]{39A10} \keywords{Discrete boundary value problem; critical point theory; \hfill\break\indent discrete p-n-Laplacian; fourth-order} \begin{abstract} In this article we consider the fourth-order discrete anisotropic boundary value problem with both advance and retardation. We apply the direct method of the calculus of variations and the mountain pass technique to prove the existence of at least one and at least two solutions. Non-existence of non-trivial solutions is also undertaken. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{example}[theorem]{Example} \allowdisplaybreaks \section{Introduction} Below $\mathbb{N}$, $\mathbb{Z}$ and $\mathbb{R}$ denote the sets of all natural numbers, integers and real numbers respectively. Let $k$ denote a natural number. Let $a,b \in\mathbb{Z}$; we define $\mathbb{Z}(a) = \{a,a+1,\dots\}$, and when $a0$ such that $J|_{\partial B_{\rho}}\geq a$, and \item[(J2)] there exists $e\in E \backslash B_{\rho} $ such that $J(e) \leq 0$. \end{itemize} Then, $J$ possesses a critical value $c\geq a$ given by \[ c= \inf_{g\in \Gamma} \max_{s\in [0,1]} J(g(s)), \] where $\Gamma = \{g\in C([0,1],E); g(0)=0 \text{ and } g(1)=e \}$. \end{lemma} \section{Auxiliary results} In this article we use following inequalities (A1) For every $u \in X $ and for every $m\geq 1 $ we have \[ \sum_{n=1}^{k} |\Delta^2 u_n|^m \leq k\|u\|^m . \] \begin{proof} Of course we have \begin{equation*} |\Delta ^2u_{n}|^2\leq \sum_{i=1}^{k}|\Delta ^2u_{i}|^2,\quad \text{ for every }n\in \mathbb{Z}(1,k), \end{equation*} hence we have \begin{equation*} |\Delta ^2u_{n}|^m\leq ((\sum_{i=1}^{k}|\Delta ^2u_{i}|^2)^{1/2})^m, \quad \text{for every }n\in \mathbb{Z}(1,k), \end{equation*} Summing left hand side of the inequality from 1 to k we obtain \begin{equation*} \sum_{n=1}^{k}|\Delta ^2u_{n}|^m\leq k\Big(\Big(\sum_{n=1}^{k}|\Delta ^2u_{i}|^2\Big)^{1/2}\Big)^m. \end{equation*} which leads us to \begin{equation*} \sum_{n=1}^{k}|\Delta ^2u_{n}|^m\leq k\| u\| ^m, \end{equation*} \end{proof} (A2) For every $u \in X $ and every $m> 2 $ we have \[ \sum_{n=1}^{k} |\Delta^2 u_n|^m \geq k^{\frac{2}{m-2}}\|u\|^m . \] \begin{proof} Using H\"older inequality for $m>2$ we obtain \begin{equation*} \sum_{n=1}^{k}|\Delta ^2u_{n}|^2 \leq \Big(\sum_{n=1}^{k}1^{\frac{m}{m-2}}\Big)^{\frac{m-2}{m}} \Big(\sum_{n=1}^{k}(|\Delta ^2u_{n}|^2)^{m/2}\Big)^{2/m} =k^{\frac{m-2}{m}}\sum_{n=1}^{k}(|\Delta ^2u_{n}|^m)^{2/m}. \end{equation*} Calculating further we obtain \begin{equation*} \| u\| =\Big(\sum_{n=1}^{k}|\Delta ^2u_{n}|^2\Big)^{1/2} \leq k^{\frac{m-2}{2m}}\sum_{n=1}^{k}(|\Delta ^2u_{n}|^m)^{1/m}. \end{equation*} Thus, we see the thesis \begin{equation*} \| u\| ^m\leq k^{\frac{m-2}{2}}\sum_{n=1}^{k}|\Delta ^2u_{n}|^m\Leftrightarrow k^{\frac{2}{m-2}}\| u\| ^m\leq \sum_{n=1}^{k}|\Delta ^2u_{n}|^m. \end{equation*} \end{proof} (A3) For every $u\in X$ such that $\| u\| \geq 1$ we have \[ \sum_{n=1}^{k}|\Delta ^2u_{n}|^{p_{n}}\geq k^{\frac{2}{\underline{p}-2} }\| u\| ^{\underline{p}}-k. \] \begin{proof} Let $u\in X$ be such that $\| u\| \geq 1$. We obtain \begin{align*} &\sum_{n=1}^{k}|\Delta ^2u_{n}|^{p_{n}}\\ &=\sum_{\{k\in \mathbb{Z}(1,k);|\Delta ^2u_{k}|\leq 1\}}|\Delta ^2u_{n}|^{p_{n}} +\sum_{\{k\in \mathbb{Z}(1,k);|\Delta ^2u_{k}|>1\}}|\Delta ^2u_{n}|^{p_{n}}\\ &\geq \sum_{\{k\in \mathbb{Z}(1,k);|\Delta ^2u_{k}|\leq 1\}}|\Delta ^2u_{n}|^{\overline{p}}+\sum_{\{k\in \mathbb{Z}(1,k);|\Delta ^2u_{k}|>1\}}|\Delta ^2u_{n}|^{\underline{p}}\\ &=\sum_{n=1}^{k}|\Delta ^2u_{n}|^{\underline{p}}-\sum_{\{k\in \mathbb{Z} (1,k);|\Delta ^2u_{k}|\leq 1\}}|\Delta ^2u_{n}|^{\underline{p} }+\sum_{\{k\in \mathbb{Z}(1,k);|\Delta ^2u_{k}|\leq 1\}}|\Delta ^2u_{n}|^{\overline{p}}\\ &\geq \sum_{n=1}^{k}|\Delta ^2u_{n}|^{\underline{p}}-\sum_{n=1}^{k}1\\ &= \sum_{n=1}^{k}|\Delta ^2u_{n}|^{\underline{p}}-k. \end{align*} Now we can use (A2) with $m:=\underline{p}$ to get \begin{equation*} \sum_{n=1}^{k}|\Delta ^2u_{n}|^{\underline{p}}-k\geq k^{\frac{2}{ \underline{p}-2}}\| u\| ^{\underline{p}}-k, \end{equation*} which is our assertion. \end{proof} (A4) For every $u\in X$ we have \[ \sum_{n=1}^{k}|\Delta ^2u_{n}|^{p_{n}}\leq k\| u\| ^{\overline{p}}+k. \] \begin{proof} Let us decompose \begin{align*} &\sum_{n=1}^{k}|\Delta ^2u_{n}|^{p_{n}}\\ &=\sum_{\{k\in \mathbb{Z}(1,k);|\Delta ^2u_{k}|\leq 1\}}|\Delta ^2u_{n}|^{p_{n}} +\sum_{\{k\in \mathbb{Z}(1,k);|\Delta ^2u_{k}|>1\}}|\Delta ^2u_{n}|^{p_{n}}\\ &\leq \sum_{\{k\in \mathbb{Z}(1,k);|\Delta ^2u_{k}|\leq 1\}}|\Delta ^2u_{n}|^{\underline{p}}+\sum_{\{k\in \mathbb{Z}(1,k);|\Delta ^2u_{k}|>1\}}|\Delta ^2u_{n}|^{\overline{p}}\\ &=\sum_{n=1}^{k}|\Delta ^2u_{n}|^{\overline{p}}+\sum_{\{k\in \mathbb{Z} (1,k);|\Delta ^2u_{k}|\leq 1\}}|\Delta ^2u_{n}|^{\underline{p} }-\sum_{\{k\in \mathbb{Z}(1,k);|\Delta ^2u_{k}|\leq 1\}}|\Delta ^2u_{n}|^{\overline{p}}\\ &\leq \sum_{n=1}^{k}|\Delta ^2u_{n}|^{\overline{p}}+\sum_{n=1}^{k}1\\ &=\sum_{n=1}^{k}|\Delta ^2u_{n}|^{\overline{p}}+k. \end{align*} Now, using (A1) we have \begin{equation*} \sum_{n=1}^{k}|\Delta ^2u_{n}|^{\overline{p}}+k\leq k\| u\| ^{\overline{p}}+k. \end{equation*} \end{proof} (A5) For every $u\in X$ such that $\| u\| \leq 1$ we have \[ \sum_{n=1}^{k}|\Delta ^2u_{n}|^{p_{n}}\geq k^{-\frac{\overline{p}-2}{2} }\| u\| ^{\overline{p}}. \] In this section we have used some ideas from \cite{GalewskiWieteska}. \section{Existence of solutions} This section gives theorems with sufficient conditions for the existence of at least one solution to \eqref{ROW}-\eqref{eq:warunki_brzegowe}. \begin{theorem} \label{thm3} Assume that the following hypothesis are satisfied \begin{itemize} \item[(F0)] for any $n\in \mathbb{Z}(0,k+1)$, $\gamma_n <0$; \item[(F1)] there exists a functional $F \in C^1 (\mathbb{Z} \times \mathbb{R}^2 ,\mathbb{R})$, such that \[ F_x(n-1,v_2,v_3)+ F_y(n,v_1,v_2)=f(n,v_1,v_2,v_{3}); \] \item[(F2)] There exists $M_{0}>0$ such that, for all $ (n,v_1,v_2)\in \mathbb{Z}(1,k)\times \mathbb{R}^2$ \[ F_x(n,v_1,v_2)\leq M_{0},F_y(n,v_1,v_2)\leq M_{0}. \] Then \eqref{ROW}-\eqref{eq:warunki_brzegowe} possesses at least one solution. \end{itemize} \end{theorem} \begin{remark} \rm Assumption (F2) implies that there exists a constant $M_1$ such that \begin{itemize} \item[(F2')] $ |F(n,v_1,v_2)|\leq M_1+M_{0}(|v_1|+|v_2|)$ for all $(n,v_1,v_2)\in \mathbb{Z}(1,k)\times \mathbb{R}^2$. \end{itemize} Let us define a function $H:[0,1]\to \mathbb{R}$, $H(t)=F(n,tv_1,tv_2)$. Then $H$ is differentiable, and \[ H'(t)=F_x(n,tv_1,tv_2)v_1+F_y(n,tv_1,tv_2)v_2. \] Using the mean value theorem on $[0,1]$ we obtain \begin{align*} F(n,v_1,v_2)-F(n,0,0) &=H(1)-H(0)=H'(\theta )(1-0) \\ &=F_x(n,\theta v_1,\theta v_2)v_1+F_y(n,\theta v_1,\theta v_2)v_2 \end{align*} for some $\theta \in [ 0,1]$. Now, using assumption (F2) we obtain \begin{align*} |F(n,v_1,v_2)-F(n,0,0)| &=|F_x(n,\theta v_1,\theta v_2)v_1+F_y(n,\theta v_1,\theta v_2)v_2|\\ &\leq |F_x(n,\theta v_1,\theta v_2) ||v_1|+|F_y(n,\theta v_1,\theta v_2) ||v_2|\\ &\leq M_{0}|v_1|+M_{0}|v_2|. \end{align*} On the other hand, using a well know inequality for absolute value we obtain \[ |F(n,v_1,v_2)-F(n,0,0)|\geq ||F(n,v_1,v_2)|-|F(n,0,0)||, \] and combining both inequalities we produce the following statement \[ ||F(n,v_1,v_2)|-|F(n,0,0)||\leq M_{0}|v_1|+M_{0}|v_2|. \] By the definition of the absolute value, it is equivalent to \[ -M_{0}(|v_1|+|v_2|)\leq |F(n,v_1,v_2)|-|F(n,0,0)|\leq M_{0}|v_1|+M_{0}|v_2|, \] which leads us to thesis substituting $M_1:=\max_{n\in \mathbb{Z}(1,k)}\{|F(n,0,0)|\}$. \end{remark} \begin{proof}[Proof of Theorem \ref{thm3}] By (F2'), for any $u\in \mathbb{R}^{k}$, we have \begin{align*} J(u) &=\sum_{n=1}^{k}\frac{\gamma _{n+1}}{p_{n}}|\Delta ^2u_{n}|^{p_{n}} -\sum_{n=1}^{k}F(n,u_{n+1},u_{n})\\ &\leq \frac{\overline{\gamma }}{\overline{p}} \sum_{n=1}^{k}|\Delta ^2u_{n}|^{p_{n}} -\sum_{n=1}^{k}F(n,u_{n+1},u_{n})\\ &\leq \frac{\overline{\gamma }}{\overline{p}} \sum_{n=1}^{k}|\Delta^2u_{n}|^{p_{n}}+M_{0}\sum_{n=1}^{k}(|u_{n+1}|+|u_{n}|)+M_1k\\ & \leq \frac{\overline{\gamma }}{\overline{p}} \sum_{n=1}^{k}|\Delta ^2u_{n}|^{p_{n}}+2M_{0}\sum_{n=1}^{k}|u_{n}|+M_1k. \end{align*} Now, using (A3) we obtain \begin{align*} &\frac{\overline{\gamma }}{\overline{p}}\sum_{n=1}^{k}|\Delta ^2u_{n}|^{p_{n}}+2M_{0}\sum_{n=1}^{k}|u_{n}|+M_1k\\ &\leq \frac{\overline{\gamma }}{\overline{p}}(k^{\frac{2}{\underline{p}-2}} \| u\| ^{\underline{p}}-k)+2M_{0}\sum_{n=1}^{k}|u_{n}|+M_1k\\ &\leq \frac{\overline{\gamma }}{\overline{p}}k^{\frac{2}{\underline{p}-2}} \| u\| ^{\underline{p}}-\frac{\overline{\gamma }}{\overline{p}}k +2M_{0}c_{2,1}\| u\| +M_1k\to -\infty \quad\text{as }\| u\| \to +\infty . \end{align*} Above inequality means that $J$ is anti coercive. With continuity of $J$, it attains its maximum at some point. From necessity condition of extremal point of differentiable functional, we acquire that $u_{0}:=\max \{J(u):u\in X\}$ is a critical point of $J$. This finishes the proof. \end{proof} \begin{theorem} \label{thm5} Suppose that {\rm (F1)} and the following hypothesis are satisfied \begin{itemize} \item[(F0')] For every $n\in \mathbb{Z}(1,k+1), \gamma_n > 0 $; \item[(F3)] There exist $R>0$, $1<\alpha <2 $ and constants $a_1,a_2 >0$ such that for $n\in \mathbb{Z}(1,k)$ and $\sqrt{(v_1^2 + v_2^2)} \geq R$; \[ F(n,v_1,v_2) \leq a_1 (\sqrt{v_1^2 + v_2^2})^{\frac{\alpha}{2}\underline{p}} -a_2\,. \] \end{itemize} Then \eqref{ROW}-\eqref{eq:warunki_brzegowe} possesses at least one solution. \end{theorem} \begin{proof} By (F3) for any $u\in \mathbb{R}^{k}$, we have \begin{align*} J(u)&=\sum_{n=1}^{k}\frac{\gamma _{n+1}}{p_{n}}|\Delta ^2u_{n}|^{p_n}-\sum_{n=1}^{k}F(n,u_{n+1},u_{n})\\ &\geq \frac{\underline{\gamma }}{\overline{p}}\sum_{n=1}^{k}|\Delta ^2u_{n}|^{p_{n}}-\sum_{n=1}^{k}F(n,u_{n+1},u_{n})\\ &\geq \frac{\underline{\gamma }}{\overline{p}}\sum_{n=1}^{k}|\Delta ^2u_{n}|^{p_{n}}-a_1\sum_{n=1}^{k}(\sqrt{u_{n+1}^2+u_{n}^2})^{\frac{ \alpha }{2}\underline{p}}-a_2k\\ &\geq \frac{\underline{\gamma }}{\overline{p}}\sum_{n=1}^{k}|\Delta ^2u_{n}|^{p_{n}}-a_1\sum_{n=1}^{k}(\sqrt{\sum_{i=1}^k u_{i}^2})^{ \frac{\alpha }{2}\underline{p}}-a_2k\\ &\geq \frac{\underline{\gamma }}{\overline{p}}\sum_{n=1}^{k}|\Delta ^2u_{n}|^{p_{n}}-a_1 \sum_{n=1}^{k}\| u\|_2^{\frac{\alpha }{2}\underline{p}}-a_2k\\ &\geq \frac{\underline{\gamma }}{\overline{p}}\sum_{n=1}^{k}|\Delta ^2u_{n}|^{p_{n}}-a_1k\| u\|_2^{\frac{\alpha }{2}\underline{p}}-a_2k. \end{align*} Again we will use (A3). Indeed, we have \begin{align*} &\frac{\underline{\gamma }}{\overline{p}}\sum_{n=1}^{k}|\Delta ^2u_{n}|^{p_{n}}-a_1k\| u\|_2^{\alpha \underline{p}/2}-a_2k\\ &\geq \frac{\underline{\gamma }}{\overline{p}}(k^{\frac{2}{\underline{p}-2}} \| u\| ^{\underline{p}}-k)-a_1k\| u\|_2^{\frac{\alpha }{2}\underline{p}}-a_2k\\ &\geq \frac{\underline{\gamma }}{\overline{p}}k^{\frac{2}{\underline{p}-2} }\| u\| ^{\underline{p}}-\frac{\underline{\gamma }}{\overline{p}} k-a_1k\| u\|_2^{\frac{\alpha }{2}\underline{p}}-a_2k\to +\infty \quad \text{as }\| u\| \to +\infty . \end{align*} This inequality implies that $J$ is coercive, and using similar reasoning, we acquire that \eqref{ROW}-\eqref{eq:warunki_brzegowe} possesses at least one solution. \end{proof} \section{Existence and multiplicity of solutions} This section will give sufficient conditions to existing at least two solutions to \eqref{ROW}-\eqref{eq:warunki_brzegowe}. \begin{theorem} \label{thm6} Suppose {\rm (F0'), (F1)} and the following conditions are satisfied: \begin{itemize} \item[(F4)] Functional $F$ satisfies \[ \lim_{r\to 0} \frac{F(n,v_1,v_2)}{r^{\overline{p}}} = 0, \quad r=\sqrt{v_1^2+v_2^2}; \] \item[(F5)] There exist $\beta > \overline{p}$ and $a_3>0$ such that for $n\in \mathbb{Z}(1,k)$ and $\sqrt{(v_1^2 + v_2^2)} \geq R$ \[ F(n,v_1,v_2) > a_3(\sqrt{v_1^2 + v_2^2})^{\beta}. \] \end{itemize} Then \eqref{ROW}-\eqref{eq:warunki_brzegowe} possesses at least two nontrivial solutions. \end{theorem} \begin{proof} To show that our functional satisfies the P.S. condition we use that any anti-coercive functional $ T:X \to \mathbb{R}$, where $\dim{X} < \infty $, satisfies the P.S. condition. By (F5) we have \begin{align*} J(u)&=\sum_{n=1}^{k}\frac{\gamma _{n+1}}{p_{n}}|\Delta ^2u_{n}|^{p_{n}}-\sum_{n=1}^{k}F(n,u_{n+1},u_{n})\\ &\leq \sum_{n=1}^{k}\frac{\gamma _{n+1}}{p_{n}}|\Delta ^2u_{n}|^{p_{n}}-\sum_{n=1}^{k}a_{3}(\sqrt{u_{n+1}^2+u_{n}^2})^{\beta}. \end{align*} Now, using (A2) and (A3) we have \begin{align*} &\sum_{n=1}^{k}\frac{\gamma _{n+1}}{p_{n}}|\Delta ^2u_{n}|^{p_{n}}-\sum_{n=1}^{k}a_{3}(\sqrt{u_{n+1}^2+u_{n}^2})^{\beta}\\ &\leq \frac{\overline{\gamma }}{\underline{p}}k\| u\| ^{\overline{p}} +\frac{\overline{\gamma }}{\underline{p}}k-a_3 \Big(\sum_{n=1}^{k}\sqrt{u_{n}^2}\Big)^{\beta }\\ &=\frac{\overline{\gamma }}{\underline{p}}k\| u\| ^{\overline{p}} +\frac{\overline{\gamma }}{\underline{p}}k-a_3\| u\| _1^{\beta }\\ &\leq \frac{\overline{\gamma }}{\underline{p}}k\| u\| ^{\overline{p}} +\frac{\overline{\gamma }}{\underline{p}}k-a_3 c_{2,1}^{\beta } \| u\| ^{\beta } \to -\infty \quad \text{as } \| u \| \to \infty, \end{align*} We proved that $J$ is anti coercive, thus, the P.S. condition is verified. Now, we have to show that other conditions of Mountain Pass Lemma are satisfied. By (F4), for any \[ \epsilon =k^{-\frac{\overline{p}-4}{2}} \frac{\underline{\gamma }}{2\overline{p}(c_{2,2})^{\overline{p}}}, \] there exists $\rho >0$ such that \begin{equation*} |F(n,v_1,v_2)|\leq \epsilon (v_1+v_2)^{\overline{p}/2}\quad \forall _{n\in \mathbb{Z}(1,k)} \end{equation*} for $\sqrt{v_1^2+v_2^2}\leq 2\sqrt{\rho }$. Then \begin{align*} J(u) &=\sum_{n=1}^{k}\frac{\gamma _{n+1}}{p_{n}}|\Delta ^2u_{n}|^{p_n}-\sum_{n=1}^{k}F(n,u_{n+1},u_{n})\\ &\geq \frac{\underline{\gamma }}{\overline{p}} \sum_{n=1}^{k}|\Delta ^2u_{n}|^{p_n}-\epsilon \sum_{n=1}^{k}(u_{n+1}^2+u_{n}^2)^{\overline{p}/2}. \end{align*} Now, using (A5), we can estimate \begin{align*} &\frac{\underline{\gamma }}{\overline{p}}\sum_{n=1}^{k}|\Delta ^2u_{n}|^{p_{n}}-\epsilon \sum_{n=1}^{k} (u_{n+1}^2+u_{n}^2)^{\overline{p}/2}\\ &\geq \frac{\underline{\gamma }}{\overline{p}} k^{-\frac{\overline{p}-2}{2}}\| u\| ^{\overline{p}} -\epsilon \sum_{n=1}^{k}(\sqrt{\sum_{i=1}^k u_{i}^2})^{\overline{p}}\\\ &\geq \frac{\underline{\gamma }}{\overline{p}}k^{-\frac{\overline{p}-2}{2}} \| u\| ^{\overline{p}}-\epsilon \sum_{n=1}^{k}\| u\|_2^{\overline{p}}\\ &\geq \frac{\underline{\gamma }}{\overline{p}} k^{-\frac{\overline{p}-2}{2}}\| u\| ^{\overline{p}} -\epsilon k\| u\| _2^{\overline{p}}\\ &\geq \frac{\underline{\gamma }}{\overline{p}}k^{-\frac{\overline{p}-2}{2}} \| u\| ^{\overline{p}}-\epsilon kc_{2,2}^{\overline{p}}\| u\|^{\overline{p}}\\ &=\frac{\underline{\gamma }}{\overline{p}}k^{-\frac{\overline{p}-2}{2}} \| u\| ^{\overline{p}}-k^{-\frac{\overline{p}-2}{2}} \frac{\underline{\gamma }}{2\overline{p}(c_{2,2})^{\overline{p}}}(c_{2,2} )^{\overline{p}}\| u\| ^{\overline{p}}\\ &=\frac{\underline{\gamma }}{2\overline{p}}k^{-\frac{\overline{p}-2}{2}}\| u\| ^{\overline{p}} \end{align*} Take $a=\frac{\underline{\gamma }}{2\overline{p}}k^{-\frac{\overline{p}-2}{2}} \rho ^{\overline{p}}>0$. Therefore \begin{equation*} J(u)\geq a>0\quad \forall _{u\in \partial B}. \end{equation*} At the same time, we have also proved that there exist constants $a>0$ and $ \rho >0$ such that $J|_{\partial B}\geq a$. That is to say, J satisfies (J1) of the Mountain Pass Lemma. For our setting, $J(0)=0$. To exploit the Mountain Pass Lemma in critical point theory, we need to verify other conditions of the lemma. We have shown that J satisfies the P.S. condition. So, it suffices to verify the condition (J2). From the proof of the P.S. condition we know that \begin{equation*} J(u)\leq\frac{\overline{\gamma }}{\underline{p}}k\| u\| ^{\overline{p}} +\frac{\overline{\gamma }}{\underline{p}}k-a_3 c_{2,1}^{\beta }\| u\| ^{\beta }. \end{equation*} Since $\beta >\overline{p}$, we can choose $u^{\ast }$ far enough to ensure that $J(u^{\ast })<0$. By the Mountain Pass Lemma, $J$ possesses a critical value $c\geq a>0$ where \begin{gather*} c=\inf_{h\in \Gamma }\sup_{s\in [ 0,1]}J(h(s)), \\ \Gamma =\{h\in C([0,1],\mathbb{R}^{k})|h(0)=0,h(1)=u^{\ast }\}. \end{gather*} Let $\overline{u}\in \mathbb{R}^{k}$ be a critical point associated to the critical value c of J. Due to anti coercivity and continuity, we know that there exists $\hat{u}$ such that \begin{equation*} J(\hat{u})=c_{\rm max}=\max_{s\in [ 0,1]}J(h(s)). \end{equation*} Clearly, $\hat{u}\neq 0$. If $\overline{u}\neq \hat{u}$ we reach the assertion of the theorem. Suppose that $\overline{u}=\hat{u}$. Itimplies that \begin{equation*} J(\overline{u})=\inf_{h\in \Gamma }\sup_{s\in [ 0,1]}J(h(s)). \end{equation*} Hence for any function $h\in \Gamma $, $\max_{t\in [ 0,1]}J(h(t))=J( \overline{u})$. Indeed, for any $h\in \Gamma $ we have \begin{equation*} J(\overline{u})\geq \max_{t\in [ 0,1]}J(h(t)) \end{equation*} since \begin{equation*} J(\overline{p})=\max_{x\in X}J(x)\text{ and }J(\overline{p})\leq \max_{t\in [ 0,1]}J(h(t)) \end{equation*} by the definition of the minimum. Since $k>1$, the space $X\backslash \{ \overline{u}\}$ is path connected. Then there exists a function $h_{0}\in \Gamma $ such that $h_{0}(t)\neq \overline{u}$ for $t\in [ 0,1]$. Since $\max_{t\in [ 0,1]}J(h_{0}(t))=J(\overline{u})$ it follows that there exists $t_{0}\in (0,1)$ such that $J(h_{0}(t_{0}))=\max_{x\in X}J(x)$ and by assertion $ h_{0}(t_{0})\neq \overline{u}$. Thus $h_{0}(t_{0}$ is a critical point different from $\overline{u}$. \newline The above argumentation implies that \eqref{ROW}-\eqref{eq:warunki_brzegowe} possesses at least two nontrivial solutions. \end{proof} \section{Nonexistence of solutions} This section give sufficient conditions for the nonexistence of nontrivial solutions to \eqref{ROW}-\eqref{eq:warunki_brzegowe}. \begin{theorem} \label{thm7} Let {\rm (F0), (F1)} and the following conditions be satisfied. \begin{itemize} \item[(F6)] For all $n\in \mathbb{Z}(1,k)$, $v_2\neq 0 \Rightarrow v_2 f(n,v_1,v_2,v_3)>0$. \end{itemize} Then \eqref{ROW}-\eqref{eq:warunki_brzegowe} has no nontrivial solution. \end{theorem} \begin{proof} Assume in the sake of contradiction that \eqref{ROW}-\eqref{eq:warunki_brzegowe} possesses a nontrivial solution. Then, functional $J$ has a nonzero critical point $u^{\ast }$. Since \begin{equation*} \frac{\partial J}{\partial u_{n}}=\Delta ^2(\gamma _{n-1}\phi _{p_{n}}(\Delta ^2u_{n}))-f(n,u_{n+1},u_{n},u_{n-1}), \end{equation*} it follows that \begin{align*} &\sum_{n=1}^{k}f(n,u_{n+1}^{\ast },u_{n}^{\ast },u_{n-1}^{\ast })\cdot u_{n}^{\ast }\\ &=\sum_{n=1}^{k}\Delta ^2(\gamma _{n-1}\phi _{p_{n}}(\Delta ^2u_{n-2}^{\ast }))\cdot u_{n}^{\ast }\\ &=\sum_{n=1}^{k}\gamma _{n+1}|\Delta ^2u_{n}^{\ast }|^{p_{n+2}-2}(\Delta ^2u_{n}^{\ast })u_{n}^{\ast }-2\gamma _{n}|\Delta ^2u_{n-1}^{\ast }|^{p_{n+1}-2}(\Delta ^2u_{n-1}^{\ast })u_{n}^{\ast }\\ &\quad +\gamma _{n-1}|\Delta ^2u_{n-2}^{\ast }|^{p_{n}-2}(\Delta ^2u_{n-2}^{\ast })u_{n}^{\ast }\\ &=\sum_{n=1}^{k}\gamma _{n+1}|\Delta ^2u_{n}^{\ast }|^{p_{n+2}-2}(\Delta ^2u_{n}^{\ast })u_{n}^{\ast }-2\sum_{n=1}^{k}\gamma _{n}|\Delta ^2u_{n-1}^{\ast }|^{p_{n+1}-2}(\Delta ^2u_{n-1}^{\ast })u_{n}^{\ast }\\ &\quad +\sum_{n=1}^{k}\gamma _{n-1}|\Delta ^2u_{n-2}^{\ast }|^{p_{n}-2}(\Delta ^2u_{n-2}^{\ast })u_{n}^{\ast }\\ &=\sum_{n=1}^{k}\gamma _{n+1}|\Delta ^2u_{n}^{\ast }|^{p_{n+2}-2}(\Delta ^2u_{n}^{\ast })u_{n}^{\ast }-2\sum_{n=0}^{k-1}\gamma _{n+1}|\Delta ^2u_{n}^{\ast }|^{p_{n+2}-2}(\Delta ^2u_{n}^{\ast })u_{n+1}^{\ast } \\ &\quad +\sum_{n=-1}^{k-2}\gamma _{n+1}|\Delta ^2u_{n}^{\ast }|^{p_{n+2}-2}(\Delta ^2u_{n}^{\ast })u_{n+2}^{\ast } \\ &=\sum_{n=1}^{k}\gamma _{n+1}|\Delta ^2u_{n}^{\ast }|^{p_{n+2}-2}(\Delta ^2u_{n}^{\ast })u_{n}^{\ast }-2\sum_{n=1}^{k}\gamma _{n+1}|\Delta ^2u_{n}^{\ast }|^{p_{n+2}-2}(\Delta ^2u_{n}^{\ast })u_{n+1}^{\ast } \\ &\quad +\sum_{n=1}^{k}\gamma _{n+1}|\Delta ^2u_{n}^{\ast }|^{p_{n+2}-2}(\Delta ^2u_{n}^{\ast })u_{n+2}^{\ast }+[-2\gamma _1|\Delta ^2u_{0}^{\ast }|^{p_2-2}(\Delta ^2u_{0}^{\ast })u_1^{\ast }\\ &\quad +2\gamma _{k+1}|\Delta ^2u_{k}^{\ast }|^{p_{k}+2-2}(\Delta ^2u_{k}^{\ast })u_{k+1}^{\ast }+\gamma _{0}|\Delta ^2u_{-1}^{\ast }|^{p_1-2}(\Delta ^2u_{-1}^{\ast })u_1^{\ast } \\ &\quad +\gamma _1|\Delta ^2u_{0}^{\ast }|^{p_2-2}(\Delta ^2u_{0}^{\ast })u_2^{\ast }-\gamma _{k}|\Delta ^2u_{k-1}^{\ast }|^{p_{k}+1-2}(\Delta ^2u_{k-1}^{\ast })u_{k+1}^{\ast } \\ &\quad -\gamma _{k+1}|\Delta ^2u_{k}^{\ast }|^{p_{k+2}-2}(\Delta ^2u_{k}^{\ast })u_{k+2}^{\ast }]. \end{align*} Using boundary values, it is easy to see that the expression in square bracket is equal to zero. This implies \begin{align*} &\sum_{n=1}^{k}\gamma _{n+1}|\Delta ^2u_{n}^{\ast }|^{p_{n+2}-2}(\Delta ^2u_{n}^{\ast })(u_{n}^{\ast }-2u_{n+1}^{\ast }+u_{n+2}^{\ast}) \\ &=\sum_{n=1}^{k}\gamma _{n+1}|\Delta ^2u_{n}^{\ast }|^{p_{n+2}-2}(\Delta ^2u_{n}^{\ast })^2<0, \end{align*} which is a contradiction with assumption. Hence, the only critical point of $J$ is 0. \end{proof} \section{Final comments and examples} Firstly note that the classical approach to the positive solutions do not apply to the fourth-order problems. It is so because of the inequality \[ \Delta ^2u_{n}\cdot \Delta ^2u_{-n}\leq 0, \] where $u_{-}=\max\{-u,0\}$, is not satisfied for all $u\in X$. Indeed, take \[ u_{n}=5,\quad u_{n+1}=1,\quad u_{n+2}=-2. \] Substituting symbols by numbers we obtain \begin{align*} \Delta ^2u_{n}\cdot \Delta^2u_{-n} &=(u_{n+2}-2u_{n+1}+u_{n})(u_{-n+2}-2u_{-n+1}+u_{-n})\\ &=(-2-2+5)\cdot (2+0+0)=2>0. \end{align*} Now, we shown four examples to illustrate the main results. \begin{example} \label{examp1} \rm For $n\in \mathbb{Z}(1,k)$, assume that \[ \Delta^2 (-2n \phi_{p_n}(\Delta^2 u_{n-2})) = \Phi(n-1)\cos{u_n}\cos{ u_{n-1}} -\Phi(n)\sin{u_{n+1}}\sin{u_n}, \] with boundary value conditions \eqref{eq:warunki_brzegowe}, where $p_n: \mathbb{Z}(1,k)\to\mathbb{R}$, $\Phi (n) >0$, $n\in \mathbb{Z}(1,k)$. We have \begin{gather*} \gamma_n = -2(n+1), \quad f(n,v_1,v_2,v_3) = \Phi(n-1)\cos{v_2}\cos{v_3}-\Phi(n)\sin{v_1}\sin{v_2},\\ F(n,v_1,v_2) = \Phi(n) \sin{v_1} \cos{v_2}. \end{gather*} It is easy to verify that all the assumptions of Theorem \ref{thm3} are satisfied, thus our problem possesses at least one solution. \end{example} \begin{example} \label{examp2} \rm For $n\in \mathbb{Z}(1,k)$, assume that \[ \Delta^2 (6^{n-1} \phi_{p_n}(\Delta^2 u_{n-2})) = \alpha u_n [ \psi(n)(u^2_{n+1} + u_n^2)^{\frac{\alpha}{4} \underline{p} -1} + \psi(n-1)(u^2_{n} + u_{n-1}^2)^{\frac{\alpha}{4} \underline{p} -1}], \] with boundary value conditions \eqref{eq:warunki_brzegowe}, where $p_n:\mathbb{Z}(1,k)\to\mathbb{R}$, $\psi (n) >0$, $n\in \mathbb{Z}(1,k)$, $1<\alpha <2$. We have \begin{gather*} \gamma_n = 6^n, \quad f(n,v_1,v_2,v_3) = \alpha v_2 [ \psi(n)(v_1^2 +v_2^2)^{\frac{\alpha}{4} \underline{p} -1} + \psi(n-1)(v^2_2 +v_3^2)^{\frac{\alpha}{4} \underline{p} -1}],\\ F(n,v_1,v_2) = \psi(n) (v_1^2 + v_2^2)^{\frac{\alpha}{4} \underline{p}}. \end{gather*} We can easily check that all the assumptions of Theorem \ref{thm3} are satisfied, hence our problem possesses at least one solution. \end{example} \begin{example} \label{examp3}\rm For $n\in \mathbb{Z}(1,k)$, assume that \[ \Delta^2 (\phi_{p_n}(\Delta^2 u_{n-2})) = \beta u_n [ \psi(n)(u^2_{n+1} + u_n^2)^{\frac{\beta}{2} -1} + \psi(n-1)(u^2_{n} + u_{n-1}^2)^{\frac{\beta}{2}-1}] \] with boundary value conditions \eqref{eq:warunki_brzegowe}, where $p_n: \mathbb{Z}(1,k)\to\mathbb{R}$, $\psi (n) >0$, $n\in \mathbb{Z}(1,k)$, $\beta > \overline{p} $. We have \begin{gather*} \gamma_n \equiv 1,\quad f(n,v_1,v_2,v_3) = \beta v_2 [ \psi(n)(v_1^2 +v_2^2)^{\frac{\beta}{2} -1} + \psi(n-1)(v^2_2 +v_3^2)^{\frac{\beta}{2} -1}], \\ F(n,v_1,v_2) = \psi(n) (v_1^2 + v_2^2)^{\frac{\beta}{2} }. \end{gather*} Then, the assumptions of Theorem \ref{thm6} are satisfied, hence our problem possesses at least two solutions. \end{example} \begin{example} \label{examp4} \rm For $n\in \mathbb{Z}(1,k)$, assume that \[ \Delta^2 (-\phi_{p_n}(\Delta^2 u_{n-2})) = 4 u_n [ (u^2_{n+1} + u_n^2) + (u^2_{n} + u_{n-1}^2) ], \] with boundary value conditions \eqref{eq:warunki_brzegowe}, where $p_n:\mathbb{Z}(1,k)\to\mathbb{R}$. We have \begin{gather*} \gamma _{n}\equiv -1,\;f(n,v_1,v_2,v_{3}) =4v_2[(v_1^2+v_2^2)+(v_2^2+v_{3}^2)], \\ F(n,v_1,v_2)=(v_1^2+v_2^2)^2. \end{gather*} Then, the assumptions of Theorem \ref{thm7} are satisfied, hence our problem has no nontrivial solutions. \end{example} \subsection*{Acknowledgements} The Author thanks Professor Marek Galewski from Lodz University of Technology for some suggestions on the topic of this research. \begin{thebibliography}{99} \bibitem{agrawal} R. P. Agarwal, K. Perera, D. O'Regan; \emph{Multiple positive solutions of singular discrete p-Laplacian problems via variational methods}, Adv. Difference Equ. 2005 (2) (2005) 93--99. \bibitem{CIT} A. Cabada, A. Iannizzotto, S. Tersian; \emph{Multiple solutions for discrete boundary value problems}. J. Math. Anal. Appl. 356 (2009), no. 2, 418--428. \bibitem{caiYu} X. Cai, J. Yu; \emph{Existence theorems of periodic solutions for second-order nonlinear difference equations}, Adv. Difference Equ. 2008 (2008) Article ID 247071. \bibitem{C} Y. Chen, S. Levine, M. Rao; \emph{Variable exponent, linear growth functionals in image processing}, SIAM J. Appl. Math. 66 (2006), No. 4, 1383-1406. \bibitem{D} X. L. Fan, H. Zhang; \emph{Existence of Solutions for $p(x)$-Lapacian Dirichlet Problem}, Nonlinear Anal., Theory Methods Appl. 52, No. 8, A, 1843-1852 (2003). \bibitem{Figueredo} D. G. Figueredo; \emph{Lectures on the Ekeland Variational Principle with Applications and Detours}, Preliminary Lecture Notes, SISSA, 1988. \bibitem{GalewskiSmejda} M. Galewski, J. Smejda; \emph{On the dependence on parameters for mountain pass solutions of second-order discrete BVP's}, Appl. Math. Comput. 219, No. 11, 5963-5971 (2013). \bibitem{GalewskiWieteska} M. Galewski, R. Wieteska; \emph{Existence and multiplicity of positive solutions for discrete anisotropic equations}, Turk. J. Math. 38, No. 2, 297-310 (2014). \bibitem{GuiroKoneOuaro} A. Guiro, B. Kone, S. Ouaro; \emph{Weak homoclinic solutions of anisotropic difference equation with variable exponents}, Advances in Difference Equations 2012, 2012:154 \bibitem{hasto} P. Harjulehto, P. H\"{a}st\"{o}, U. V. Le, M. Nuortio; \emph{Overview of differential equations with non-standard growth}, Nonlinear Anal. 72 (2010), 4551-4574. \bibitem{KoneOuro} B. Kone. S. Ouaro; \emph{Weak solutions for anisotropic discrete boundary value problems}, J. Difference Equ. Appl. 17 (2011), no. 10, 1537--1547. \bibitem{Liu} J. Q. Liu, J. B. Su; \emph{Remarks on multiple nontrivial solutions for quasi-linear resonant problemes}, J. Math. Anal. Appl. 258 (2001) 209--222. \bibitem{LiuZhangShi} X. Liy, Y. Zhang, H. Shi; \emph{Nonexistence and existence result for a fourth-order p-Laplacian discrete mixed boundary value problem}, Mediterr. J. Math. (2014) \bibitem{Ma} J. Mawhin; \emph{Probl\`{e}mes de Dirichlet variationnels non lin\'{e} aires}, Les Presses de l'Universit\'{e} de Montr\'{e}al, 1987. \bibitem{MRT} M. Mih\v{a}ilescu, V. R\v{a}dulescu, S. Tersian; \emph{Eigenvalue problems for anisotropic discrete boundary value problems}. J. Difference Equ. Appl. 15 (2009), no. 6, 557--567. \bibitem{MBR} G. Molica Bisci, D. Repov\v{s}; \emph{On sequences of solutions for discrete anisotropic equations}, Expo. Math. 32 (2014), 284-295. \bibitem{A} M. R\r{u}\v{z}i\v{c}ka; \emph{Electrorheological fluids: Modelling and Mathematical Theory}, in: Lecture Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000. \bibitem{sehlik} P. Stehl\'{\i}k; \emph{On variational methods for periodic discrete problems}, J. Difference Equ. Appl. 14 (3) (2008), 259--273. \bibitem{TianZeng} Y. Tian, Z. Du, W. Ge; \emph{Existence results for discrete Sturm-Liouville problem via variational methods}, J. Difference Equ. Appl. 13 (6) (2007), 467--478. \bibitem{teraz} Y. Yang, J. Zhang; \emph{Existence of solution for some discrete value problems with a parameter}, Appl. Math. Comput. 211 (2009), 293--302. \bibitem{zhangcheng} G. Zhang, S. S. Cheng; \emph{Existence of solutions for a nonlinear system with a parameter}, J. Math. Anal. Appl. 314 (1) (2006), 311--319. \bibitem{nonzero} G. Zhang; \emph{Existence of non-zero solutions for a nonlinear system with a parameter}, Nonlinear Anal. 66 (6) (2007), 1400--1416. \bibitem{B} V. V. Zhikov; \emph{Averaging of functionals of the calculus of variations and elasticity theory}, Math. USSR Izv. 29 (1987), 33-66. \end{thebibliography} \end{document}